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Abstract—In the last two decades, multiobjective optimization
has become mainstream because of its wide applicability in a
variety of areas such engineering, management, the military and
other fields. Multi-Objective Evolutionary Algorithms (MOEAs)
play a dominant role in solving problems with multiple conflicting
objective functions. They aim at finding a set of representative
Pareto optimal solutions in a single run. Classical MOEAs are
broadly in three main groups: the Pareto dominance based
MOEAs, the Indicator based MOEAs and the decomposition
based MOEAs. Those based on decomposition and indicator
functions have shown high search abilities as compared to the
Pareto dominance based ones. That is possibly due to their
firm theoretical background. This paper presents state-of-the-art
MOEAs that employ decomposition and indicator functions as
fitness evaluation techniques along with other efficient techniques
including those which use preference based information, local
search optimizers, multiple ensemble search operators together
with self-adaptive strategies, metaheuristics, mating restriction
approaches, statistical sampling techniques, integration of Fuzzy
dominance concepts and many other advanced techniques for
dealing with diverse optimization and search problems

Keywords—Multi-objective optimization, Multi-objective Evolu-
tionary algorithms (MOEAs), Pareto Optimality, Multi-objective
Memetic Algorithm (MOMAs), Pareto dominance based MOEA,
Decomposition based MOEA, Indicator based MOEAs.

I. INTRODUCTION

Multi-objective optimization deals with problems involving
two or more conflicting objectives. In general, optimization
problems can be combinatorial or continuous. The Traveling
Salesman Problem (TSP) [165] and the Minimum Spanning
Tree (MST) are two well-known combinatorial problems.
Combinatorial optimization has various applications [38], [35],
[170], [31], [181] in air traffic routing, the design of telephone
networks, electrical engineering, hydraulic networks, cable TV
and computer systems and others. Continuous optimization
is widely used in mechanical design problems [109]. This
study is concerned with multi-objective optimization problems
(MOPs) including continuous variables. The general formula-
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tion of a MOP is:
s fm(@))" (1)

minimize F(z) = (fi(x),..
subject to z € )

where () is the decision space, * = (x1,2,...,7,)7 is a
decision vector and x;, ¢ = 1,...,n are decision variables,
F(z) : Q — R™ includes m real valued objective functions in
the objective space R™. If Q2 is a closed and connected region
in R™ and all objective functions involve continuous variables
then problem (1) is called a continuous MOP.

In real world multi-objective optimization problems, ob-
jective functions are usually in conflict or mostly incommen-
surable. Consequently, there is not a unique solution that can
minimize all the objective functions at the same time. The
problem must be solved in terms of Pareto optimality. This
concept was first devised by Francis Ysidro Edgeworth in 1881
and then later on generalized by Vilfredo Pareto in 1896. To
describe this concept, we will introduce a few definitions.

A solution u = (ug,ug,...,u,) € € is said to be
Pareto optimal if there does not exist another solution v =
(v1,v2,...,v,) € Q such that f;(u) < f;(v) for all j =
1,...,mand f;(u) < f;(v) for at least index k. An objective
vector is Pareto optimal if the corresponding decision vector is
Pareto optimal. All the Pareto optimal solutions in the decision
space form the Pareto Set (PS) and their image in the objective
space forms a Pareto Front (PF), [136], [37], [41].

In the last few years, several multi-objective evolutionary
algorithms (MOEAs) have been developed [98], [84], [123],
[127], [189], [167], [85], [121] and they have proven their
power in many demanding real-world optimization tasks [36],
[35], [31], [123], [189], [127], [96]. Classical MOEAs can
generally be divided into three main paradigms: the Pareto
dominance based MOEAs [42], [193], [192], [149], [65], the
indicator based evolutionary algorithms (IBEAs) , [199], [20],
[12], [19], [157], [178] and the decomposition based MOEAs
[183], [101], [185], [129], [132], [125], [86], [130]. MOEAs
operate on a population and approximate the set of optimal
solutions in a single simulation run, maintaining diversity
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among these solutions using different measures such as fitness
sharing techniques, the niching approach, the Kernel approach,
the nearest neighbour approach, the histogram technique, the
crowding/clustering estimation technique, the relaxed form of
dominance and the restricted mating and many others.

The fast Non-dominated Sorting Genetic Algorithm II
(NSGA-II), [42], SPEA2 [192], the Pareto Archive Evo-
lution Strategy (PAES), [88], the Multi-Objective Genetic
Algorithm (MOGA), [52], and the Niched Pareto Genetic
Algorithm (NPGA), [65], are well known Pareto dominance
based MOEAs. Among them, NSGA-II [42] is an improved
version of the Non-dominated Sorting Genetic Algorithm
(NSGA), [80] for dealing with MOPs. It generates offspring
with crossover and mutation and selects the next generation
according to non-dominated sorting and crowding distance
comparison. SPEA2 [192] is an improved version of Strength
Pareto Evolutionary Algorithm (SPEA), [194]. SPEA2, [192],
incorporates a fine-grained fitness assignment strategy, a den-
sity estimation technique, and an enhanced archive truncation
method in contrast to SPEA [194]. It incorporates a mechanism
like k-Nearest Neighbour (kNN) and a specialized ranking
system to sort the members of the population, and select the
next generation of population, from combination of current
population and offsprings population created by crossover and
mutation. Both SPEA2 [192] and NSGA-II [42] have shown
excellent performances on various real-world, scientific and
engineering problems.

Memetic Algorithms (MAs) are a growing area of re-
search motivated by the meme concept introduced by Richard
Dawkins. MAs are hybrid algorithms that combine local
search optimizers and genetic algorithms for solving NP-
hard problems. The first multi-objective MA was developed
by Ishibuchi and Murata [67]. That was then improved by
Jaszkiewicz, [1], [77]. Basically, these algorithms reformulate
the given MOP as simultaneous optimization of all weighted
Tchebycheff functions or all weighted sum functions. The
Adaptive Multi-objective optimization using Genetically Adap-
tive Multimethod search (AMALGAM) [177] blends multiple
search operators to evolve populations.

This paper provides a state-of-the-art survey of MOEAs
that employ indicator and decomposition functions for guiding
their search and evolve their populations. We have included,
especially, those approaches which are recently developed and
found in the existing specialized literature of the evolutionary
computation (EC).

The rest of this paper is organized as follows. Section II
provides the latest and enhanced variants of MOEA/D. Section
III is related to Indicator based EAs. Section IV will finally
conclude this paper with some future research directions.

II. DECOMPOSITION BASED MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM

Decomposition is a procedure that break down the given
system or task into smaller pieces and then optimize them
either sequentially or parallel [112]. This concept is already
incorporated in many meta-heuristics, namely, tabu search
technique [54], simulated annealing (SA) [175], ant colony
optimization (ACO) [58], differential evolution [103], particle
swarm optimization (PSO) [156], genetic algorithm (GA)
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[43], evolutionary strategy (ES) [102] for solving various test
suits of optimization and search problems. Metaheuristics are
higher-level procedure or heuristics designed that efficiently
provide good set of solutions for the given optimization
problems [22], [169].

In [180], a decomposition-based multi-objective differen-
tial evolution particle swarm optimization (DMDEPSO) is
developed and intelligently resolved the problems of design
of a tubular permanent magnet linear synchronous motor
(TPMLSM).Two-Phase Local Search (TPLS) is proposed in
[155] in order tackle TSP with bi-objective functions. This
proposed algorithm in their first phase of optimization pro-
cess generates good initial solution based on single objective
function and then forward that solutions to their second phase,
where local search technique is used to apply on them by
using aggregation of objective functions till the time no
optimum solutions are found. Improved TPLS are devised
in [46], [47] aiming at to improve its anytime performance
by employing regular distribution of the weight vectors in
order to equally distribute the effort of the objective space in
all directions. In [142], [141], cellular multi-objective genetic
algorithm (CMOGA) is suggested. It uses canonical cellular
model of GAs (cGA) as a baseline model and habituating
the weighted sum approach in order to convert the MOP at
hand into scalar optimization problems. Moreover, CMOGA
also implanted in multi-objective genetic algorithm (MOGA)
framework the cellular structures for residing each individual
of its population in a cell of spatially structured space. It
then locally utilizes genetic operations in the neighbourhood
of each cell for creating an offspring population. Another
novel and promising cellular genetic algorithm called MOCell
developed in [144] for dealing with multi-objective continuous
optimization problems. This algorithm maintain an external
archive for storing non-dominated set of solutions and utilize
them again at certain stages of population evolution. Another
algorithm of same nature was proposed in [3] which does not
adopt an external archive as like MOCell does [144] in their
algorithmic framework.

Nowadays, memetic algorithms (MAs) is an another emerg-
ing and hot area of research inspired by Darwinian principles
of natural evolution and Dawkins’ notion of a meme [61],
[94]. This was first introduced by Pablo Moscato in 1989
[138]. They are also called Baldwinian evolutionary algorithms
(EA), Lamarckian EAs [150], cultural algorithms, genetic local
search or hybrid algorithm [139], [147], [146], [151]. This
class of algorithms have shown great performance and achieve-
ments in solving real-world problems and various complicated
test suites of MOPs [140], [60], [68], [53], [137], [126], [128].

Ishibuchi and Murata were the first researchers whose
proposed the multi-objective genetic local search (MOGLS)
[70], [67] for solving multi-objective combinatorial optimiza-
tion problems. This proposed methodology has utilized the
scalar fitness function with random weights generation strategy
to guide their population until stoping criteria not satisfied.
Jaszkiewicz has further improved MOGLS [78] by incorpo-
rating the modified parent selection mechanism in Ishibuchi’s
MOGLS. Jaszkiewicz examined the performance of their
MOGLs using test suit of multiple-objective 0/1 knapsack
problems (MOKPs). Later on, Ishibuchi further enhanced its
MOGLS [63], here the authors apply local search upon limited
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number solutions as per probability value, Prg with aim to
minimize the computation burden of the existing Ishibuchi’s
MOGLS [70], [67].

Multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) [183] is well-known developed paradigm in
evolutionary computation field. This novel and robust stochas-
tic technique bridges traditional mathematical programming
and evolutionary computing (EC) and transforms the MOP
at hand into N different scalar optimization sub-problems
(SOPs). For this purposes, it employs an aggregation based
techniques including weighted sum function, Tchebycheff ap-
proach and many others [136] and then optimizes all these
SOPs simultaneously rather than solving a MOP directly.
Aggregation based fitness assignment strategy of MOEA/D
naturally handles convergence and diversity issues contrary
to non-decomposition based approaches. The main feature
of MOEA/D is its neighborhood relationships among their
subproblems that defines based on the distances between their
aggregation coefficient vectors.

The original MOEA/D was then further enhanced in [101]
by replacing simulated binary crossover (SBX) [81] with
differential evolution (DE) [162]. Moreover, in this improved
version of MOEA/D called MOEA/D-DE [101], two neigh-
bourhoods are used and each child solution to replace mini-
mum number of old solutions in its neighbourhood structure.
Moreover, general guidelines for the formulation of multi-
objective continuous test instances are also main part of
this study [101]. Recently, in [32], multiple neighbourhood
replacement strategies, reference point determination and dif-
ferent decomposition methods are explicitly analyzed upon
multi-objective flowshop scheduling test problems. Dynamical
resources allocation scheme for the subproblems are introduces
in [185], where each subproblems get resources in dynamical
manner based on suggested utility function.Gaussian process
model is integrated in MOEA/D framework and as result
MOEA/D-EGO is developed in [186] to handle an expensive
MOP by converting into a number of single-objective opti-
mization subproblems. Gaussian process models provides a
probabilistic non-parametric modelling approach for black-box
identification of non-linear dynamic systems. The Gaussian
processes can highlight areas of the input space, where predic-
tion quality is poor, due to the lack of data or its complexity,
by indicating the higher variance around the predicted mean
[90].

In [72], [71], [73], [74], simultaneous use of aggregation
functions along with neighborhood structures are incorporated
in an original MOEA/D framework [183], [101] for solv-
ing combinatorial optimization problems with many objective
functions. In [154], each subproblem have been associated
more than one solution to maintain search diversity.

Mostly MOEA/D [183] frameworks use Tchebycheff and
the weighted sum approaches with fixed weight vectors strat-
egy. However, in [99], the wights of aggregation functions
are adjusted in adaptive as well as fixed manners. This algo-
rithm make use of external archive and stores non-dominated
solutions using modified e-dominance strategy and to utilize
that solutions in the generating process of weight vectors. The
use of fixed weight vectors adjustment is sometimes creates
hurdles that are expected in solving problems with complicated
Pareto fronts (PFs), discontinuity or sharpness or low tail in
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their structure. This novel procedure for adaptive weight vec-
tors generation adopted in MOEA/D-AWA: MOEA/D-adaptive
weight adjustment have offered promising results coping with
MOPs used in [161].

Aggregation approaches like weighted sum approach [136]
and the Tchebycheff approach [136] are widely employed in
the framework of MOEA/D. However, they are sometimes
unable to deal with problems having had disparately scaled
objective functions. In [163], Normal Boundary Intersection
(NBI) style Tchebycheff approach is utilized in MOEA/D-
DE [101] as resultant new algorithm called MOEA/D-NBI has
been developed for solving portfolio management MOPs. The
same NBI-style Tchebycheff approach is also implemented in
[184] for also dealing with portfolio management problems.

In [97], simulated annealing (SA) is integrated in MOEA/D
and the combined impact analyzed upon both constrained
multi-objective knapsack problems and unconstrained multi-
objective traveling salesman problem. In this algorithm, sim-
ulated annealing (SA) has been used as local search with
adaptive procedures.

A novel smart multi-objective particle swarm optimization
based decomposition (SDMOPSO) is recently suggested in
[2] for solving ZDT test problems [198]. Noting that differ-
ent only decomposition strategies hare incorporated particle
swarm optimization (PSO) [49] framework. Like MOEA/D,
this algorithm transforms the given MOP into N numbers of
SOPs. In [111], PSO injected to MOEA/D to handle the multi-
objective 0/1 knapsack problems and also continuous multi-
objective optimization problems. In [125], [132], differential
evolution [162] and particle swarm optimization [49] are
incorporated simultaneously with self-adaptive procedures in
MOEA/D [183] to handle five standard ZDT test problems
[198] and CEC’09 test instances [187].

In [33], two enhanced mechanisms such as guided mutation
and priority update schemes are introduced in the original
framework MOEA/D [101]. This algorithm was denoted by
MOEA/D-GM and efficiently tackled CEC’09 test instances
[187] consist of both unconstrained and constrained MOPs.
MOEA/D-GM creates its new population with guided mutation
(GM) rather than differential evolution (DE) [162] and also
introduces update mechanism based on priority queue of
subproblems.

An interactive decomposition based multiobjective evolu-
tionary algorithm (IMOEA/D) is recently proposed in [55] that
incorporates preference mechanism for selecting the preferred
sub-problems rather than the preferred region in the objective
space. At each interaction, iMOEA/D provides a set of cur-
rent solutions to decision maker (DM) to pick out the most
preferred one for guiding search towards the neighborhood
of the selected ones. iMOEA/D are tested upon benchmark
functions and various utility functions are used to simulate the
DM’s responses. Iterative threshold based MOEA/D frame-
work developed in [100] for optimizing sparse signal recovery
in compressive sensing.

The synthesis problem of the difference patterns of
monopulse antenna arrays are modeled as MOP in [153] with
composed of two objective functions including the maximum
side-lobe level (MSLL) and beam width (BW) of principal
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lobe. MOEA/D-DE [101] is applied on these modeled prob-
lems and approximated their Pareto Fronts (PFs) with different
number of elements and sub-arrays. Linear antenna array
design is an electromagnetic optimization problems and can
be formulated as a MOP with two objectives: the minimum
average side lobe level (SLL) and null control in specific di-
rections. MOEA/D-DE [101] is also applied on these problems
as well and for it an optimized spacing between the elements
of linear array while achieving the best possible trade-off
between the above mentioned two design objective functions
[152]. Furthermore, MOEA/D-DE [101] is applied on prob-
lems formulated in [57] and have found better optimally sized
two mixed-mode circuits including positive second generation
current conveyor and current feedback operational amplifier as
compared to NSGA-II [42].

A thread-based parallel implementation of MOEA/D
framework is devised recently in [145], [48] by executing on
modern multi-core processors. Parallel Decomposition (PaDe)
is recently developed in [117]. It has habituated a asynchronous
generalized island model for solving various decomposed
problems. In [164], a parallel version of MOEA/D has been
developed that assigns the computational resources for gen-
erating solutions in the minimum overlapped update ranges
of solutions and tournament selection based on the scalarizing
function value to strengthen the selection pressure of its parent
population. A new fine grained message passing schemes for
the distribution the MOEA/D computations are implemented
in MOEA/D-MP framework [44]. In [119], new selection and
replacement strategies have been adopted in MOEA/D for
solving bi-objective combinatorial optimization problems.

In [86], [129], [84], [85], different multiple search oper-
ators are being engaged in MOEA/D framework [185] and
handled the test instances designed for the special session
of MOEAs competition in IEEE Congress of Evolutionary
Computation (CEC’09) [187]. Two different structured and
well-established MOEAs in evolutionary computing (EC) field,
namely, MOEA/D [183] and NSGA-II [42] are combined
at population and generation levels in [124], [122] for two
different benchmark functions expressed in continuous vari-
ables. The same two well-known algorithms are also engaged
altogether for dealing with a hard multiobjective optimiza-
tion problem in [134]. The concepts of fuzzy dominance
are recently introduced in the MOEA/D framework [143]
for enhancement of MOEA/D paradigm. The impact of the
ensemble use of the different neighbourhood sizes are recently
investigated in [188] based on self-adaptive procedures. Very
recently, the impact of multiple crossovers are examined in
[131] using MOEA/D-DRA [185] as global search technique
and experiment carried over CEC’09 test instances [187].

In [4], Tabu Search (TS) is used within MOEA/D frame-
work to solve the multiobjective permutation flow shop
scheduling problems. In [91], several problem-specific op-
erators are also investigated in MOEA/D framework [101]
to tackle multiobjective mobile agent routing problems. An
encoding representation and various genetic operators are
designed for wireless sensor networks deployment and power
assignment problems (DPAPs) in [92]. Several constraint
handling techniques are also adopted in the framework of
MOEA/D algorithmic structure for solving constrained K-
connected DPAP in WSNs [93]. Covariance matrix adaption
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evolution strategy (CMA-ES) has been injected to MOEA/D
as a local search optimizers. The resultant algorithm abbrevi-
ated as MOEA/D-CMA developed in [182] for handling the
CEC’09 box-constrained benchmark functions [187].

In [82], Ant colony optimization (ACO) is incorporated
within MOEA/D framework [183] and an algorithm called
MOEA/D-ACO is developed, where the effects of grouping,
neighborhood, and the location information of current solutions
are explicitly analyzed over multiobjective 0/1 knapsack test
problems. In [190], a generator based on multivariate Gaussian
models is engaged in MOEA/D framework, where probability
models samplings new trial solutions and Gaussian distribution
models extracts both local and global population distribution
information in robust manners. An efficient multiobjective
memtic algorithm called MOMADA is recently developed
in [83] by utilizing modified Pareto local search methods
[113] to explore the neighborhoods of different locally optimal
solutions of the subproblem. In [120], Nelder and Meads
algorithm also known as nonlinear simplex search method has
employed as local search optimizer in MOEA/D framework
for solving Zitzler-Deb-Thiele (ZDT) [198] and Deb-Thiele
Laumanns-Zitzler (DTLZ) benchmark functions [40].

Decomposition-based memetic algorithm with extended
neighbourhood search (D-MAENS) is developed in [135] for
solving multi-objective capacitated arc routing problem (MO-
CARP). D-MAENS also decomposes the given MO-CARP
as like MOEA/D [183] into a number of scalar subprob-
lems by employing the weighted sum approach with a set
of uniformly distributed weight vectors adjustment. A new
replacement mechanism and the assignment mechanism for
offspring solutions are introduced in improved D-MAENS
[166]. In [160], a decomposition based memetic algorithm
is proposed and examined their performance upon multi-
objective vehicle routing problem with time windows (MO-
VRPTW). The suggested algorithm accommodates three types
of local search methods periodically in combination with novel
selection operator. In [132], [125], multi-objective memetic
algorithm based on decomposition is developed for solving
multi-objective continuous optimization problems. The pro-
posed algorithm employs particle swarm optimization (PSO)
and deferential evolution (DE) with self-adaptive manner for
population evolution in their suggested enhanced MOEA/D
version.

In [133], artificial bee colony (ABC) and teaching-learning-
based optimization (TLBO) are engaged within MOEA/D
framework to tackle the ZDT test problems [198] and seven un-
constrained MOPs of the test suite of the 2009 IEEE congress
on evolutionary computation [187]. ABC [62] works on the
foraging behavior of a honey bee and TLBO [148] works on
the philosophy of teaching and learning process. Opposition-
based learning is a fast growing area of research developed in
[172]. OBL has been incorporated in MOEA/D framework as
resultant an algorithm called MOEA/D-OBL has been sprang
up recently in [115]. The suggested opposition-based initial
population and opposition-based learning strategy to generate
an offspring population have improved the convergence ability
of original MOEA/D [183]. An improved MOEA/D algorithm
denoted by TMOEA/D is developed in [110]. The proposed
algorithm has utilized a monotonic increasing function and
transformed each individual objective function into the one as
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resultant the curve shape of the non-dominant solutions of the
transformed multi-objective problem get closed to the hyper-
plane whose intercept of coordinate axes is equal to one in the
original objective function space.

In [6], [5], a decomposition based evolutionary algorithm
is developed for solving both benchmark functions with many
objectives and also real-world problems including the car side
impact problem, the water resource management problem and
the constrained ten-objective general aviation aircraft (GAA)
design problem. Moreover, the proposed algorithm have been
employed Latten hypercube sampling (LHS) mechanism for
reference points generation and adaptive epsilon scheme to
establish balance between convergence vs diversity dilemma.

MOEA/D with uniform decomposition measurement
(MOEA/D-UDM) developed in [116] for many-objective prob-
lems (MAPs). In MOEA/D-UNM [116], the authors have
been highlighted two main issues concerned with original
MOEA/D paradigm dealing with MAPs, firstly, the number
of constructed weight vectors are not arbitrary and mainly
distributed on the boundary of weight space; secondly, the
relationship between the optimal solution of subproblem and
its weight vector is nonlinear for the Tchebycheff decompo-
sition approach. To address aforementioned issues, a novel
weight vectors initialization method based on the uniform
decomposition measurement and modified Tchebycheff de-
composition function have introduced in the MOEA/D-UNM
framework while coping with MAPs. In [105], both dominance
and decomposition concepts have been combined in order
to exploit the merits of both paradigms for the purposes to
maintain balance between convergence and diversity in the
process of population evolution while coping with MAPs.

The concepts of bandit-based operator selection (AOS)
method and fitness-rate-rank-based multiarmed bandit (FR-
RMAB) are borrowed from the existing literature and have
been incorporated in MOEA/D framework as consequence
MOEA/D-FRRMAB is developed in [106] to handle many-
objective optimization problems. A stable matching model
based on the preference articulations is employed in [108] as a
resultant an algorithm called MOEA/D-STM is developed. The
only difference in MOEA/D-STM and [107] are, MOEA/D-
STM considers the perpendicular distance between x and
the weight vector of subproblem p. However, the algorithm
suggested in [107] make use of niche count of p is an
additional term with perpendicular distance measurement for
diversity improvement and promotion in their current popula-
tion. MOEA/D-STM uses a stable matching model to find a
suitable matching between subproblems and solutions.In [107],
the selection of an appropriate solution for each subproblem
is based on the interrelationship between subproblems and
solutions.

Hybrid MOEA is developed in [104] which maintain
different selection principles and two separate co-evolving
archives to hold non-dominated solutions. One archive stores
solutions with competitive selection pressure and other pre-
serves a population with a satisfied distribution in the objective
space. Furthermore, to exploit guidance information towards
the Pareto-optimal set (PS), a restricted mating selection
mechanism is employed in this algorithm for selecting mating
parents from each archive to produce an efficient offspring
solutions. Recently, [130], multiobjective algorithm based on
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multi-method is developed. MMTD employs two well-known
algorithms, MOEA/D [183] and NSGA-II [42], for population
evolution for dealing with CEC’09 test instances [187] and
ZDT test problems.

III. INDICATOR BASED EVOLUTIONARY ALGORITHM

Hypervolume metric was first introduced by Zitzler and
Thiele as an indicator or measurement function. It measures
both convergence and diversity which are desirable in the
context of multi-objective evolutionary optimization [197],
[193], [195]. It measures volume dominated by non-dominated
solutions in objective space and extremely suitable for assess-
ing the dominance levels of multiple set of solutions in multi-
objective evolutionary optimization. For example, consider two
Pareto sets (i.e. Aand B), then the hypervolume indicator
values of set A will be higher than B if A dominates B.
Hypervolume is also called S metric or size of the space
covered [191] or Lebesgue measure [95], [50]. It has been
used as part of the selection or archiving process of MOEAs.

In the recent few years, the indicator based evolutionary
algorithms (IBEAs) have gained growing attention and much
popularity due to its strong theoretical support and background
[30], [11], [26], [7], [10]. They have shown high search
ability in various investigations [179], [13], [17]. The main
features of these algorithms are, they do not need any diversity
maintenance mechanism because indicator functions are auto-
matically recover the issue of diversity promotion among their
population solutions [176]. The first Hypervolume indicator
based EAs called “hypervolume by slicing objectives (HSO)”
was developed by Eckart Zitzler in his seminal work [191] and
also seminal work of J.Knowels [45]. Subsequently, various
indicator based evolutionary algorithms were developed by
employing various procedures as like preferences based infor-
mation [34], [25], [171], [8], [9], [196], different local search
optimizers and many others [158]. One practical drawbacks of
IBEA is that it needs much time for hypervolume calculation
while dealing with many objectives problems. To address the
mentioned drawbacks, in the recent past several faster and
enhanced of IBEAs have been developed for solving both
continuous and combinatorial optimization problems [114],
[24], [173], [14], [28]. The algorithms developed in [114],
[24] use objectives in place of points and as resultant they
are quickly determine their solution contribution to the front.
A methodology based on Monte Carlo sampling simulation
has been recently introduced in [14] to estimate the ranks
of their individuals induced by the hypervolume indicator
for not determining the exact indicator values. In [15], [16],
HypE: hypervolume estimation algorithm is devised for multi-
objective Optimization. HypE uses the same Monte Carlo
simulation method to approximate the exact hypervolume
values. A fast and enhanced version of HypE is developed [18]
for solving many objectives problems. In [29], a generalized
methodology for preference-directed hypervolume-based multi
objective search called W-HypE is developed. W-HypE also
relies on Monte Carlo sampling and thereby allows to tackle
problems with an arbitrary number of objectives.

In [76], an idea of scalarizing function-based hypervolume
approximation method are introduced IBEAs framework to
dealt with many objectives optimization problems. A simple
and fast hypervolume indicator-based MOEA (FV-MOEA) is

587|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

proposed [79] that selects partial solutions rather than the
whole solution set of solutions and quickly update the exact
hypervolume contributions of different solutions. An iterative
approach to indicator-based evolutionary multiobjective opti-
mization is proposed in [69] with main feature in which only
a single solution is obtained within single run. The proposed
algorithm needs multiple runs for finding a set of solutions.

In [21], an indicator based evolutionary algorithm (IBEA)
are compared with well-known algorithms including a fast non-
dominated sorting genetic algorithm II (NSGA- II) [42] and
strength Pareto evolutionary algorithm (SPEA-II) [192] over
standard portfolio optimization problems. An algorithm called
Prospect indicator based evolutionary algorithm (PIBEA) is
developed in [23] for solving DTLZ MOPs [40].The algorith-
mic structure of PIBEA is somewhat similar to well-known
NSGA-II framework, however, it measures the potential of
each individual to reproduce offspring that dominate itself and
spread out in the objective space of the given MOPs. In [168],a
directed search (DS) is incorporated as local search method
within global indicator based optimization algorithms. In [89],
Newton steepest descent method [51] and Hooke &Jeeves [64]
have been concurrently integrated within SMS-EMOEA [20]
framework to handle ZDT test problems [198].

An indicator-based ant colony optimization algorithm
which is abbreviated as IBACO is devised [118] for solving the
multi-objective knapsack problem (MOKP). IBACO engages
binary quality indicators to reinforce their best solutions and
not to eliminate the worst ones as exercised in the selection
phase of IBEA [200].

An indicator-based EMOA called R2-IBEA is proposed in
[157], [174], [27] for solving both ZDT [198] and DTLZ test
problems [39]. R2-IBEA eliminates dominance ranking and
performs selection with the R2 indicator [59].The R2 indicator
usually requires a set of weight vectors that are uniformly
distributed in the objective space. R2-IBEA is similar to
MOEA/D [183] in a sense, it also habituates aggregation
function like the Tchebycheff function with uniformly dis-
tributed weight vectors. R2IBEA [157] dynamically adjusts
the location of the reference point according to the extent of
the current generation individuals in the objective space. The
key feature of R2 indicator is that it is computationally much
less expensive than the hypervolume indicator. Another IBEA
that avoids dominance ranking and uses a binary e, indicator
in the selection process of suggested IBEA — €3 [199]. The
€9 is also called binary hypervolume indicator which is also
computational cost exponentially grows deal with problems
having many objective functions.

In [66], the algorithmic behaviors of MOEAs be-
longs to Pareto dominance-based, decomposition based and
hypervolume-based categories are experimentally analyzed
upon many-objective knapsack problems. The gathered exper-
imental results are clearly indicate the superiority of decompo-
sition based MOEAs against Pareto dominance and indicators
based EAs dealing with knapsack benchmark functions with
many objectives.

IV. CONCLUSION

Pareto dominance-based EAs are main streams in the
field of evolutionary computation (EC). However, their perfor-
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mance are greatly degraded on many objectives problems [87],
[159], [56], [75]. Indicator based and decomposition based
EAs are promising paradigms of EC. Indicator based EAs
(IBEAs) mostly use the hypervolume as the indicator function
to guide their process of population evolution. Decompo-
sition based MOEAs use aggregation approaches as fitness
functions and neighbourhood relationship to structure their
scalar optimization problems (SOPs). MOEA/D uses several
aggregation functions (i.e., weighted sum approach, Tcheby-
cheff approach and normal-boundary intersection method and
the normalized normal constraint method) for converting the
problem of approximating the PF into a number of scalar
optimization problems functions. This paper provides the latest
review of MOEAs that integrate the decomposition concept
and indicator functions in their framework along with other
efficient techniques like the incorporation of preference based
information, local search optimizers, multiple search operators
with self-adaptive strategies, metaheuristics, mating restriction
approaches, statistical sampling techniques, Fuzzy dominance
concepts to tackle issues of convergence and diversity in an
efficient manner for dealing with different real-world problems
and diverse and complicated MOPs test suites.

REFERENCES

[11 A.Jaszkiewicz, “Genetic local search for multi-objective combinatorial
optimization,” European Journalof Operational Research, vol. 137,
no. 1, pp. 50-71, 2002.

[2] N. Al Moubayed, A. Petrovski, and J. McCall, “A Novel Smart
Multi-objective Particle Swarm Optimisation Using decomposition,” in
Proceedings of the 11th international conference on Parallel problem
solving from nature: Part II, ser. PPSN’10.  Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 1-10.

[3] E. Alba, B. Dorronsoro, F. Luna, A. J. Nebro, P. Bouvry, and
L. Hogie, “A Cellular Multi-Objective Genetic Algorithm For Optimal
Broadcasting Strategy In Metropolitan MANETS,” Computer Commu-
nications, vol. 30, no. 4, pp. 685-697, 2007.

[4] A. Alhindi and Q. Zhang, “MOEA/D with Tabu Search for Multiobjec-
tive Permutation Flow Shop Scheduling Problems,” in IEEE Congress
on Evolutionary Computation (CEC’14), 2014, pp. 1155-1164.

[5] M. Asafuddoula, T. Ray, and R. Sarker, “A Decomposition-Based
Evolutionary Algorithm for Many Objective Optimization,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 3, pp. 445—
460, 2015.

[6] ——, “A Decomposition Based Evolutionary Algorithm for Many Ob-
jective Optimization with Systematic Sampling and Adaptive Epsilon
Control,” in Evolutionary Multi-Criterion Optimization, ser. Lecture
Notes in Computer Science, R. Purshouse, P. Fleming, C. Fonseca,
S. Greco, and J. Shaw, Eds. Springer Berlin Heidelberg, 2013, vol.
7811, pp. 413-427.

[71 A. Auger, J. Bader, and D. Brockhoff, “Theoretically Investigating
Optimal p-Distributions for the Hypervolume Indicator: First Results
For Three Objectives,” in Conference on Parallel Problem Solving
from Nature (PPSN XI), ser. LNCS, R. Schaefer et al., Eds., vol. 6238.
Springer, 2010, pp. 586-596.

[8] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Articulating User
Preferences in Many-Objective Problems by Sampling the Weighted
Hypervolume,” in Genetic and Evolutionary Computation Conference
(GECCO 2009), G. Raidl et al., Eds. New York, NY, USA: ACM,
2009, pp. 555-562.

[91 ——, “Investigating and Exploiting the Bias of the Weighted Hyper-
volume to Articulate User Preferences,” in Genetic and Evolutionary
Computation Conference (GECCO 2009), G. Raidl et al., Eds. New
York, NY, USA: ACM, 2009, pp. 563-570.

, “Hypervolume-based Multiobjective Optimization: Theoretical

Foundations and Practical Implications,” Theoretical Computer Sci-
ence, vol. 425, pp. 75-103, 2012.

(10]

588|Page

www.ijacsa.thesai.org



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(IJACSA) International Journal of Advanced Computer Science and Applications,

——, “Hypervolume-Based Multiobjective Optimization: Theoretical
Foundations and Practical Implications,” Theoretical Computer Sci-
ence, vol. 425, pp. 75-103, 2012.

J. Bader, “Hypervolume-Based Search for Multiobjective Optimiza-
tion: Theory and Methods,” Ph.D. dissertation, ETH Zurich, Switzer-
land, 2010.

——, “Hypervolume-Based Search for Multiobjective Optimization:
Theory and Methods,” Ph.D. dissertation, ETH Zurich, Switzerland,
2010.

J. Bader, K. Deb, and E. Zitzler, “Faster Hypervolume-based Search
using Monte Carlo Sampling,” in Conference on Multiple Criteria
Decision Making (MCDM’08), ser. LNEMS, M. Ehrgott et al., Eds.,
vol. 634, Heidelberg, Germany, 2010, pp. 313-326.

J. Bader and E. Zitzler, “HypE: An Algorithm for Fast Hypervolume-
Based Many-Objective Optimization,” Computer Engineering and Net-
works Laboratory (TIK), ETH Zurich, TIK Report 286, November
2008.

——, “HypE: An Algorithm for Fast Hypervolume-Based Many-
Objective Optimization,” Computer Engineering and Networks Lab-
oratory (TIK), ETH Zurich, TIK Report 286, 2008.

——, “Robustness in Hypervolume-based Multiobjective Search,”
Computer Engineering and Networks Laboratory (TIK), ETH Zurich,
TIK Report 317, 2010.

“Hype: An algorithm for fast hypervolume-based many-
objective optimization,” Evolutionary Computing, vol. 19, no. 1, pp.
45-76, Mar. 2011.

——, “HypE: An Algorithm for Fast Hypervolume-Based Many-
Objective Optimization,” Evolutionary Computation, vol. 19, no. 1,
pp. 45-76, 2011.

N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive Selection based on Dominated hypervolume,” European Journal
of Operational Research, vol. 181, no. 3, pp. 1653-1669, 2007.

S. Bhagavatula, S. Sanjeevi, D. Kumar, and C. Yadav, “Multi-objective
indicator based evolutionary algorithm for portfolio optimization,” in
Advance Computing Conference (IACC), 2014 IEEE International,
2014, pp. 1206-1210.

L. Bianchi, M. Dorigo, L. Gambardella, and W. Gutjahr, “A Survey
on Metaheuristics for Stochastic Combinatorial Optimization,” Natural
Computing, vol. 8, no. 2, pp. 239-287, 2009.

P. Boonma and J. Suzuki, “PIBEA: Prospect Indicator Based Evolu-
tionary Algorithm for Multiobjective Optimization Problems.”

L. Bradstreet, L. While, and L. Barone, “A fast incremental hyper-
volume algorithm,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 6, pp. 714-723, 2008.

J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Eds., Multiobjective
Optimization: Interactive and Evolutionary Approaches.  Springer,
2008.

D. Brockhoff, T. Friedrich, and F. Neumann, “Analyzing Hypervolume
Indicator Based Algorithms,” in Conference on Parallel Problem
Solving From Nature (PPSN X), ser. LNCS, G. Rudolph e al., Eds.,
vol. 5199. Springer, 2008, pp. 651-660.

D. Brockhoff, T. Wagner, and H. Trautmann, “R2 Indicator Based
Multiobjective Search,” Evolutionary Computation Journal, vol. 23,
pp- 369-395, 2015.

D. Brockhoff and E. Zitzler, “Improving Hypervolume-based Mul-
tiobjective Evolutionary Algorithms by Using Objective Reduction
Methods,” in Congress on Evolutionary Computation (CEC 2007).
IEEE Press, 2007, pp. 2086-2093.

D. Brockhoff, J. Bader, L. Thiele, and E. Zitzler, “Directed Multiob-
jective Optimization Based on the Weighted Hypervolume Indicator,”
Journal of Multi-Criteria Decision Analysis, vol. 20, no. 5-6, pp. 291—
317, 2013.

D. Brockhoff, T. Friedrich, and F. Neumann, “Analyzing Hypervolume
Indicator Based Algorithms,” in Proceedings of the 10t" International
Conference on Parallel Problem Solving from Nature: PPSN X.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 651-660.

Carlos and R. L. Becerra, “Evolutionary Multi-Objective Optimization

in Materials Science and Engineering,” Materials and Manufacturing
Processes, vol. 24, no. 2, pp. 119-129, 2009.

[32]

(33]

(34]

[35]

(36]

[37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

(49]

[50]

[51]

(52]

Vol. 7, No. 2, 2016

P. C. Chang, S. H. Chen, Q. Zhang, and J. L. Lin, “MOEA/D for
Flowshop Scheduling Problems,” in IEEE Congress on Evolutionary
Computation, 2008, pp. 1433-1438.

C.-M. Chen, Y.-P. Chen, and Q. Zhang, “Enhancing MOEA/D with
Guided Mutation and Priority Update for Multi-Objective Optimiza-
tion,” in Proceedings of the IEEE Congress on Evolutionary Compu-
tation, CEC 2009, Trondheim, Norway, 18-21 May, 2009, 2009, pp.
209-216.

T. Chugh, K. Sindhya, J. Hakanen, and K. Miettinen, “An Interactive
Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Mul-
tiobjective Optimization Problems,” in Evolutionary Multi-Criterion
Optimization, ser. Lecture Notes in Computer Science, A. Gaspar-
Cunha, C. Henggeler Antunes, and C. C. Coello, Eds.  Springer
International Publishing, 2015, vol. 9018, pp. 277-291.

C. Coello and G. Lamont, Applications of Multi-objective Evolutionary
Algorithms, ser. Advances in natural computation. World Scientific,
2004.

C. A. C. Coello, “A Comprehensive Survey of Evolutionary-Based
Multiobjective Optimization Techniques,” Knowledge and Information
Systems, vol. 1, pp. 269-308, 1999.

C. A. Coello Coello, G. B.Lamont, and D. A. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic
Publishers, New York,, March 2002.

Y. Collette and P. Siarry, Multiobjective Optimization: Principles and
Case Studies. Springer Science & Business Media, 2003.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Multi-
Objective Optimization Test Problems,” In Congress on Evolutionary
Computation (CEC2002), Piscataway, New Jersey: IEEE service Cen-
ter, vol. 1, pp. 825-830, MAy 2002.

——, “Scalable Test Problems for Evolutionary Multi-Objective Op-
timization,” in Evolutionary Multiobjective Optimization: Theoretical
Advances and Applications, A. Abraham, R. Jain, and R. Goldberg,
Eds. Springer, 2005, ch. 6, pp. 105-145.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,
2nd ed., S. Ross and R. Weber, Eds. John Wiley and Sons Ltd, 2002.

K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm:NSGA-II,” IEEE Transsation On
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

D. Debels and M. Vanhoucke, “A Decomposition-Based Genetic
Algorithm for the Resource-Constrained Project-Scheduling Problem,”
Operations Research, vol. 55, no. 3, pp. 457-469, 2007.

B. Derbel, A. Liefooghe, G. Marquet, and E.-G. Talbi, “A Fine Grained
Message Passing MOEA/D,” in IEEE Congress on Evolutionary
Computation (CEC’15), 2015, pp. 1837-1844.

J. D.Knowles, “Local-Search and Hybrid Evolutionary Algorithms for
Pareto Optimization,” PhD Thesis, Department of Computer Science,
University of Reading, Reading, RG6 6AY, UK., 2002.

J. Dubois-Lacoste, M. Lpez-Ibez, and T. Sttzle, “Adaptive Anytime
Two-Phase Local Search,” vol. 6073, pp. 52-67.

——, “Improving the Anytime Behavior of Two-Phase Local Search,”
Annals of Mathematics and Artificial Intelligence, vol. 61, no. 2, pp.
125-154, 2011.

J. Durillo, Q. Zhang, A. Nebro, and E. Alba, “Distribution of Com-
putational Effort in Parallel MOEA/D,” in Learning and Intelligent
Optimization, ser. Lecture Notes in Computer Science, C. Coello, Ed.
Springer Berlin Heidelberg, 2011, vol. 6683, pp. 488-502.

R. Eberhart and J.Kennedy, “A New Optimizer Using Particle Swarm
Theory,” in Proceedings of the Sixth International Symposium on
Micro Machine and Human Science, MHS’95, oct. 1995, pp. 39-43.

M. Fleischer, “The Measure of Pareto Optima Applications to Multi-
objective Metaheuristics,” in Evolutionary Multi-Criterion Optimiza-
tion, ser. Lecture Notes in Computer Science, C. Fonseca, P. Fleming,
E. Zitzler, L. Thiele, and K. Deb, Eds. Springer Berlin Heidelberg,
2003, vol. 2632, pp. 519-533.

J. Fliege, L. M. G. Drummond, and B. F. Svaiter, “Newton’s method
for multiobjective optimization,” SIAM Journal on Optimization,
vol. 20, no. 2, pp. 602-626, 2009.

C. Fonseca and P. Fleming, “An Overview of Evolutionary Algorithm

in Multi-Objective Optimization,” Evolutionary Computation, vol. 3,
no. 1, pp. 1-16, 1995.

589 |Page

www.ijacsa.thesai.org



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

(IJACSA) International Journal of Advanced Computer Science and Applications,

P. M. Franga, A. Mendes, and P. Moscato, “A Memetic Algorithm for
the total Tardiness Single Machine Scheduling Problem,” European
Journal of Operational Research, vol. 132, no. 1, pp. 224-242, 2001.

X. Gandibleux, N. Mezdaoui, and A. Frville, “A Tabu Search Proce-
dure to Solve MultiObjective Combinatorial Optimization Problems,”
in Advances in Multiple Objective and Goal Programming, ser. Lecture
Notes in Economics and Mathematical Systems, R. Caballero, F. Ruiz,
and R. Steuer, Eds. Springer Berlin Heidelberg, 1997, vol. 455, pp.
291-300.

M. Gong, F. Liu, W. Zhang, L. Jiao, and Q. Zhang, “Interactive
MOEA/D for Multi-objective Decision Making,” in Proceedings of
the 13th annual conference on Genetic and evolutionary computation.
ACM, 2011, pp. 721-728.

C. Grosan, “Multiobjective Adaptive Representation Evolutionary Al-
gorithm (MAREA)- A new Evolutionary Algorithm for Multiobjective
Optimization.” in WSC, ser. Advances in Soft Computing, A. Abra-
ham, B. D. Baets, M. Kppen, and B. Nickolay, Eds., vol. 34. Springer,
2004, pp. 113-121.

Guerra-Gomez, E. Tlelo-Cuautle, T. McConaghy, LuisG.delaFraga,
G. Gielen, G.Reyes-Salgado, and J.M.Munoz-Pacheco, “Sizing Mixed-
mode Circuits by Multi-objective Evolutionary Algorithms,” in 53rd
IEEE International Midwest Symposium on Circuits and Systems,
2010, pp. 813-816.

C. Guo, J. Zhibin, H. Zhang, and N. Li, “Decomposition-based classi-
fied Ant Colony Optimization Algorithm for Scheduling Semiconduc-
tor Wafer Fabrication System,” Computers & Industrial Engineering,
vol. 62, no. 1, pp. 141-151, 2012.

M. P. Hansen and A. Jaszkiewicz, “Evaluating the Quality of Approxi-
mations to the Non-Dominated Set,” Technical University of Denmark,
Technical Report MM-REP-1998-7, 1998.

S. Harris and E. Ifeachor, “Automatic Fesign of Frequency Sampling
Filters by Hybrid Genetic Algorithm Techniques,” IEEE Transactions
on Signal Processing, vol. 46, no. 12, pp. 3304-3314, 1998.

W. E. Hart, N. Krasnogor, and J. E. Smith, Recent advances in Memetic
Algorithms. Springer Science & Business Media, 2005, vol. 166.

R. Hedayatzadeh, B. Hasanizadeh, R. Akbari, and K. Ziarati, “A
Multi-Objective Artificial Bee Colony for Optimizing Multi-Objective
Problems,” in Advanced Computer Theory and Engineering (ICACTE),
2010 3rd International Conference on, vol. 5. IEEE, 2010, pp. V5—
2717.

T. Y. Hisao Ishibuchi and T. Murata, “Balance between Genetic
Search and Local Search in Memetic Algorithms for Multiobjective
Permutation Flowshop Scheduling,” IEEE Transiction on Evolutionary
Computation, vol. 7, no. 2, pp. 204-223, April 2003.

R. Hooke and T. A. Jeeves, “Direct Search Solution of Numerical
and Statistical Problems,” Journal of ACM, vol. 8, pp. 212-229, April
1961.

J. Horn, N. Nafpliotis, and D. E. Goldberg., “A Niched Pareto Genetic
Algorithm for Multiobjective Optimization,” in Proceedings of the
First IEEE Conference on Evolutionary Computation, CEC’94, 1994.

H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of Multiobjective
Evolutionary Algorithms on Many-Objective Knapsack Problems,”
IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp.
264-283, 2015.

H. Ishibuchi and T. Murata, “Multi-Objective Genetic Local Search
Algorithm and Its Application to Flowshop Scheduling,” IEEE Trans-
actions on Systems, Man and Cybernetics, vol. 28, no. 3, pp. 392-403,
1998.

——, “Multi-objective Genetic Local Search for Minimizing the
number of Fuzzy Rules for Pattern Classification Problems,” in The
1998 IEEE International Conference on Fuzzy Systems Proceedings,
vol. 2, 1998, pp. 1100-1105.

H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Iterative Approach to
Indicator Based Multiobjective Optimization,” in Evolutionary Com-
putation (CEC’07), 2007, pp. 3967-3974.

H. Ishibuchi and T. Murata., “Multi-Objective Genetic Local Search
Algorithm.” in Proceedings of the Third IEEE International Confer-
ence on Evolutionary Computation, 1. T. Fukuda and T. Furuhashi,
Eds., Nagoya, Japan, 1996, pp. 119-124.

H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Adaptation of

[72]

[73]

[74]

(751

[76]

(77]

(78]

[79]

[80]

[81]

[82]

(83]

[84]

[85]

[86]

(87]

[88]

[89]

Vol. 7, No. 2, 2016

Scalarizing Functions in MOEA/D: An Adaptive Scalarizing Function-
Based Multiobjective Evolutionary Algorithm,” in Proceedings of Evo-
lutionary Multi-Criterion Optimization, 5th International Conference
EMO’09, Nantes, France, April 7-10, 2009., 2009, pp. 438-452.

——, “Effects of using two Neighborhood Structures on the Per-
formance of Cellular Evolutionary Algorithms for Many-objective
Optimization,” in Proceedings of the IEEE Congress on Evolutionary
Computation, CEC’09,Trondheim, Norway, 18-21 May, 2009, 2009,
pp. 2508-2515.

——, “Evolutionary Many-Objective Optimization by NSGA-II and
MOEA/D with Large Populations,” in Proceedings of the IEEE Inter-
national Conference on Systems, Man and Cybernetics, San Antonio,
TX, USA, 11-14 October 2009, 2009, pp. 1758-1763.

——, “Simultaneous use of Different Scalarizing Functions in
MOEA/D,” in Genetic and Evolutionary Computation Conference,
GECCO’10, Proceedings, Portland, Oregon, USA, July 7-11, 2010,
2010, pp. 519-526.

H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary Many-
objective Optimization: A Short Review,” in Proceedings of the IEEE
Congress on Evolutionary Computation(CEC’08), Hong Kong, China,
2008, pp. 2419-2426.

H. Ishibuchi, N. Tsukamoto, Y. Sakane, and Y. Nojima, “Indicator-
based Evolutionary Algorithm with Hypervolume Approximation by
Achievement Scalarizing Functions,” in 2010, Proceedings of Genetic
and Evolutionary Computation Conference GECCO Portland, Oregon,
USA, July 7-11, 2010, 2010, pp. 527-534.

A. Jaszkiewicz, “On the Computational Efficiency of Multiple Objec-
tive Metaheuristics. The Knapsack Problem Case Study,” European
Journal of Operational Research, vol. 158, no. 2, pp. 418-433, 2004.

A. Jaszkiewicz, M. Hapke, and P. Kominek, ‘“Performance of Multiple
Objective Evolutionary Algorithms on a Distribution System Design
Problem-Computational Experiment,” in Proceedings of First Inter-
national Conference on Evolutionary Multi-Criterion Optimization
(EMO), Zurich, Switzerland, March 7-9, 2001, pp. 241-255.

S. Jiang, J. Zhang, Y.-S. Ong, A. Zhang, and P. S. Tan, “A Simple
and Fast Hypervolume Indicator-Based Multiobjective Evolutionary
Algorithm,” IEEE Transactions on Cybernetics, vol. 45, no. 10, pp.
2202-2213, 2015.

K.Deb, “Multiobjective Genetic Algorithms: Problems Difficulities
and Construction of Test Problems,” Evolutionary Computation, vol. 7,
no. 3, pp. 205-230, 1999.

K.Deb and R. Agrawal, “Simulated Binary Crossover for Continuous
Search Space,” Complex System, vol. 9, pp. 115-148, 1995.

L. Ke, Q. Zhang, and R. Battiti, “MOEA/D-ACO: A Multiobjective
Evolutionary Algorithm using Decomposition and AntColony Opti-
mization,” IEEE T. Cybernetics, vol. 43, no. 6, pp. 1845-1859, 2013.

L. Ke, Q. Zhang, and R.Battiti, “Hybridization of Decomposition and
Local Search for Multiobjective Optimization,” IEEE Transactions on
Cybernetics, vol. 44, no. 10, pp. 1808-1820, 2014.

W. Khan, “Hybrid multiobjective evolutionary algorithm based on de-
composition,” PhD, Department of Mathematical Sciences, University
of Essex, Wivenhoe Park, CO4 3SQ, Colchester, UK, January 2012.

W. Khan, A. Salhi, M. A. Jan, and R. Khanum, “Enhanced Version
of Gentically Adaptive Multi-Algorithm for Multiobjective Optimiza-
tion,” International Journal of Advanced Computer Science and Ap-
plication (IJACSA), vol. 12, no. 6, pp. 279-287, 2015.

W. Khan and Q. Zhang, “ MOEA/D-DRA with Two Crossover
Operators,” in Proceedings of the UK Workshop on Computational
Intelligence (UKCI 2010), 8th—10th September 2010, pp. 1-6.

V. Khare, X. Yao, and K. Deb, “Performance scaling of multi-
objective evolutionary algorithms,” in Evolutionary Multi-Criterion
Optimization, ser. Lecture Notes in Computer Science, C. Fonseca,
P. Fleming, E. Zitzler, L. Thiele, and K. Deb, Eds. Springer Berlin
Heidelberg, 2003, vol. 2632, pp. 376-390.

J. Knowles and D. Corne, “The Pareto Archived Evolution Strategy:
A new Baseline Algorithm for Pareto Multiobjective Optimization,”
in Proceedings of the IEEE Congress on Evolutionary Computation
(CEC’ 99), Piscatay, NJ, JULY 1999, pp. 98-105.

P. Koch, O. Kramer, G. Rudolph, and N. Beume, “On the hybridization
of sms-emoa and local search for continuous multiobjective optimiza-

590|Page

www.ijacsa.thesai.org



[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

(IJACSA) International Journal of Advanced Computer Science and Applications,

tion,” in Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO ’09. New York, NY, USA:
ACM, 2009, pp. 603-610.

J. Kocijan, R. Murray-Smith, C. Rasmussen, and A. Girard, “Gaussian
Process Model based Predictive Control,” in Proceedings of theAmer-
ican Control Conference, vol. 3, 2004, pp. 2214-2219.

A. Konstantinidis, C. Charalambous, A. Zhou, and Q. Zhang,
“Multi-objective Mobile Agent-based Sensor Network Routing using
MOEA/D,” in Evolutionary Computation (CEC), 2010 IEEE Congress
on. IEEE, 2010, pp. 1-8.

A. Konstantinidis, K. Yang, and Q. Zhang, “Problem-specific Encoding
and Genetic Operation for a Multi-Objective Deployment and Power
Assignment Problem in Wireless Sensor Networks,” in IEEE Interna-
tional Conference on Communications. 1EEE, 2009, pp. 1-6.

A. Konstantinidis, K. Yang, Q. Zhang, and F. Gordejuela-Sanchez,
“Multiobjective K-connected Deployment and Power Assignment in
WSNs using Constraint Handling,” in IEEE Global Telecommunica-
tions Conference (GLOBECOM’09). 1EEE, 2009, pp. 1-6.

N. Krasnogor, A. Aragn, and J. Pacheco, “Memetic Algorithms,” in
Metaheuristic Procedures for Training Neutral Networks, ser. Op-
erations Research/Computer Science Interfaces Series, E. Alba and
R. Mart, Eds.  Springer US, 2006, vol. 36, pp. 225-248.

M. Laumanns, E. Zitzler, and L. Thiele, “A Unified Model For Multi-
Objective Evolutionary Algorithms with Elitism,” in Proceedings of
the 2000 Congress on Evolutionary Computation, vol. 1, 2000, pp.
46-53 vol.1.

C. Lcken, B. Barn, and C. Brizuela, “A Survey on Multi-Objective
Evolutionary Algorithms for Many-objective Problems,” Computa-
tional Optimization and Applications, vol. 58, no. 3, pp. 707-756,
2014.

H. Li and D. Landa-Silva, “An Adaptive Evolutionary Multi-objective
Approach Based on Simulated Annealing,” Evolutionary Computing,
vol. 19, no. 4, pp. 561-595, Dec. 2011.

H. Li, “Combination of Evolutionary Algorithms with Decomposition
Techniques for Multiobjective Optimization,” PhD, Department of
Computer Science, University of Essex, Wevehoe Park, Colchester,
Essex, CO4 3SQ, UK, 2007.

H. Li, M. Ding, J. Deng, and Q. Zhang, “On the use of Random
Weights in MOEA/D,” in IEEE Congress on Evolutionary Computa-
tion (CEC’15), 2015, pp. 978-985.

H. Li, X. Su, Z. Xu, and Q. Zhang, “MOEA/D with Iterative Thresh-
olding Algorithm for Sparse Optimization Problems,” in Parallel Prob-
lem Solving from Nature - PPSN XII, ser. Lecture Notes in Computer
Science, C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, and
M. Pavone, Eds. Springer Berlin Heidelberg, 2012, vol. 7492, pp.
93-101.

H. Li and Q. Zhang, “Multiobjective Optimization Problems With
Complicated Pareto Sets: MOEA/D and NSGA-IL,” IEEE Transsation
On Evolutionary Computation, vol. 13, no. 2, pp. 284-302, April 2009.

——, “A Decomposition-based Evolutionary Strategy for Bi-objective
LOTZ Problem,” in Adaptation in Artificial and Biological Systems.
University of Essex, UK., April 2006, pp. 1-5.

——, “A Multiobjective Differential Evolution Based on Decompo-
sition for Multiobjective Optimization with Variable Linkages,” in
Parallel Problem Solving from Nature - PPSN IX, ser. Lecture Notes
in Computer Science, T. Runarsson, H.-G. Beyer, E. Burke, J. Merelo-
Guervs, L. Whitley, and X. Yao, Eds. Springer Berlin Heidelberg,
2006, vol. 4193, pp. 583-592.

K. Li, K. Deb, and Q. Zhang, “Evolutionary Multiobjective Opti-
mization with Hybrid Selection Principles,” in IEEE Congress on
Evolutionary Computation (CEC’15), 2015, pp. 900-907.

K. Li, K. Deb, Q. Zhang, and S. Kwong, “An Evolutionary Many-
Objective Optimization Algorithm Based on Dominance and Decom-
position,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 5, pp. 694-716, October 2015.

K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adaptive Operator
Selection With Bandits for a Multiobjective Evolutionary Algorithm
Based on Decomposition,” IEEE Trans. Evolutionary Computation,
vol. 18, no. 1, pp. 114-130, 2014.

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

Vol. 7, No. 2, 2016

K. Li, S. Kwong, Q. Zhang, and K. Deb, “Interrelationship-Based Se-
lection for Decomposition Multiobjective Optimization,” IEEE Trans-
actions on Cybernetics, vol. 45, no. 10, pp. 20762088, 2015.

K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, “Stable Matching-
Based Selection in Evolutionary Multiobjective Optimization,” /IEEE
Transactions on Evolutionary Computation, vol. 18, no. 6, pp. 909—
923, 2014.

X. Liao, Q. Li, X. Yang, W. Zhang, and W. Li, “Multiobjective
Optimization for Crash Safety Design of Vehicles using Stepwise
Regression Model,” Structural and Multidisciplinary Optimization,
vol. 35, no. 6, pp. 561-569, 2008.

H. lin Liu, F. Gu, and Y. ming Cheung, “T-MOEA/D: MOEA/D with
Objective Transform in Multi-objective Problems,” in International
Conference of Information Science and Management Engineering
(ISME’10), vol. 2, 2010, pp. 282-285.

Y. Liu and B. Niu, “A Multi-objective Particle Swarm Optimization
Based on Decomposition,” in Emerging Intelligent Computing Tech-
nology and Applications, ser. Communications in Computer and In-
formation Science, D.-S. Huang, P. Gupta, L. Wang, and M. Gromiha,
Eds. Springer Berlin Heidelberg, 2013, vol. 375, pp. 200-205.

F. Lootsma and K. Ragsdell, “State-of-the-art in Parallel Nonlinear
Optimization,” Parallel Computing, vol. 6, no. 2, pp. 133-155, 1988.

T. Lust and A. Jaszkiewicz, “Speed-up Techniques for solving large-
scale biobjective TSP,” Computers & Operations Research, vol. 37,
no. 3, pp. 521-533, 2010.

P. H. Lyndon While and S. Huband, “A Faster Algorithm for Calculat-
ing Hypervolume,” IEEE Transactions on Evolutionary Computation,
vol. 10, no. 1, pp. 29-38, February 2006.

X. Ma, E Liu, Y. Qi, M. Gong, M. Yin, L. J. Lingling Li, and
J. Wu, “MOEA/D with Opposition-Based Learning for Multiobjective
Optimization Problem,” Neurocomputing, vol. 146, pp. 48-64, 2014.

X. Ma, Y. Qi, L. Li, F. Liu, L. Jiao, and J. Wu, “MOEA/D with
Uniform Decomposition Measurement for Many-Objective Problems,”
Soft Computing, vol. 18, no. 12, pp. 2541-2564, 2014.

A. Mambrini and D. Izzo, “PaDe: A Parallel Algorithm Based on the
MOEA/D Framework and the Island Model,” in Proceedings OF 13th
International Conference Parallel Problem Solving from Nature-PPSN
XIII, Ljubljana, Slovenia, September 13-17, 2014., 2014, pp. 711-720.

1. B. Mansour and I. Alaya, “Indicator Based Ant Colony Optimization
for Multi-objective Knapsack Problem,” Procedia Computer Science,
vol. 60, pp. 448-457, 2015.

G. Marquet, B. Derbel, A. Liefooghe, and E. Talbi, “Shake Them All!
- Rethinking Selection and Replacement in MOEA/D,” in Proceedings
of Parallel Problem Solving from Nature-PPSN XIII-13th International
Conference, Ljubljana, Slovenia, September 13-17, 2014, pp. 641-651.

S. Z. Martnez and C. A. C. Coello, “A Hybridization of MOEA/D
with the Nonlinear Simplex Search Algorithm,” in IEEE Congress on
Evolutionary Computation (CEC’13), 2013, pp. 48-55.

W. K. Mashwan, “Enhanced versions of Differential Evolution: State-
of-the-art Survey,” International Journal Computing Sciences and
Mathematics(IJCSM), vol. 5, no. 2, pp. 107-126, 2014.

W. K. Mashwani, “A Multimethod Search Approach Based on Adap-
tive Generations Level,” in Seventh International Conference on Nat-
ural Computation(ICNC’11), Shanghai, China, 26-28 July, 2011, pp.
23-27.

——, “Hybrid Multiobjective Evolutionary Algorithms: A Survey of
the State-of-the-art,” International Journal of Computer Science Issues,
vol. 8, no. 6, pp. 374-392, 2011.

——, “Integration of NSGA-II and MOEA/D in Multimethod Search
Approach: Algorithms,” in Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation. ACM, 2011,
pp. 75-76.

——, “MOEA/D with DE and PSO: MOEA/D-DE+PSO,” in The
Thirty-first SGAI International Conference on Innovative Techniques
and Applications of Artificial Intelligence, Cambridge, UK, December,
2011, pp. 217-221.

——, “Comparison of Evolutionary Algorithm over Multiobjective
Optimization Problems,” in Proceeding of International Conference
on Modeling and Simulation (ICOMS), Air University Islamabad,
Pakistan, 2013.

591|Page

www.ijacsa.thesai.org



[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

(IJACSA) International Journal of Advanced Computer Science and Applications,

——, “Comprehensive Survey of the Hybrid Evolutionary Algo-
rithms,” International Journal of Applied Evolutionary Computation
(IJAEC), vol. 4, no. 2, pp. 1-19, July 2013.

——, “Performanance of AMALGAM over CEC’09 Test Instances,”
in Proceeding Third International Conference on Aerospace Science
and Engineering (ICASE’13), 2013.

W. K. Mashwani and A. Salhi, “A Decomposition-Based Hybrid Multi-
objective Evolutionary Algorithm with Dynamic Resource Allocation,”
Applied Soft Computing, vol. 12, no. 9, pp. 2765-2780, 2012.

——, “Multiobjective Evolutionary Algorithm Based on Multimethod
with Dynamic Resources Allocation,” Applied Soft Computing, vol. 39,
pp- 292-309, 2016.

W. K. Mashwani, A. Salhi, M. A. Jan, R.A.Khanum, and M. Sulaiman,
“Impact Analysis of Crossovers in Multiobjective Evolutionary Algo-
rithm,” Science International Journal, vol. 27, no. 6, pp. 49434956,
December 2015.

W. K. Mashwani and A. Salhi, “Multiobjective Memetic Algorithm
Based on Decomposition,” Applied Soft Computing, vol. 21, pp. 221-
243, 2014.

M. Medina, S. Das, C. Coello Coello, and J. Ramirez, ‘“Two
decomposition-based modem metaheuristic algorithms for multi-
objective optimization- A comparative study,” in Computational In-
telligence in Multi-Criteria Decision-Making (MCDM), 2013 IEEE
Symposium on, 2013, pp. 9-16.

Y. Mei, K. Tang, and X. Yao, “Decomposition-Based Memetic Al-
gorithm for Multiobjective Capacitated Arc Routing Problem,” IEEE
Trans. Evolutionary Computation, vol. 15, no. 2, pp. 151-165, 2011.

——, “Decomposition-based memetic algorithm for multiobjective
capacitated arc routing problem,” Evolutionary Computation, IEEE
Transactions on, vol. 15, no. 2, pp. 151-165, 2011.

K. M. Miettinien, Nonlinear Multiobjective Optimization, ser.
Kluwer’s International Series. Norwell, MA: Academic Publishers
Kluwer, 1999.

P. Moscato, A. Mendes, and C. Cotta, Memetic Algorithms. New
Optimization Techniques in Engineering. Berlin Heidelberg: Springer,
2004.

P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts-Towards Memetic Algorithms,” Caltech Concurrent
Computation Program, C3P Report, vol. 826, 1989.

——, “Memetic Algorithms: A Short Introduction,” in New Ideas in
Optimization. McGraw-Hill Ltd., UK, 1999, pp. 219-234.

P. Moscato and M. G. Norman, “A Memetic Approach for the Travel-
ing Salesman Problem Implementation of a Computational Ecology for
Combinatorial Optimization On Message-passing Systems,” Parallel
Computing and Transputer Applications, vol. 1, pp. 177-186, 1992.

T. Murata and M. Gen, “Cellular Genetic Algorithm for Multi-
Objective Optimization,” in In Proc. of the 4th Asian Fuzzy System
Symposium, 2002, pp. 538-542.

T. Murata, H. Ishibuchi, and M. Gen, “Specification of Genetic
Search Direction in Cellular Multiobjective Genetic Algorithm,” in
Evolutionary Multicriterion Optimization. LNCS, Springer-Verlag,
pp. 82-95.

M. Nasir, A. K. Mondal, S. Sengupta, S. Das, and A. Abraham, “An
Improved Multiobjective Evolutionary Algorithm based on Decompo-
sition with Fuzzy Dominance,” in Proceedings of IEEE Congress on
Evolutionary Computation (CEC,11). New Orleans, US: IEEE Press,
June 5-8 2011, pp. 1-8.

A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba, “MO-
Cell: A Cellular Genetic Algorithm for Multiobjective Optimization,”
International Journal of Intelligent Systems, pp. 25-36, 2007.

A. Nebro and J. Durillo, “A Study of the Parallelization of the
Multi-Objective Metaheuristic MOEA/D,” in Learning and Intelligent
Optimization, ser. Lecture Notes in Computer Science, C. Blum and
R. Battiti, Eds.  Springer Berlin Heidelberg, 2010, vol. 6073, pp.
303-317.

F. Neri and C. Cotta, “Memetic Algorithms and Memetic Computing
Optimization: A literature Review,” Swarm and Evolutionary Compu-
tation, vol. 2, pp. 1-14, 2012.

F. Neri, C. Cotta, and P. Moscato, Handbook of Memetic Algorithms.
Springer Heidelberg, 2012, vol. 379.

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Vol. 7, No. 2, 2016

T. Niknam, F. Golestaneh, and M. Sadeghi, “Multiobjective Teaching
Learning-Based Optimization for Dynamic Economic Emission Dis-
patch,” Systems Journal, IEEE, vol. 6, no. 2, pp. 341-352, 2012.

N.Srinivas and K.Deb, “A Multiobjective Optimization using Nondom-
inated Sorting in Genetic Algorithms,” J Evol Comput, vol. 2, no. 3,
pp. 221-248, 1994.

Y. S. Ong and A. Keane, “Meta-Lamarckian learning in Lemetic
Algorithms,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 2, pp. 99-110, 2004.

Y.-S. Ong, M. H. Lim, and X. Chen, “Research frontier-memetic
computationpast, present & future,” IEEE Computational Intelligence
Magazine, vol. 5, no. 2, p. 24, 2010.

S. Pal, B.-Y.Qu, S. Das, and P.N.Suganthan, “Optimal Synthesis of
Linear Antenna Arrays with Multi-Objective Differential Evolution,”
Progress In Electromagnetics Research B, vol. 21, pp. 87-111, 2010.

S. Pal, S. Das, A. Basak, and P. Suganthan, “Synthesis of Differ-
ence Patterns for Monopulse Antennas with Optimal Combination of
array-size and number of subarrays-A Multi-Objective Optimization
Approach,” Progress In Electromagnetics Research B, vol. 21, pp.
257-280, 2010.

P. Palmers, T. McConnaghy, M. Steyaert, and G. Gielen, “Massively
Multi-topology Sizing of analog Integrated Circuits,” in Proceedings of
the Conference on Design, Automation and Test in Europe (DATE’09).
3001 Leuven, Belgium: European Design and Automation Association,
2009, pp. 706-711.

L. Paquete and T. Stiitzle, “A Two-Phase Local Search for the Biobjec-
tive Traveling Salesman Problem,” in Proceedings of the Evolution-
ary Multi-Criterion Optimization, Second International Conference,
EMO’3, Faro, Portugal, April 8-11, 2003, pp. 479-493.

W. Peng and Q. Zhang, “A Decomposition-based Multi-objective
Particle Swarm Optimization Algorithm for Continuous Optimization
Problems,” in IEEE International Conference on Granular Computing,
2008, pp. 534-537.

D. Phan and J. Suzuki, “R2-IBEA: R2 indicator based evolutionary
algorithm for multiobjective optimization,” in IEEE Congress on
Evolutionary Computation (CEC’13), 2013, pp. 1836-1845.

M. Pilat and R. Neruda, “Hypervolume-based Local Search in Multi-
objective Evolutionary Optimization,” in Proceedings of the Annual
Conference on Genetic and Evolutionary Computation, ser. GECCO
’14. New York, NY, USA: ACM, 2014, pp. 637-644.

R. C. Purshouse and P. J. Fleming, “Evolutionary Many-Objective
Optimisation: An Exploratory Analysis,” in IEEE Congress on Evolu-
tionary Computation (CEC’03), vol. 3. 1EEE, 2003, pp. 2066-2073.

Y. Qi, Z. Hou, H. Li, J. Huang, and X. Li, “A decomposition based
memetic algorithm for multi-objective vehicle routing problem with
time windows,” Computers and Operations Research, vol. 62, no. C,
pp. 61-77, October 2015.

Y. Qi, X. Ma, L. J. Fang Liu, J. Sun, and J. Wu, “MOEA/D with
Adaptive Weight Adjustment,” Evolutionary Computation, vol. 22,
no. 2, pp. 231-264, May 2014.

R.Storn and K.V.Price, “Differential Evolution - A Simple and Ef-
ficient Heuristic for Global Optimization over Continuous Spaces,”
ICSI, Technical Report TR-95-012, 1995.

1. Rubio-Largo, Q. Zhang, and M. Vega-Rodrguez, “Multiobjective
Evolutionary Algorithm Based On Decomposition for 3-objective
Optimization Problems with Objectives in Different Scales,” Soft
Computing, vol. 19, no. 1, pp. 157-166, 2015.

H. Sato, M. Miyakawa, and E. Pérez-Cortés, “A Parallel MOEA/D
Generating Solutions in Minimum Overlapped Update Ranges of
Solutions,” in Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO Companion ’'15. New York, NY, USA: ACM, 2015, pp.
775-776.

A. Schuster and Wiirzburg, “About Travelling Salesmen and Telephone
Network-Combinatirial Optimization at High School,” ZDM interna-
tional Reviwer on Mathematical Education, vol. 36, no. 2, pp. 77-81,
2004.

R. Shang, J. Wang, L. Jiao, and Y. Wang, “An Improved
Decomposition-Based Memetic Algorithm for Multi-Objective Capac-

592|Page

www.ijacsa.thesai.org



[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

(IJACSA) International Journal of Advanced Computer Science and Applications,

itated Arc Routing Problem,” Applied Soft Computing, vol. 19, pp.
343-361, 2014.

D. Simon, Evolutionary Optimization Algorithms: Biologically In-
spired and Population-Based Approches to Computer Intelligence.
John Wiley & Sons, 2013.

V. A. Sosa-Hernandez, O. Schiitze, G. Rudoph, and H. Trautmann,
“Directed search method for indicator-based multi-objective evolu-
tionary algorithms,” in Proceedings of the 15th Annual Conference
Companion on Genetic and Evolutionary Computation, ser. GECCO
13 Companion. New York, NY, USA: ACM, 2013, pp. 1699-1702.

K. Srensen, “Metaheuristicsthe Metaphor Exposed,” International
Transactions in Operational Research, vol. 22, no. 1, pp. 3-18, 2015.

M. G. C. Tapia and C. A. C. Coello, “Applications of Multi-Objective
Evolutionary Algorithms in Economics and Finance: A Survey.” I[EEE
Congress on Evolutionary Computation, vol. 7, pp. 532-539, 2007.

L. Thiele, K. Miettinen, P. J. Korhonen, and J. Molina, “A Preference-
Based Evolutionary Algorithm for Multi-Objective Optimization,”
Evolutionary Computation, vol. 17, no. 3, pp. 411-436, 2009.

H. Tizhoosh, “Opposition-Based Learning: A New Scheme for Ma-
chine Intelligence,” in Computational Intelligence for Modelling, Con-
trol and Automation, 2005 and International Conference on Intelligent
Agents, Web Technologies and Internet Commerce, International Con-
ference on, vol. 1, 2005, pp. 695-701.

H. Trautmann, T. Wagner, D. Biermann, and C. Weihs, “Indicator-
based Selection in Evolutionary Multiobjective Optimization Algo-
rithms Based On the Desirability Index,” Journal of Multi-Criteria
Decision Analysis, vol. 20, no. 5-6, pp. 319-337, 2013.

H. Trautmann, T. Wagner, and D. Brockhoff, “R2-EMOA: Focused
Multiobjective Search Using R2-Indicator-Based Selection,” in LION,
ser. Lecture Notes in Computer Science, G. Nicosia and P. M. Pardalos,
Eds., vol. 7997. Springer, 2013, pp. 70-74.

D. Tuyttens, J. Teghem, P. Fortemps, and K. Nieuwenhuyze, “Perfor-
mance of the MOSA Method for the Bicriteria Assignment Problem,”
Journal of Heuristics, vol. 6, no. 3, pp. 295-310, 2000.

T. Ulrich, J. Bader, and L. Thiele, “Defining and optimizing indicator-
based diversity measures in multiobjective search,” in Proceedings of
the 11th international conference on Parallel problem solving from
nature: Part I, ser. PPSN’10.  Berlin, Heidelberg: Springer-Verlag,
2010, pp. 707-717.

J. A. Vrugt and B. A. Robinson, “Improved Evolutionary Optimization
from Genetically Adaptive Mutimethod Search,” Proceedings of the
National Academy of Sciences of the United States of America: PNAS
(USA), vol. 104, no. 3, pp. 708-701, 16th Jaunuary 2007.

M. Wagner, K. Bringmann, T. Friedrich, and F. Neumann, “Efficient
Optimization of Many Objectives by Approximation-Guided Evolu-
tion,” European Journal of Operational Research, vol. 243, no. 2, pp.
465-479, 2015.

T. Wagner, N. Beume, and B. Naujoks, “Pareto-, Aggregation-, and
Indicator-Based Methods in Many-Objective Optimization,” in Evolu-
tionary Multi-Criterion Optimization, ser. Lecture Notes in Computer
Science, S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata,
Eds. Springer Berlin Heidelberg, 2007, vol. 4403, pp. 742-756.

G. Wang, J. Chen, T. Cai, and B. Xin, “Decomposition-Based Multi-
Objective Differential Evolution Particle Swarm Optimization for The
Design of a Tubular Permanent Magnet Linear Synchronous Motor,”
Engineering Optimization, vol. 45, no. 9, pp. 1107-1127, 2013.

M. Woehrle, D. Brockhoff, T. Hohm, and S. Bleuler, “Investigating
Coverage and Connectivity Trade-offs in Wireless Sensor Networks:
The Benefits of MOEAs,” in Multiple Criteria Decision Making for
Sustainable Energy and Transportation Systems (MCDM 2008), ser.
LNEMS, M. Ehrgott et al., Eds., vol. 634. Heidelberg, Germany:
Springer, 2010, pp. 211-221.

S. Zapotecas-Martinez, B. Derbel, A. Liefooghe, D. Brockhoff, H. E.
Aguirre, and K. Tanaka, “Injecting CMA-ES into MOEA/D,” in Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO *15. New York, NY, USA: ACM, 2015,
pp. 783-790.

Q. Zhang and H. Li, “MOEA/D: A Multiobjective Evolutionary Algo-
rithm Based on Decomposition ,” IEEE transaction on Evolutionary
Computation, vol. 11, no. 6, pp. 712-731, December 2007.

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Vol. 7, No. 2, 2016

Q. Zhang, H. Li, D. Maringer, and E. P. K. Tsang, “MOEA/D
with NBI-style Tchebycheff Approach for Portfolio Management,” in
Proceedings of the IEEE Congress on Evolutionary Computation, CEC
2010, Barcelona, Spain, 18-23 July 2010, 2010, pp. 1-8.

Q. Zhang, W. Liu, and H. Li, “The Performance of a New Version
of MOEA/D on CEC’09 Unconstrained MOP Test Instances,” IEEE
Congress On Evolutionary Computation (IEEE CEC 2009), Trond-
heim, Norway, pp. 203-208, May, 18-21 2009.

Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjec-
tive optimization by MOEA/D with Gaussian Process Model,” Trans.
Evol. Comp, vol. 14, pp. 456-474, June 2010.

Q. Zhang, A. Zhou, S. Zhaoy, P. N. Suganthany, W. Liu, and S. Ti-
wariz, “Multiobjective Optimization Test Instances for the CEC 2009
Special Session and Competition,” Technical Report CES-487, 2009.

S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, ‘“Decomposition-Based
Multiobjective Evolutionary Algorithm With an Ensemble of Neigh-
borhood Sizes,” IEEE Trans. Evolutionary Computation, vol. 16, no. 3,
pp. 442-446, 2012.

A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang.,
“Multiobjective evolutionary algorithms: A survey of the state-of-the-
art,” Swarm and Evolutionary Computation, vol. 1, pp. 32-49, 16
March 2011, online publised.

A. Zhou, Q. Zhang, and G. Zhang, “A Multiobjective Evolutionary
Algorithm Based on Decomposition and Probability Model,” in /[EEE
Congress on Evolutionary Computation (CEC’12). 1EEE, 2012, pp.
1-8.

E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications,” Ph.D. dissertation, ETH Zurich, Switzer-
land, 1999.

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland, TIK
Report 103, 2001.

E. Zitzler and L. Thiele, “An Evolutionary Approach for Multiobjec-
tive Optimization: The Strength Pareto Approach,” Computer Engi-
neering and Networks Laboratory (TIK), ETH Zurich, TIK Report 43,
May 1998.

——, “An Evolutionary Approach for Multiobjective Optimization:
The Strength Pareto Approach,” Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, TIK Report 43, May 1998.

——, “Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach,” IEEE Transactions on
Evolutionary Computation, vol. 3, no. 4, pp. 257-271, November 1999.

E. Zitzler, L. Thiele, and J. Bader, “SPAM: Set Preference Algorithm
for Multiobjective Optimization,” in Conference on Parallel Problem
Solving From Nature (PPSN X), ser. LNCS, G. Rudolph et al., Eds.,
vol. 5199.  Springer, 2008, pp. 847-858.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert da
Fonseca, “Performance Assessment of Multiobjective Optimizers: An
Analysis and Review,” IEEE Transactions on Evolutionary Computa-
tion, vol. 7, no. 2, pp. 117-132, 2003.

E. Zitzler, K. Deb, and L. Thiele, “Comparsion of Multiobjective Evo-
lutionary Algorithms: Emperical Results,” Evolutionary Computation,
vol. 8, no. 2, pp. 173-195, 2000.

E. Zitzler and S. Knzli, “Indicator-based Selection in Multiobjective
Search,” in in Proceeding of 8t" International Conference on Parallel
Problem Solving from Nature (PPSN VIII. Springer, 2004, pp. 832—
842.

——, “Indicator-Based Selection in Multiobjective Search,” in Parallel
Problem Solving from Nature - PPSN VIII, ser. Lecture Notes in
Computer Science, X. Yao, E. Burke, J. Lozano, J. Smith, J. Merelo-
Guervs, J. Bullinaria, J. Rowe, P. Tino, A. Kabn, and H.-P. Schwefel,
Eds. Springer Berlin Heidelberg, 2004, vol. 3242, pp. 832-842.

593|Page

www.ijacsa.thesai.org





