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Abstract—JADE is an adaptive scheme of nature inspired There is no doubt that DE is a remarkable optimizer for many
algorithm, Differential Evolution (DE). It performed considerably optimization problems. However, it has few drawbacks like,
improved on a set of well-studied benchmark test problems. In stagnation, premature convergence, and loss of diveSiitge

this paper, we evaluate the performance of new JADE with it js a global optimizer, so its local search ability is noath
two external archives to deal with unconstrained continuous good. More details can be found in [3].

large-scale global optimization problems labeled as Reflected
Adaptive Differential Evolution with Two External Archives To enhance the performance of DE, many modifications
(RJADE/TA). The only archive of JADE stores failed solutions. In 4 the classic DE have been suggested and various variants
contrast, the proposed second archive stores superior solutis at of DE are proposed. A novel work is done by Wang et al

regular intervals of the optimization process to avoid premature . . I .
convergence towards local optima. The superior solutions which [4], in which they utilized orthogonal crossover instead of

are sent to the archive are reflected by new potential solutionsst ~ Pinomial and exponential crossover. A group of researchers
the end of the search process, the best solution is selected from have introduced new variants like opposition based DE [5],
the second archive and the current population. The performane  centroid dependent initialization ciJADE [6], clustersed
of RJADE/TA algorithm is then extensively evaluated on two test ~ population initialization (CBPI) [7] jDE [8], genDE [9], in
beds. At first on 28 latest benchmark functions constructed for  dividual dependent Mechanism (IDE) [10] etc. Control pa-
the 2013 Congress on Evolutionary Computation special session. rameters adaptation and self-adaptation have devisedlin [1
Secondly on ten benchmark problems from CEC2010 Special [12], jDErpo [13] SaDE [14], JADE [15], [16], EPSDE [17],
Session and Competition on Large-Scale Global Optimization. IDE [18] SHADE [lg]L_SHADE [20] [21] EWMA-DECIF
Experimental results demonstrated a very competitive perfor- 155, "cqonerative coevolution have been brought into DE for
mance of the algorithm. L o
large scale optimization [23]. Some researchers appligd it
Keywords—Adaptive differential evolution; large scale global ~ problems from the discrete domain [24], [25], while othems a
optimization; archives. taking the advantage of its global searching in the contisuo
domains [4], [26]-[28].

. INTRODUCTION . . .
In another experiment, adaptive variant of DE, the so-

Optimization deals with finding the optimal solution for called JADE [15], is proposed for numerical optimizatiot. |
single or multi-objective functions [1]. An unconstraingidgle  has shown performance improvement over the state-of-the-
objective optimization problem can be stated as follows: art algorithms, |DE [8], SaDE [29] and DE/rand/1/bin [2]
according to the reported results in [15] and [30]. However,

Minimize f(x), (1) JADE is not reliable; on some problems. For instance, it finds
where f(x) denotes the objective function, ang =  the global optima in some runs, but it can also be trapped
(21,23, ...,z,)T is ann-dimensional real vector. in local optima [30]. To improve the reliability of JADE, in

this paper, we introduce two new strategies in JADE and thus

DE [2] is a most popular bio-inspired scheme for finding propose Reflected Adaptive Differential Evolution with Two
the global optimumx* of problem (1). The heuristic iS External Archives (RJIADE/TA).

essentially an evolutionary one and relies on the usualtigpene
operators of mutation and crossover. DE is easy to und@fstan The rest of this paper is organized as follows. Section Il de-
and implement, has a few parameters to control, and is robustcribes the basic DE and JADE algorithm. Section Ill present
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proposed RJADE/TA. Section IV gives the experimental rtssul 1) DE/current/topbest strategy:JADE utilizes two muta-

and finally Section V concludes this paper and discussesefutu tion strategies, one with external archive, and the othérowit

research directions. it. These strategies are the improvement of DE/current-to-
best/1 strategy. They can be expressed as follows [15]:

Il. DIFFERENTIAL EVOLUTION AND JADE vi = x+F(xp,., —x)+ Fi(x,, —%Xp,), (5)

I ) (P s . _
A. Differential Evolution vi = Xi+Fi(xp, — %)+ Fi(xey, —Xp,), (6)

The four main schemes of differential evolution (DE) are Where xg.,, is a vector chosen randomly from the tofft
detailed as follows. |nd|V|du_aIs andxiZ Xry an_d x,, are chosen from the current
population P, while x,, is chosen randomly fromP U A.

1) Parent SelectionFor each membet;, i = 1,2, ..., N,, Where A denotes the archive of JADE, which records the
of the current generatio@ three other members,.,, x,., and inferior parent solutions found during the current gerierat
x,, are randomly selected, where, ro andrs are randomly
chosen indices such that, r, andr; € {1,2,...,N,} and
i # r1 # re # r3. Thus, for each individualk;, a mating
pool of four individuals is formed in which it breeds agains
three individuals and produces an offspring.

2) Control Parameter AdaptationFor each individuak;,
control parameteir; and the crossover probabilitg; R; are
tgenerated independently from Cauchy and Normal distribu-
tions, respectively as follows [15]:

2) Mutation: After selection, mutation is applied to pro- F; = rand(pF,0.1) @)
duce a mutant vector;, by adding a scaled difference of the CR; = rand(pCR,0.1), (8)

two already chosen vectors to the third chosen vector. i.e., where rand is a uniform random number froro, 1], and

nCR anduF are the means of the Normal and Cauchy
distributions with standard deviation 0.1. Cauchy disttiitn
where F' € (0,2) [31] is the scaling factor. is more _helpful than the Normal distribution to diversify
the mutation factors and thus prevent premature conveegenc
3) Crossover:After mutation, the parameters of the parentwhich often occurs in mutation strategies if the mutation
vector x; and mutant vectorv; are mixed by a crossover factors are highly concentrated around a certain value. [15]
operator and a trial member; is generated as follows: The standard deviation is chosen to be relatively small) (0.1
because otherwise the adaptation does not function effigien
e.g., in the case of an infinite standard deviation, the atett

Vi = Xy + F(Xrg - Xrg); (2)

w4 vy 1f rand;(0,1) < CR; (3 Normal distribution gets independent of the value (f R
J x;  otherwise, [15]. CR; and F; given in Equations (7) and (8) are then
truncated to(0, 1] and [0, 1], respectively. Initially, bothuF
wherej € {1,2,...,n}. and uCR are set to 0.5 as suggested in [15]. They are

4) Survivor SelectionAt the end, the trial vector generated expressed as below [15]:

in (3) is compared with its parent on the basis of its objectiv pF = (1 — ¢)uF + ¢ - meang(Sp) (9)
function value. The fittest will propagate to the next getiera
ie., wCR = (1—-c)uCR+ c¢-meana(Scr). (20)
S w;, if f(ul) < f(xi); (4) H
i+1=19 x,. otherwise. ere mean;, denotes the Lehmer meamean 4 denotes the

arithmetic mean, and'x is the set of successful;’s, while
Scr is the set of successful'R;’'s at generationG. The
B. JADE Lehmer mean is helpful to propagate larger mutation fagctors

) ) ) _which in turn improves the progress rate. To the contrary, an
Before presenting the new algorithm, we give the details,jthmetic mean ofS tends to be smaller than the optimal

of the DE's version JADE, upon which the devised algorithmy5)e of the mutation factor and thus it might cause preneatur
in .thIS paper is based. JADE [15] is an adapuve version of DEconvergence at the end. The parametein Equations (9)

It improves the performance of DE, by implementing a newang (10) is a constant which controls the rate of parameter
mutation strategy DE/current-to-best with/without external adaptation and is chosen between 0 and 1. The life span of
archive, and adaptively controlling the parameterand C' R. a successfuC'R; or F; is roughly 1 generations: i.e., aftet
JADE adopts the crossover and selection scheme of classic D&enerations, the old value pt’ R OF#F is reduced by a factor

as described in E_quation (3) and Equation (4). DE/C_urrent-Of (1- C)% , when¢ is close to zero, if: = 0 no parameter
to-pbest strategy incorporates not only the best solution '”édaptation takes place.

formation, but also the information of other good solutions
Specifically, any solution from the tog%s population can be 3) Optional External Archive: At each generation, the
randomly selected in DE/current-fobest to play the role of failed parents are sent to the archive. The Euclidian digtaf

the single best solution in DE/current-to-best [15]. Whgre the archive members from the current population is utilized

is the percentage of top good solutions and the default valuthe mutation operation in order to diversify the populatiom

for it is 5% of N,. Other suggested values pfare between avert the premature convergence. If the archive size esceed
5% and20%, inclusive. JADE modifies classic DE in three N,, some solutions are randomly deleted from it to keep its
aspects. size equal taV,.
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1. REVIEW

Almost two decades have been passed when DE w
proposed inl995 to cope with non-differentiable, non-convex

solutions of the search at regular intervals of the optitiina
rocess. Second, these superior solutions are then reflegte
ew significant/potantial solutions in the current pogolat

. ' . . RJADE/TA adopts the same crossover and mutation operations

and non-linear problems defined in the continuous parametefs’yecribed in JADE [15]. We have done some modification to

space [32]. Since then, DE and its uncountable and dl\’Eﬂs'f'ethe Pseudo-code of JADE; this addition can be seen in lines 26

variants have emerged as one of the most competitive ang 31 of Algorithm 1. Further in the last line the best solatio
versatile family of the evolutionary computing optimiz&sd 5 selected fromPU As, the rest of the code remains the same.

have been prosperously applied to solve numerous reatiworl
problems from diverse discipline of science and technology

[33]. Extensive literature on DE is available, which is @ndl  Ajgorithm 1 Pseudo-code of RJADE/TA

from the recent surveys on DE [34], [32]. However, this
section attempts to review some of the relevant methods.
The hybridization of DE with local search strategies is a
popular area of research among the practitioners. Manyidiybr 2
algorithms have shown significant performance improvement

In [35] Sequential Quadratic Programming (SQP) is
merged in DE algorithm. This new hybrid applies the DE al-
gorithm until function evaluations read% of the maximum
function evaluations. It then applies SQP for the first time t
the best point thus obtained. Afterwards, SQP is appliest aft
each 100 generations to the best solution of the currenttsear
In this work, the population size keeps reducing dynamycall
and the process terminates with minimum population size.

©oNoakh®

In another experiment DE is combined with simplex
method and this method is know as NSDE [36]. The authors:
applied nonlinear simplex method with uniform random num-
bers to initialize DE population. Initially}V, individuals are
generated uniformly and then neXj, are generated from these

N, points by application of Nelder-Mead Simplex (NMS). 12

initial population and the rest of DE is unchanged in this 1’

Now from 2NV, population, the fittesiV,, are selected as DE’s

algorithm. Their algorithm only modify DE in the population ig
step.

20:
21:
around the best point (DELB) is proposed in [37]. In DELB 22:
the initial evolutionary steps are the same as DE except thata:
24:
randomly for each mutant vector, DELB modifies the selection2s:
of DE by introducing reflection and contraction. The trial 26:

Further, differential evolution algorithm with localizeu

the mutation scale factdr is chosen fronj—1, —0.4]U[0.4, 1]

vector is compared with the current best and the parent vecto

If the parent is worse than the trial vector it is replaced by a27:
new concentrated or reflected vector. In DELB, the trial @ect 2s:
can be replaced by its parent vector, or reflected vector oe9:

contracted vector, while in classic DE only the trial vector
replaces the parent.

Inspired by the above techniques, a new variant RIADE/TA

of DE family is presented, which records the best individual g;

33:

archived solutions. The detail of RJADE/TA is presented ing‘“
5:

of the optimization process at regular intervals. Besides,
utilizes an reflection strategy of local search for replgdine

the following section.

10:
11:

30:

Population size= N,; FFES = Number of function
evaluationsy = interval between second archive updates;
Uniformly and randomly sample IV, solutions,
Xry,Gy Xy, G -+ - Xry G from the search space to
form the initial populationP;

Initialize the archivesd = 0; Ay, = ;

SetuCR =0.5; uF =0.5; p =5%; ¢ =0.1;

SetScr = 0; Sp = 0;

: Evaluate these individuals; SEIES = Np;
: while FES < n%10000 do

GenerateC' R; = rand(pCR,0.1);
GenerateF; = rand(uF,0.1);
Selectxy, ,, , randomly from100p% population;
Selectx,, ¢ # x; ¢ randomly fromP;
Selectx,, ¢ # X, ¢ randomly fromP U A;
Generate mutant; = x; ¢ + F;(x},,, o — Xi,q) +
Fi(xrl,G - >~(r27G>;
for j=1ton do
if J < Jrand OF rand(0,1) < CR; then
UG = VjiG,
else
Xji,G = Xji,G)
end if
end for
Select the best between ¢ andu; ¢;
if u; ¢ is betterthen
XiG — A;,CRZ‘ — SCR! F,; — SF;
end if
Delete individuals randomly from A if sizd > N,;
Update second archivd, by sending best point of
the search to it;
if Gen = k then
Xpest,c — Ao; and reflect it as
Compute the centroid P — Xpest, ¢ @SXe,¢ =
: Z]‘\E’ Xi,G
Np—1 =2 1,
Generate reflection point as, ¢ = x.¢ +
1(XC,G - XbesLG)
end if
uCR = (1—c¢)- uCR+ c-meana(Scr);
puF =(1—c¢) - pF+c-meanr(Sr);
end while
Output: the solution vector with the smallest objective
function value fromPU A, in the search.

IV. PROPOSED REFLECTED ADAPTIVE
DIFFERENTIAL EVOLUTION WITH TWO
EXTERNAL ARCHIVES

This section proposes a new DE algorithm, RJADE/TA,

A. Best Solution’s Reflection

Early convergence of the algorithms may be achieved due

which modifies JADE in two aspects, first it introduces ato best solution. Thus to avoid premature convergence; stag
second external archive into JADE, which stores superionation and local optima RJADE/TA reflects the best solution,

www.ijacsa.thesai.org

677/P age



(IJACSA) International Journal of Advanced Computer Sméeand Applications,
Vol. 7, No. 2, 2016

Xpest,¢ O the search process and send it to the arcHiyeTo 3) A, records the best solution (only one solution) of
implement the reflection mechanism [38] in RJADE/TA, first the current generation, this may be a parent solution
the center of mass of the current populatiBrexcept the best or a child solution. In contrastd keeps the inferior
solutionxyes: ¢ is computed as: parents solutions (more than one) only, it does not
N record inferior child solution.
1 Z 4) A, is initialized as0O and is updated after genera-
A ZX’L’G (11) tions (1000 say). On the other hand is updated at
P2 the end of each generation.
wherex, ¢ denotes the center of mass &, — 1 individuals, 5) The recorded inferior parents ol are later on
since one candidate solution will be archived, this openrati utilized in mutation. Where ind, the stored best
can be seen in Algorithm 1 (line 29). Once the center of mass solution is reflected with a new solution; which is sent
of N, — 1 individuals is calculated, then the best individual to the current population. Once a solution is kept in
Xpest,¢ (the solution with minimum objective value) d? is Ao, it remains inactive during the optimization. When
reflected through the center of massq as follows: the search procedures are terminated, then the second
archive’s solution contribute towards the selection of
XrG = Xeq + 1+ (Xe.6 = Xpest,G)- (12) optimal solution.

Wherex, ¢ is the mirror image or reflection [38] afycs:.¢
through the centroidk,. , this newly produced solution is V. NUMERICAL EXPERIMENTS AND RESULTS
known as reflected solution. The coefficient of reflection isp Experimental Setup

"1” as suggested in [38].
Experimental validations for the proposed RJADE/TA are

The reflected solution replaces.;;c in the population  ¢onducted on a set of 28 new and complex test functions [39]
P and the best solutios,.s:,: by itself is transferred to the rovided by CEC 2013 special session and a 1000 dimensional
second archived,. functions designed for CEC 2010 competition on large scale
global optimization problems [40].
B. Second External Archive in RJADE/TA

When the search procedure reachesi function eval- B- CEC 2013 Test Suite

uations the first archivel, update is made. After whicH. is In the CEC 2013 test suite, the previously proposed compo-
updated at regular interval of generationsAs mentioned ear-  sition functions of CEC 2005 [2] are enhanced and additional
lier that JADE has archivel, which stores inferior solutions, if test functions are considered for real parameter singlectitse

the archive size exceed$,; some solutions are removed from optimization. Three types of problems are developed:
it. In contrast the proposed second archilserecords the best

solution of the search after eaghgenerations. In other words e Functions 1-5 are unimodal;
the best solution of the current population, aftegenerations

is removed from the search procedure and is kept passive in
archive A, during the optimization. The objective of sending e 21-28 are composit functions, which are designed
the best solution from the current optimization proces$ét t by combining various problems into a complex land-
the best solution information may cause difficulties such as scape.

premature convergence due to the resultant reduced pimpulat

diversity [15]. Best solution some times mislead the sedmch C. Parameter Settings for CEC 2013 Test Suite

local optima or stagnation.

6-20 are multimodal functions.

We performed our experiments following the guidelines
The second archivel; is initialized as0 and is updated of the CEC2013 competition [39]. For all the problems, the

with a best solution in each generations (see Algorithm 1). initialization range i§—100; 100]. For all of the problems the

The interval between two reflections is this is kept1000 number of dimensions are = 10 and 30, and the maximum

here. If we reflect the best solution at each generationgthemumber of objective function evaluations a@00xn per run.

will be one extra evaluation at each generation, which mag be When the difference between the values of the best solution

wastage of computational energy. Furthermore, if we stest b found and the optimal (known) solution i$~% or less, the

solution at each generation then the best solution of currererror is set ta0. The population size is set t0.

generation and the previous will be not much different from

each other. Which again will be wastage of computation. Thah  Results on CEC 2013 functions

is why we selected: a 1000. There are few differences idA . o i
and A, which are given below. The experimental statistics(best, mean, median, worst and

standard deviation) obtained by our algorithm in 51 runs,

1) A, stores best solution of the current population,on 28 functions with dimensions = 10 of the CEC 2013
while A records the recently explored inferior solu- test functions are summarized in Table I. In Table Il, the
tions. Mean values of function error valugi) — f(«*)) obtained

2) The size ofA is kept N, if this size exceeds, some by RJADE/TA are presented fon = 10. These values
solutions are randomly deleted frorh, however in  are compared with state of the art algorithms, jDE, jDEsoo
the new archived, the size may exceeds,. Itkeeps [41] a new version of DE, SPSRDEMMS [42] and jDErpo
the record of all best solutions, no solution is removed[13]. Among these SPSRDEMMS and jDErpo were specially
from it. developed for CEC 2013 competition.
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In Table Il the- shows that the corresponding algorithm e  Separable functions;
loesses against our RJADE/TA algorithm. Theindicates
that the particular algorithm wins against our algorithmda
= reveals that both the algorithms performs equivalently.

e Partially-separable functions, in which only a small
number of variables are dependent and the rest are

The outstanding performance of RJADE/TA is clearly visible independent,

from Table Il, where many negative signs made this fact e Partially-separable functions that consist of multiple
evident. It is very clear from the Table that our RJADE/TA independent subcomponents, each of whichigaon-
algorithm performed significantly better than jDE and jD&so separable; and

algorithms on 15 out of 28 functions, on 4 functions both got ) . .
similar results. On the other hand jDE and jDEsoo showed his test suite provided an enhanced platform for evalgatin
better performance on only 9 functions. As compared withthe performance of algorithms on high-dimensional prolslem
SPSRDEMMS, our algorithm found better solutions for 16in various scenarios [40]. Below we list only those test
out of 28 functions and SPSRDEMMS showed good results ofinctions (F1-F10) which are used in this work.

12 functions. Furthermore, jDErpo and RJADE/TA performed

better than each other on 12 functions. 1) Separable Functions (3)

e F1: Shifted Elliptic Function

Table Il shows the comparison of RJADE/TA against e F2: Shifted Rastrigin’s Function
jDE, jDEsoo, SPSRDEMMS and jDErpo for = 30. It e F3: Shifted Ackley’s Function
is interesting to note that the performance of RJADE/TA 2)  Single-groupm-nonseparable Functions (5)
increased with the increase in dimension. It found bettsulte e F4: Single-group Shifted and-rotated Ellip-
for 20 out of 28 function against jDE and jDEsoo0. jDE only tic.Function
solved 5 out of 28 problems for 30 dimensions, and JDEs00 p. ) ; ; }
got good results on 3 out of 28 functions. SPSRDEMMS and ¢ tﬁ?.ir?éng{fng{ig?]p Shifted andi-rotated Ras
jDErpo performed inferior on 16 functions, and superior on 8 o Fsg Single-group Shifted andi-rotated Ack-
functions only, which can be seen from Table III. Iey;s Function

Tables Il and Il showed the comparison of RJIADE/TA e F7: Single-group Shifted m-dimensional
against each of the particular algorithms. Here we present Schwefel's Problem 1.2
the overall percentage of all the algorithms, jDE, jDErpo, e F8: Single-group Shifted m-dimensional
SPSRDEMMS, jDErpo and RJADE/TA on 30 dimensional Rosenbrock’s Function
problems. Table IV demonstrates that RIADE/TA performance 3)  3%--groupm-nonseparable Functions (2)
percentage is 50% while jDErpo is 37%, the remaining three e F9: g:--group Shifted andn-rotated Elliptic
algorithms in comparison performed less than or equal t0.25% Function
This percentage validity is even more clearly visible frdme t e F10: 7--group Shifted andn-rotated Rastri-
bar graph 1. Each bar shows the number of test problems gin's Function
optimized by particular algorithm. The last bar representi
RJADE/TA. The parametern controls the number of variables in each

group and hence defining the degree of separability.

14

F. Parameter Settings for CEC2010 instances

For this experiment the population siz€, is chosen50

AL and the dimensiom is set to1000. The maximum function
evaluations are chosehx 107%. The value to reach is set to
10~2. RJADE/TA and JADE were run 25 independent times
for all test instances as suggested in the original papdr [40
0 All these experiments were conducted in MATLAB software.

JDE iDEsoo SPSRDEMMS DErpo RIADE/TA

G. Comparison of RJADE/TA with JADE On CEC 2010 in-

Fig. 1: Comparison of RJADE/TA and other up to dategignces

algorithms with dimensiom = 30
The best, median, mean and standard deviation of function
error values obtained in 25 runs of the proposed algorithm,
RJADE/TA are presented in Table V. These statistics were
E. CEC2010 Test Instances requested in [40] as well. The best results are typed as bold.

Here we evaluate RJADE/TA on ten complex optimization As can be seen from Table V, overall RJADE/TA per-
problems used in CEC2010 special session and competitidiormed well as compared with JADE in obtaining the “best”
on large scale global optimization [40]. Since separabilit solution for five out of ten test instances, F3, F4, F5, F7 and
provides a measure of the complexity of various problemsF8. For F6 both algorithms got the same accuracy. Here F3
in [40] a test suite for high dimensional problems is deviseds separable and all others are single-gronmonseparable
which is based on separability and non separability of th€unctions. Surly it is due to the additional second archife o
functions. Here, three kinds of high-dimensional probleares RJADE/TA which provides more chance to the population for
considered: searching the region and discouraging early convergerare. F
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TABLE |: EXPERIMENTAL RESULTS OF RJADE/TA ON 28 TEST FUNCTINS OVER 51 RUNS WITH DIMENSION n

= 10.

[ Func ] Best [ Worst [ Median [ Mean [ Std Dev |
1 0.0000F + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
2 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
3 2.2737TE — 013 9.3924FE + 02 5.1956 E + 01 1.2108F + 02 1.8941F + 02
4 0.0000FE + 00 5.9114F + 03 0.0000E + 00 1.1591F + 02 8.27T76 E + 02
5 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E + 00
6 0.0000F + 00 9.8124FE + 00 9.8124F + 00 7.8884FE + 00 3.9346 E + 00
7 1.9695FE — 03 1.2013E + 00 7.5908 E — 02 1.5927FE — 01 2.1904F — 01
8 2.0201FE + 01 2.0511FE + 01 2.0358FE + 01 2.0366 E + 01 6.7627TE — 02
9 3.4033F + 00 6.0808E + 00 4.4493FE + 00 4.4593E + 00 6.0360E — 01
10 5.6843FE — 014 6.8717TE — 02 3.6112FE — 02 3.5342FE — 02 1.4363F — 02
11 5.6843FE — 014 1.1937FE — 012 2.2737TE — 013 2.4298F — 013 1.9922F — 013
12 3.5441FE + 00 1.1542F + 01 6.7460F + 00 6.7571E + 00 1.6197FE + 00
13 3.9347FE + 00 1.1345E + 01 7.9523FE + 00 7.7246 E 4+ 00 1.9071E + 00
14 1.0282F — 04 1.2604F — 01 2.1817E — 03 1.1994F — 02 2.5730E — 02
15 3.9803FE + 02 9.2821F + 02 6.5814F + 02 6.6660F + 02 1.2744F + 02
16 6.2944F — 01 1.4778E + 00 1.1505E + 00 1.1336E + 00 1.8774FE — 01
17 1.0122F + 01 1.0122F + 01 1.0122F + 01 1.0122F + 01 4.5729F — 06
18 1.7593F + 01 3.1133F + 01 2.2134F + 01 2.2715E + 01 2.8525F + 00
19 2.9479FE — 01 5.2259F — 01 4.5204F — 01 4.4224F — 01 5.3887E — 02
20 1.2860F + 00 3.4877E + 00 2.5708E + 00 2.5317FE + 00 3.7190FE — 01
21 2.0000E + 02 4.0019F + 02 4.0019F + 02 3.9627FE + 02 2.8033F + 01
22 1.9796 F — 02 1.1123FE + 02 1.7431FE + 01 2.7022F 4 01 2.6637E + 01
23 2.8879F + 02 1.0544F + 03 6.9580F + 02 7.0015FE + 02 1.5859F + 02
24 1.3524F + 02 2.1472F + 02 2.0279FE + 02 2.0217E + 02 1.2455F + 01
25 2.0003F + 02 2.1188F + 02 2.0091F + 02 2.0314F + 02 3.6775E + 00
26 1.0514F + 02 2.0002F + 02 1.1187FE + 02 1.2670FE + 02 3.4574FE + 01
27 3.0001FE + 02 4.0438FE + 02 3.0019FE + 02 3.0351FE + 02 1.6372E + 01
28 1.0000FE + 02 3.0000E + 02 3.0000FE + 02 2.8824F + 02 4.7525FE + 01

TABLE II: COMPARISON OF RJADE/TA WITH OTHER ALGORITHMS ON THEMEAN OF THE FUNCTION ERROR

VALUES AT EXECUTION TERMINATION OVER 51 RUNS, ON 28 TEST FUNTOONS WITH n=10.

[ Func ] iDE [ jDEso0 | SPSRDEMMS | JDErpo [ RIADEMA |
1 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e 4 00= 0.0000e + 00
2 7.6534e — 05- 1.7180e + 03- 6.8886e + 02- 0.0000e 4 00= 0.0000e + 00
3 1.3797e 4 00+ 1.6071e + 00+ 5.9735e + 00+ 3.7193e — 05+ 1.2108e + 02
4 3.6639e¢ — 08+ 1.2429e — 01+ 3.8803e — 02+ 0.0000e + 00+ 1.1591e 4 02
5 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00
6 8.6581e + 00- 8.4982¢e + 04- 8.6580e + 00- 5.3872e 4 00+ 7.8884¢e 4 00
7 2.7229e — 03+ 9.4791e — 01- 1.8732e — 01- 1.6463e — 03+ 1.5927e — 01
8 2.0351e + 01+ 2.0348e + 01+ 2.0348e + 01+ 2.0343e + 01+ 2.0366e + 01
9 2.6082e + 00+ 2.7464e + 00+ 2.7311e + 00+ 6.4768e — 01+ 4.4593e + 00
10 4.5263e — 02- 7.0960e — 02- 1.0346e — 01+ 6.4469e — 02- 3.5342e — 02
11 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00
12 1.2304e + 01- 6.1144e + 00+ 7.5821e + 00+ 1.3410e 4+ 01- 7.7246e 4 00
13 1.3409e + 01- 7.8102e 4 00- 1.1042e + 01- 1.4381e + 01- 6.7571e + 00
14 0.0000e + 00+ 5.0208e — 02- 8.3273e — 02- 1.9367e + 01- 1.1994e — 02
15 1.1650e + 03- 8.4017e 4 02- 8.3072e + 02- 1.1778e + 03- 6.6660e + 02
16 1.0715e + 00+ 1.0991e + 00+ 1.1871e + 00- 1.0598e + 00+ 1.1336e 4 00
17 1.0122¢ + 01= 9.9240e + 00+ 1.0127e + 01 1.0997e + 01- 1.0122e 4 01
18 3.2862e + 01- 2.7716e 4 01- 2.2949¢ 4 01- 3.2577e 4+ 01- 2.2715e 4 01
19 4.3817e — 01+ 3.1993e — 01+ 3.1854e — 01+ 7.4560e — 01- 4.4224e — 01
20 3.0270e 4 00- 2.7178e 4 00- 2.5112e 4 00+ 2.5460e + 00- 2.5317e 4 00
21 3.7272e 4 02+ 3.5113e + 02+ 3.9234e + 02- 3.7272e 4 02+ 3.9627e + 02
22 7.9231e 4 01- 9.1879¢ + 01- 6.6219e + 01- 9.7978e + 01- 2.7022e 4 01
23 1.1134e + 03- 8.1116e + 02- 9.4740e + 02- 1.1507e + 03+ 7.0015e 4 02
24 2.0580e + 02- 2.0851e 4 02- 2.0442¢e 4 02- 1.8865e + 02+ 2.0217e 4 02
25 2.0471e 4 02- 2.0955e 4 02- 2.0473e 4 02- 1.9885e + 02+ 2.0314e 4 02
26 1.8491e + 02- 1.9301e + 02- 1.6886e + 02- 1.1732e + 02+ 1.2670e + 02
27 4.7470e + 02- 4.9412e + 02- 4.7300e + 02- 3.0000e + 02+ 3.0351e + 02
28 2.9216e 4 02- 2.8824e 4 02= 2.8431e 4 02+ 2.9608e 4 02- 2.8824e 4 02
- 15 15 16 12
+ 9 9 9 12
= 4 4 3 4

www.ijacsa.thesai.org

68pP age



(IJACSA) International Journal of Advanced Computer Sméeand Applications,
Vol. 7, No. 2, 2016

TABLE Ill: COMPARISON OF RJADE/TA WITH OTHER ALGORITHMS ON TH MEAN OF THE FUNCTION ERROR

VALUES AT EXECUTION TERMINATION

OVER 51 RUNS, ON 28 TEST FUNTOONS WITH n=30.

[ Func ] iDE [ jDEs00 | SPSRDEMMS | jDErpo [ RIADEMA |
1 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00
2 1.1925e + 06- 1.2914e + 05- 1.0157e 4 05- 2.8378e + 04- 7.4009¢e + 03
3 5.6216e 4 06- 9.8414e + 06- 1.0951e + 07- 8.5740e + 01+ 2.4293e 4 05
4 9.3584e + 03- | 1.9720e 4 04- | 2.4061le + 00+ | 1.7214e + 02+ | 5.1627¢ + 03
5 0.0000e + 00= 1.2606e — 08= 0.0000e + 00= 0.0000e + 00= 0.0000e + 00
6 1.4157e + 01- 7.9292¢e 4 00- 1.7463e + 01- 7.5852e + 00- 1.0356e + 00
7 2.6171e 4 01- 9.8167e + 00- 1.1038e + 01- 1.1163e 4 00+ 4.2514e 4 00
8 2.0934e + 01+ 2.0946e + 01- 2.0950e + 01- 2.0940e + 01- 2.0937e + 01
9 1.8151e + 01+ | 2.0971e + 01- | 2.4903e + 01+ | 3.0923e¢ + 01- | 2.7961le + 01
10 3.8212e — 02- 7.9055e¢ — 02- 5.3974e — 02- 9.2759e — 03+ 3.7380e — 02
11 3.6609¢e 4 01- 0.0000e 4 00= 0.0000e + 00= 3.2858e 4 01- 0.0000e 4 00
12 1.7135e + 02- 4.2835e 4 01- 4.2650e + 01- 1.7995e + 02- 3.6994e + 01
13 1.8086e + 0-2 7.0750e + 01- 7.9763e 4 01- 1.8151e + 02- 5.7309¢ 4 01
14 3.0639¢e 4 03- 1.3327e + 00- 3.2550e + 00- 1.5120e + 03- 1.1223e + 00
15 7.2978e 4 03- 4.8340e + 03- 4.4226e 4 03- 7.1440e 4 03- 4.1938e 4 03
16 2.4646e + 00- 2.2791e + 00- 2.2801e + 00- 2.4687e + 00- 2.1305e + 00
17 7.8765e + 01- 3.0434e + 01= 3.0440e + 01- 7.3585e + 01- 3.0434e + 01
18 2.1731e 4 02- 1.2341e + 02- 8.9310e + 01+ 2.1298e + 02- 1.0213e + 02
19 7.0078e 4 00- 1.0956e + 00+ 1.1639e 4 00+ 7.5022e 4 00- 2.0825e 4 00
20 1.2564e + 01- | 1.1639e¢ + 01- | 1.1236e 4 01- | 1.2268e¢ + 01- | 1.0858e + 01
21 2.7818e + 02+ 2.9396e + 02- 2.8466¢e + 02+ 2.8637e 4 02+ 2.9336e + 02
22 3.1346e 4 03- 5.1621e + 01+ 7.6606e + 01+ 1.7779e + 03- 1.3131e + 02
23 7.2920e + 03- 4.6061e 4 03- 4.7713e + 03- 7.2374e + 03- 4.2998e + 03
24 2.5511e + 02- | 2.4818e + 02- | 2.5330e + 02- | 2.0102e + 02+ | 2.1616e + 02
25 2.5213e + 02+ | 2.6037e + 02+ | 2.6408¢ + 02+ | 2.535de + 02+ | 2.7921e + 02
26 2.0015e + 02+ 2.5758e 4 02- 2.0001e + 02+ 2.0000e + 02+ 2.2275e 4 02
27 7.8688e + 02- 7.2161e + 02- 8.8779e + 02- 3.7724e + 02- 7.1060e + 02
28 3.0000e + 02= 3.0000e + 02= 3.0000e + 02= 3.0000e + 02= 3.0000e + 02
- 20 20 16 16
+ 5 3 8 8
= 3 5 4 3

TABLE 1V: %age comparison of RJADE/TA with other algorithms
Optimizer DE jDEsoo SPSRDEMMS  jDErpo  RJADE/TA
No. of probs. optimzed 7 6 6 10 14
Yage 25% 21% 21% 36% 50%

TABLE V: EXPERIMENTAL RESULTS OF JADE, AND RJADE/TA ON 10 TEBINSTANCES OF 1000 VARIABLES WITH
3-107FES.Best, Median, Mean AND the Std Dev OF THE FUNCTION ERROR VAES OBTAINED OVER 25 RUNS.

Test Best Mean Median Std Dev
Instance RJADE/TA JADE RJADE/TA JADE RJADE/TA JADE RJADE/TA JADE

F1 3.12E + 05 1.44E + 05 1.26 £ 4 06 1.18E + 06 9.70E + 05 1.05F + 06 8.07E + 05 9.24F + 05

F2 1.44F 4 03 1.09E + 01 1.63E 4 03 7.28E + 01 1.61E 4 03 5.87E + 01 1.30FE 4 02 4.60E + 01

F3 7.27E — 03 9.49E — 01 5.47E — 01 1.20E + 00 4.32E — 01 1.20E + 00 5.43FE — 01 1.47E — 01

F4 6.29E + 10 9.08E + 10 6.60E + 12 8.12E + 12 1.80F 4 11 1.56E + 11 1.03E + 13 1.09E 4 13

F5 4.93E 4 007 | 5.65F +007 || 6.91E + 007 | 7.62E 4007 || 6.71E+007 | 7.71E 4+ 007 || 1.52E + 007 | 1.28E + 007
F6 1.97E 4+ 01 = 1.97FE 4 01 1.98E + 01 3.52E + 04 1.98E 4+ 01 = 1.98E 4 01 2.80E — 02 1.76 E 4 05

F7 4.61E + 05 4.58FE + 05 1.19E + 09 6.29FE + 07 7.80E + 05 8.53E + 05 2.47E + 09 1.36 E 4 08

F8 7.10E+04 | 9.00E 4 04 4.07E 407 | 2.60E+07 || 411E+06 | 6.97TE+06 || 6.00E+07 | 3.49E + 07
F9 3.98E + 07 3.65E + 07 5.03E + 07 4.83E + 07 5.02E + 07 4.51E + 07 1.04E + 07 7.52E + 06

F10 5.04E +03 | 3.34E + 03 5.35E+03 | 3.67TE+ 03 535E+03 | 3.69E+03 || 1.66E+02 | 1.59E + 02

www.ijacsa.thesai.org 681P age



(IJACSA) International Journal of Advanced Computer Sméeand Applications,

the remaining four test instances, F1, F3, F9 and F10 JADE got4]
better solutions than RJADE/TA, here F1 and F3 are separable
and two functions F9 and F10 are partially-separable foneti

that consist of multiple independent subcomponents. Eurth  [5]
more, the failure on F105{--group nonseparable) could be its
complexity, as it is the sum of ten rotated Rastrigins florcti
applied to groups ofn (50 here) decision variables each and (6]
one non-rotated Rastrigins function applied to the remaini
500 decision variables. The failure on F9 can be due to its|;
complex nature like F10.

Considering “Mean”, “Median” and Standard deviation, we (8]
see that RJADE/TA's is more suitable to solve single-group
nonseparable functions, F3-F8, which is visible from Table
Hence in general, the analysis of above experimental sesult[g)
lead us to the conclusion that RIADE/TA in much much better
than JADE in optimizing problems from the category of single

group m-nonseparable functions. [10]
VI. CONCLUSIONS [11]

The current DE variant JADE with one optional external
archive some times exhibit poor reliability [30]. Moreoyveest  [12]

solutions some times mislead the search to a local optima. In
this paper, we have attempted to introduce a second archive
A, into JADE for overcoming this shortcoming for large scale[13]
global optimization problems. This archive stores the best
solution, which is removed from the current population afte
regular intervals. The removal of best solution is comptEtsa

by a new potential solution in the population. Thus we have
proposed an approach RJADE/TA to add to JADE algo- 15]
rithm and add new good divers solutions to the population t(g
make a systematic and rational search in the region defined
for the search process. RJADE/TA takes the advantages qis)
both archives A with inferior solutions and4, with superior
solutions. It is easy to implement and does not introduce any

complicated structures. 17]

The performance of the developed RJADE/TA has been
demonstrated by taking advantage of 28 complex competi-
tion test functions from CEC 2013 and 10 functions from
CEC2010. On CEC2013 test suit RJADE/TA was compared'®!
with jDE, jDEsoo, jDErpo and SPSRDEMMS algorithms
on 10 and 30 dimensions. The superior performance Ofig]
RJADE/TA was demonstrated on 10 and 30 dimensions. More-
over, we have compared RJADE/TA with classical JADE with
1000 dimensions. RJIADE/TA notably outperformed JADE and?20]
is very competitive in solving single-groum-nonseparable
functions. In this paper, our aim was to analyze the behavior
of algorithm if the best solution is removed from it. [21]

In future JADE with second Archive only can be ex-
plored. The experiments may be carried out at other higher
dimensional problems. This may be extended to constrained

optimization. [22]
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