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Abstract—The capacitated vehicle routing problem (CVRP) is 

a difficult combinatorial optimization problem that has been 

intensively studied in the last few decades. We present a hybrid 

methodology approach to solve this problem which incorporates 

an improvement stage by using a 1-0 implicit enumeration 

technique or Balas’s method. Other distinguishing features of the 

methodology proposed include a specially designed route-based 

crossover operator for solution recombination and an effective 

local procedure as the mutation step. Finally, the methodology is 

tested with instances of the specialized literature and compared 

with its best-known solutions for the CVRP with homogeneous 

fleet, to be able to identify the efficiency of the use of the Balas’s 

methodology in routing problems. 
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I. INTRODUCTION 

The general vehicle routing problem (VRP) is a generic 
name that refers to a variety of applied problems in various 
areas of knowledge such as transportation, supply chain, 
production planning, and telecommunications. The general 
problem is based on a group of customers that have to be 
served by a fleet of vehicles. They begin their tour or path in a 
main depot, visiting the customers assigned to the route only 
once, and returning to the depot where they started. The main 
objective is to establish the possible routes that represent the 
least-cost paths that will meet the customers' demands. 
Customers are spread geographically and associated to one or 
more constraints that must be met. However, the simplicity of 
the description is not near to the complexity of the solution 
search, that is classified as an NP-hard problem and ranked as 
one of the most interesting optimization problems in 
operational research. This problem has been analysed and 
studied extensively since its first appearance in the literature 
through the formulation applied to the fuel distribution by 
Ramser and Dantzig in 1959 [1]. From this work, several 
authors have focused their efforts on finding efficient 
techniques and models that allow to solve this problem in 
items (Miller et al, 1960 [2]. Christofides et al, [3][4];. Bodin's 
at., 1983[5]; Fisher, 1995[6]; Desrosiers et al., 1995; Powell et 
al. 1995; Fukasa, 2004; Gendreau, 2005a, b; Cordeau et al. 
2005, 2007; Laporte, 2009 [7]), and books (Thot and Vigo, 
2002 [8]; Golden et al, 2008 [9]). Looking at the state of the 

problem, it is remarkable that the the large increase in 
algorithmic and methodical development focused on the 
variants of the VRP, such as the capacitated routing problem 
(CVRP) and the VRP with time windows (VRPTW), which 
highlights the techniques with better behavior for each of 
these variants. In this paper, the importance of the guidelines 
proposed in the literature were an important pillar in defining 
the methodology that would allow us to work on the 
capacitated vehicle routing problem (CVRP). One of the main 
objectives of this paper is seeking a technique that allows us to 
measure the performance of  implicit enumeration 0-1 
methodology or Balas’s algorithm, which has not been applied 
to the  routing problems. Therefore, our work is to define a 
hybid methodology that is able to solve instances proposed in 
specialized literature created specifically for the CVRP. 

In order to solve this problem, we propose a hybrid 
methodology that combines the exploration of the solution 
space through a search based on the evolution of a specialized 
population of individuals, jointly with diversity techniques in 
the crossover, a neighborhood search as a mutation stage and a 
implicit enumeration  0-1 methodology as an improvement 
stage.  The idea is to observe the performance of an exact 
technique (Balas´s) applied to the capacitated routing problem.  
The exact technique gets in charge of a sub-problem of the 
CVRP, as has been done in other areas [10]. The methodology 
called modified Genetic Algorithm of Chu-Beasley with 
Implicit Enumeration (GACBIE) is tested with a set of 
instances proposed in the specialized literature and compared 
to the best known solutions (BKS) for CVRP problem. 

The paper is organized as follows: section II shows some 
related works and part of the specialized literature for the 
CVRP, section III shows a formal description of the 
capacitated vehicle routing problem followed by the 
methodology proposed in section IV, the pseudocode of the 
complete algorithm in Section V, ending with the results of 
tests on the proposed instances in Section VI. Finally, 
conclusions and recommendations from this work are 
illustrated. 

II. RELATED WORKS AND OTHER LITERATURE 

The CVRP plays a particular role on VRP algorithmic 
research, for both exact and on heuristics methods. Being the 
most basic variant, it is a natural testbed for trying new ideas. 
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Its relative simplicity allows cleaner descriptions and 
implementations, without the additional conceptual burden 
necessary to handle more complex variants. Successful ideas 
for the CVRP are often later extended to more complex 
variants. For example, the classical CVRP heuristic by Clarke 
and Wright [11] was adapted for the VRP for many other 
variants, as surveyed in Penna [12]. 

Laporte and Nobert [13] presented an extensive survey 
which was entirely devoted to exact methods for the VRP and 
gave a complete and detailed analysis of the state of the art up 
to the late 1980s. Up to the end of the last decade, the most 
effective exact approaches for the CVRP were mainly branch 
and bound algorithms using basic relaxations, as the 
assignment problem and the shortest spanning tree. Recently, 
more sophisticated bounds were proposed, as those based on 
Lagrangian relaxations or on the additive approach, which 
increased the size of the problems that can be solved to 
optimality by branch and bound. Moreover, following the 
success obtained by branch and cut methods for the TSP, 
encouraging results were obtained by using these algorithms 
for the CVRP. 

Since the 1980s, almost all articles proposing new 
heuristic and metaheuristic methods for the CVRP reported 
results on a subset of the instances by Christofides and Eilon 
[14] and Christofides et al. [15]. This classical benchmark is 
also exhausted, since most recent heuristics find 
systematically the best-known solutions on nearly all 
instances. 

Rochat and Taillard [16] proposed an efficient local search 
to solve the problem with probabilistic diversification and 
intensification step to solve big instances of the CVRP where 
they report optimal solutions for almost all the instances 
except on a single instance with 199 customers. 

In Fukasawa et al. [17], a branch-cut-and-price is proposed 
to solve all its instances with up to 100 customers, as well as 
instances with 121 and 135 customers. In particular, the 
column and cut generation algorithms of Baldacci et al. [18] 
significantly reduced the CPU time required to solve many 
instances, but could not solve the some larger instances. Later, 
some methodologies as the ones proposed on Contardo and 
Martinelli [19] and Røpke [20] were capable of solving bigger 
instances. 

In a recent work, the heuristics of Vidal et al. [21] are 
considered one of the best available for the CVRP basically 
due to their superior performance on Golden’s (big) instances. 
In the other hand, some surveys covering exact algorithms, but 
often mainly devoted to heuristic methods, were presented by 
Christofides et al. [3], Bodin et al. [5], Laporte [22], 
Fisher [6], Toth and Vigo [8] and Golden et al. [9]. 

III. PROBLEM FORMULATION 

The formulation of the problem of routing vehicles can be 
defined as follows. Let G = (V, A) a complete graph with 
      vertices, divided into two groups         
     . The unique vertex          represents the depot 
where the products must be distributed and a fleet of m 
identical vehicles with limited capacity Q departs and returns. 

The vertices          represent the customer indexed with i, 
where i = {1, … , n}, which require a service that is 
characterized by a non-negative demand associated   . The 
arcs       represent all possible connections from a node     

to another node    with a service cost equal to    . The main 

objective of the problem is to define a set of routes that allow 
every set of connections to dispatch the customer demand 
without exceeding the maximum capacity of the vehicles so 
that each sum of the costs associated to the established 
connections represent the minimum path. 

The general VRP   consist of the construction of a group of 
maximum m routes that satisfy the following requirements: (i) 
each route must start and end at the depot; (ii) all customer 
demands must be met; (iii) the capacity of the vehicle must 
not exceed the capacity limit Q; (iv) each client should be 
visited only once by a single vehicle or route. 

As a mathematical representation of the problem, a binary 
linear programming model is proposed for the capacitated 
vehicle routing problem that is presented as an optimization 
problem. Its objective function is associated to the 
minimization of the cost or the total distance traveled by all 
vehicles, while restrictions associated to the visit of each 
customer by a single vehicle per route and the vehicle's 
capacity constraints are met. The model presented below 
corresponds to a modified version of the one proposed by Toth 
and Vigo in [8]. In this case variables can assume the value of 
1 if the arc (i, j) is part of the solution and 0 otherwise. 

The way the model is proposed is widely used for both the 
problem of VRP with symmetrical distances and VRP with 
asymmetric distances. The formulation has the following 
notation: 

Sets  

  Set of customers indexed by i, j and 

an unique depot indexed by {0} 

  Set of vehicles indexed by k 

  Set of proper subset of all nodes   

  

Constants  

    The distance from node i to node j 

   The demand at node     * + 
  The loading capacity of the vehicle 

 

Decision Variables 

    

Binary decision variable, taking a 

value of 1 if the vehicle goes from 

node i to node j and 0 otherwise 

   
The remaining load when the vehicle 

leaves node i 

  

∑ ∑       

        

 (1) 

∑    

        

                                   (2) 

∑    

        

 ∑    

       

            (3) 

http://www.sciencedirect.com/science/article/pii/S0166218X01003511#BIB4
http://www.sciencedirect.com/science/article/pii/S0166218X01003511#BIB29
http://www.sciencedirect.com/science/article/pii/S0166218X01003511#BIB22
http://www.sciencedirect.com/science/article/pii/S0166218X01003511#BIB45
http://www.sciencedirect.com/science/article/pii/S0166218X01003511#BIB25


(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 3, 2016 

261 | P a g e  

www.ijacsa.thesai.org 

∑    

   

                                           

 

(4) 

∑    

   

 | |                                     (5) 

              (      )     

         * +         
 

(6) 

                                                   (7) 

                                  * + (8) 

    *   +           (9) 
 

The objective function (1) minimizes the total cost. This 
value varies depending on the distances involved in each 
particular problem in the connections of the customers and the 
depot. Equations (2) and (3) ensure that each customer is 
visited only once. Constraints (3) allows the continuous flow 
between all nodes of the problem, which is both functional 
connections between clients and the routes with the depot. 
While (4) and (5) allow the depot has output connections with 
customers of the problem and that each of these connections 
does not exceed the maximum number of vehicles k of the 
problem, respectively. Constraints (6) record a vehicle's 
remaining load level based on node sequence. If the vehicle  
visits node i right after node j, the first term in the right-hand-
side reduces the vehicle remaining load after leaving node i 
based on the demand at node i (if node i is the candidate site 
node, the demand at node i is zero). Otherwise, constraints (6) 
are relaxed. Constraints (7) ensure that the remaining load of 
vehicle is equal to its capacity Q when it leaves the depot. The 
remaining load must be nonnegative in constraints (8). And 
the condition (9) defines the connection variables     as 

binary, because it can only assume the value of  0 or 1. 

On the other hand, the problem of traveling salesman 
(TSP), which is addressed as a main sub-problem to test the 
methodology of implicit enumeration 0-1 or Balas’s 
algorithm, has a lower level of complexity compared to the 
classical VRP, because their characteristics are similar, but 
they differ in their main objective, which in the case of the 
TSP, is focused on the connection of every customer through a 
single minimum path. The formulation of the TSP is presented 
as follows: 

 

∑ ∑       

        

 (10) 

∑    

        

                                  (11) 

∑    

        

 ∑    

       

            (12) 

∑∑   

      

  | |    (13) 

    *   +           (14) 

Since the sub-tours constraints (13) represent a huge 
amount of constraints for the implicit enumeration 0-1 
method, the use of a subroutine that identifies the sub-tours 

within each route is proposed. If necessary, the heuristic 
creates and adds the specific restrictions to remove the sub-
tours, so it is not necessary to consider the numerous sub-tour 
constraints associated to each route. 

IV. PROPOSED METHODOLOGY 

In this section, a modified genetic algorithm of Chu-
Beasley [23], [24], [25] is proposed (algorithm 1), and 
combined with a set of heuristics and exact techniques which 
would enable the algorithm to find solutions to the capacitated 
vehicle routing problem (CVRP) using the variant that works 
with homogeneous fleet and an unlimited number of vehicles. 
For this, the genetic algorithm must start with an initial 
population, which is built by using different kinds of heuristics 
that can generate individuals with good objective function 
(following (1)) and high level of diversity. For the selection 
process, two tournaments are held between a variable number 
of randomly selected individuals in the population. This gives 
the winners a chance to continue to the crossover stage. The 
resulting offspring from the crossover process goes through a 
stage for mutation step through local searches. As a stage of 
improvement, the exact method of implicit enumeration 0-1 is 
used to repair the intra-route codification, which is achieved 
by solving the Travel Salesman Problem (TSP) that is part of a 
CVRP sub-problem. Finally, the individual is presented to the 
population through the diversity and quality criteria. The 
process is carried out iteratively until reaching the stop 
criterion that was defined by a maximum number of iterations. 

A. Initial population: heuristic process 

For the generation of the initial population of the 
algorithm, is necessary to use a constructive methodology. For 
this specific case, the constructive proposed is represented by 
three heuristics that solve the problem in different ways: the 
generation of a big tour, the multiple solutions of the CVRP 
starting from each customer and multiple solutions with a 
factor of randomness. Hence, multiple characteristics of good 
quality individuals may remain in the execution of the 
algorithm. 

The set of three heuristics are executed iteratively to 
generate individuals to fill the portion of the initial population 
that corresponds to each one of them or until the maximum 
number of individuals that can generate the heuristic is 
reached. Based on this, a set of heuristics capable to solve the 
CVRP was developed, for this case, the nearest neighbor 
algorithm (NN) for the low computational cost and a modified 
savings algorithm (MSA) as the one proposed by Subramanian 
[26] and in other proposals as Shang and Bouffanais[27][28]. 
The MSA was modified by adding randomness management, 
to provide a high level of diversity to the initial population. 
The third heuristic corresponds to the Lin-Kernighan-
Helsgaun algorithm (LKH) [29] for the generation of a 
minimum path configurations with good quality. 

For the stage of filling the population of the genetic 
algorithm, the proposed strategy its based on the generation of 
individuals depending on the specifics characteristics of each 
one of the heuristics used. In the case of LKH heuristic, the 
logic of a big tour is applied, where the TSP is solved with all 
the customers and without the depot using the Lin-Kernighan-
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Helsgaun algorithm. The next step is the division of the big 
tour with the vehicle's capacity, starting from each customer, 
so the resulting set of routes for each customer as a starting 
point represents an individual of the population. 

For the nearest neighbor algorithm, the complete CVRP is 
solved with all the nodes of the problem and starting every 
iteration from each customer, taking into account its demand 
and the maximum capacity of the vehicle. To build the routes 
of each individual, it is essential to make the respective 
connections only with the closest customer to the customer 
that is being analysed. In order to find feasible solutions, a 
variety of conditions must be met: (i) the next connection must 
be made with a node that has not been visited before; (ii) 
connections must respect the maximum capacity of the 
vehicle; (iii) The algorithm continues its search of routes, 
whenever there are customers who have not been visited. 
Otherwise, a new individual is generated with the routes 
found, a new client is selected to be the first customer visited 
and the route search starts again. 

On the other hand, the modified savings algorithm is 
focused on generating individuals through partial solutions to 
the CVRP. However, in order to use all advantages of this 
algorithm, a two-stage strategy is proposed. The first stage is 
defined as the generation of the first individual, which is 
obtained by solving the CVRP with the original distances of 
the problem and following the methodology proposed by 
Subramanian [26], where it is possible to find an individual of 
good quality for the population. The next step was developed 
to fill the portion of the population that is assigned to the 
heuristic or in some cases, fill the remaining portion of the 
initial population (small instances). To make this possible, the 
algorithm must work with modified distances, which are 
constantly varied to add randomness to individuals. For this, 
the distances     between all nodes of the problem is varied by 

a random factor   *                          +  that 

varies in each iteration. The modified distance    
        , 

and wherein each iteration is generated a set of modified 
distances to determine routes that represent partial solutions 
that will become part of the initial population. 

B. Selection 

For the selection of individuals from the population, two 
stages are responsible to define the two best individuals, the 
result of two tournaments which are carried out with the 
random selection of a variable number of parents who enter to 
be compared by their respective objective function [23]. The 
winner of the tournament will continue with its respective 
population’s identifier to be taken to the crossover stage. 

C. Crossover 

Based on the fact that the individuals resulting from the 
selection stage may be considered as a permutation of the 
problem’s customers, it is necessary to analyse different 
recombinant techniques, in order to adapt our crossover in the 
best way possible to take full advantage of the routes that have 
each parent. For that reason, recombinant techniques were 
reviewed, such as, the crossover with as a single point, two-
point crossover and multi-point [23] crossover. They were 
also analysed as crossover, where specialized routes or parts 

of routes are exchanged between individuals. One of the main 
objectives of this step is to allow propagation of the attributes 
of good-quality parents present in the crossover step.  To 
make this possible, it is necessary to follow a sequence of 
steps that are based on the random selection of one of the two 
parents (algorithm 2), and then continue with the logic 
presented below: 

1) Select a random route of the selected parent. 

2) Pass a complete route (if possible) or any part of the 

parent’s route that are not included in the offspring’s 

sequence. 

3) Select the other parent and repeat until all the 

offspring is complete. 

D. Mutation 

The offspring obtained from the crossover sequence is 
subjected to a variable number of mutations, corresponding to 
typical movements for local search studied in literature, 
focused on search solution space through intra-route [30] 
changes. For this step, two stages allow the algorithm 3 do a 
search in the neighborhoods of solution space and perform a 
number of permutations of the offspring’s configuration. In 
this way, it is possible to add diversity to the population and 
avoid being trapped in local optima prematurely. In this 
solution, instead of the typical movements reported by 
literature, a set of specialized movements is employed. Every 
move is performed only if the change leads to an improvement 
in the objective function. The mentioned movements are listed 
below: 

 Shift (1, 0): A customer is transferred from its original 
route to another location in a different route. 

 Shift (2, 0): Two consecutive clients are transferred 
from their current positions inside the route to other 
positions in different routes, keeping the intermediate 
arc that connect them. 

 Swap (1, 1): Two different customers of different 
routes exchange their position. 

 Swap (2, 1): The movement of an unbalanced 
exchange, obtaining a change of a pair of consecutive 
customers with one customer of a different route, 
where the intermediate arc in the pair of consecutive 
customers is preserved. 

 Swap (2, 2): This movement follows the logic applied 
in the Swap (1, 1) resulting in the exchange of 
customers between consecutive pairs and two different 
routes, where the arc that connects each pair of 
customers is preserved. 

 Cross: The exchange between two route segments. 

 Multi-Shift (1, 0): A perturbation process is 
performed, inserting (insertions such as, Shift (1, 0)) 
random customers from their original routes to 
different routes, consecutively. 

 Multi-Swap (1, 1): Two random customers are 
exchanged from their original routes a random number 
of times. 
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E. Improvement Stage: Methodological enumeration 0-1 or 

implicit algorithm Balas 

The main reason for using specialized 0-1 implicit 
enumeration algorithms, which usually combined the 
technique of nested Benders decomposition to solve problems 
with integer and continuous variables, is that, unlike what 
happens with linear programming (LP), there is no integer 
programming algorithm that allows to solve all types of 
problems, because the efficiency of a LP algorithm depends 
largely on the particular characteristics of the problem. 
Therefore, there is no LP algorithm that is better than the other 
to solve all problems, or computer programs available with 
such features. 

In this context, one of the first stages of a research project 
is to select a method to solve the problems resulting LP, and 
this selection should be made considering the different 
methods that exist in the literature such as: cutting-plane 
method, Branch & Bound, implicit enumeration, suboptimal 
methods, etc. At a later stage, a specialized algorithm should 
be developed that exploits the specific characteristics of the 
problem (algorithm 4). 

Notation: 

                                      

                                      

An underscore as  ,    element indicates that the variable 

to the alternative      and was explored and probed. 

Partial solution (J): It is an ordered set which values are 
defined as binary to a subset     . For example: 

  {         }  
Free variables (   ): They are variables that have not 

yet assigned a binary value to a partial solution and, therefore, 
is available to assume a value 0-1. 

Complement of  : The set of solutions obtained from   
assigning all variables that are still free binary values 0-1. 

Partial pruned solution: A partial solution and can be 
pruned if all complement of   can be discarded for not being 
interesting. 

Glover’s implicit enumeration scheme: In the algorithm 
of Balas, the best possible solution is stored. The list of 2

n
 

possible solutions is analyzed implicitly or explicitly, the last 
best feasible solution found, named incumbent, is the optimal 
solution. 

1) Pruning tests 
The pruning tests are designed to exclude the maximum 

possible complements (i.e., derived solutions) of a partial 
solution for neither improving the objective function nor the 
feasibility (not interesting solutions). These tests are mainly of 
heuristic type therefore they may be so weak that allow 
explicit enumeration of almost all 2

n
 feasible solutions or so 

powerful that exclude virtually all solutions not interesting. 

At iteration t,    is the partial solution, then we have: 

  
      ∑    

         

      (15) 

    ∑   
         

                           (16) 

where   
  defines the value of the slack variables and    the 

objective function. Be      the best feasible solution found, 
so-called incumbent. The idea of probing tests, in an attempt 
to exclude a set of possible solutions because they are not 
considered interesting, can be based on two basic 
considerations. For a partial solution defined by    assume that  

  
    for at least one     . 

Test 1 (Balas): 

It defines: 

         *   (      ) |            |   
    + (17) 

The elements in    are those free variables that being 
raised to 1 do not improve the infeasibility of the current 
partial solution. 

Be: 

  
  (     )      

If    
     it means that no free variables can be raised to 

1, then    is pruned by infeasibility and a backward movement 
must be performed. 

Test 2 (Balas): 

It is a test for exclusion of variables, in the vector of free 
variables, using an optimization criterion, where: 

        *       
  (     )        + (18) 

The elements    free variables are those that improve the 
infeasibility of the problem. Each variable carries an objective 
function greater than      incumbent and this is a worst 
quality objective function. Thus,           are excluded as 

candidates to assume a value of 1 because they are not 
interesting for optimality. 

Be: 

  
    

      
If    

    ,    is pruned because it has no better 
complement feasible and must performed a backward 
movement. 

Test 3 (Balas): 

It is a pruning test, where: 

   {      

 
 
 
 
 

   
     ∑    

 

    
 

    
 } (19) 

 

   
      (     ) 

If     , at least one restriction will remain infeasible, 

then    is pruned, because it has no feasible complement. It 
must be performed a backward movement. If     ,  the 
pruning test continue. 

Test 3’ (Glover-Zionts): 

This test assesses whether each variable        
  that is 

promoted to 1 will cause an increase in the objective function 
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beyond the relationship permissible for the restriction violated 
[31]. 

For each   
    calculate: 

 

             
 {(

  
 

   
 )       

   } (20) 

Where (
  
 

   
 )    is the relative cost of each variable   , 

regarding the degree of reducing the infeasibility of that 
variable in the violated constraint i. If    (       ) then    
is pruned. 

2) Forward movements 
When pruning tests fail, the number of variables in    

should be increased. That is, some free variables must take 
defined values and should be included in the set    assuming 
specific values either 0 or 1. 

Test of Geoffrion: 

This expansion test attempts to set values of the free 
variables into 0 or 1 in order to ensure feasibility, identifying 
essential variables for the problem [32]. However, this does 
not guarantee that the movement promote variables to the 
partial solution (may fail). The test is formulated as follows: 

For each i such that   
    and every       

 , if: 

[  
  ∑    (     )  |   |

    
 

]    (21) 

Then: 

               or                

Test of Glover-Zionts: 

This test allows a free variable set at 0 through 

a very simple test [33], [31] formulated as follows: 

For each i and      
  such that        

 , calculate, 

        {   |       
   * +      } (22) 

If                then      

Test of Balas: 

It selects a variable    ,         
  to take the value of 1 

and add   to   . This variable is selected by the relationship: 

           
 {  } (23) 

Where: 

    ∑    (    
     )  

    

       
  (24) 

If      , there is no infeasibility and so      is feasible 

and this new solution should lead to better value      , the 
incumbent. So      is pruned and the incumbent must be 
updated. 

3) Backward move 
If a partial solution has been pruned, then a backward 

move must be made in the scheme of Balas. This means that 

the value of one of the variables of    must be modified. In the 
normal scheme of Balas, this process is performed with the 
LIFO (last-in, first-out) rule. With LIFO, the last variable to 
enter the list is the first considered for further exploration. For 
example, let   . 

   *            + 
If    is pruned, the new partial solution is defined for the 

relation: 

   *           + 
Evidently, the order in which variables are analysed alters 

the process enumeration. This fact was noted by Tuan who 
showed it is not necessary to strictly follow the LIFO [34] rule 
implicitly embedded in the numbering scheme Glover, to 
ensure proper development of numbering scheme Glover. 
Suggests Tuan determining a subset     consists of variables 
that can be selected for the development of future scans, this 
that is, those variables that can be underlined. If    is the 
element    would be selected by the rule LIFO, then the 
elements of     are those elements that are located    from    
even to find the first highlighted in a section of element right 
to left in the elements of Jt. 

F. Methodology for sub-tours identification 

The methodology of implicit enumeration has a set of 
pruning and expansion movements, which allow it to realize a 
reduction of the search space of the problem. However, to to 
solve the TSP is necessary to use a model full of the problem 
with all sub-tour constraints that prevent isolated customer 
groups in the final solution. 

This group of constraints also represents a huge burden on 
the constraint matrix of the method. Therefore, the 
determination of a subroutine responsible for identifying 
isolated customer groups was necessary. 

As a result, it was found that the implicit enumeration 
algorithm ensured a global optimum if all sub-tour constraints 
are included for small and medium instances. Nevertheless, at 
a high computational cost. Hence, a modified and relaxed 
model without sub-tours constraints was implemented instead 
of using the extensive one.  To make that possible, a 
subroutine to identify sub-tours that would reduce the number 
of sub-tour restrictions that were strictly necessary was added. 
This achieves a good compromise between processing time 
and quality responses. 

V. PSEUDOCODE OF THE PROPOSED METHODOLOGY 

Algorithm 1. GACBIE 

procedure GACBIE(Instance) 

      LKH ← LinKernighanTSP(Customers) 

      NN ← NearestNeighborTSP(Customers) 

      MS ← ModifiedSavingsTSP(Customers) 

      Population ← GeneratePopulation(LKH, NN, MS) 

      P* ← worstCromosome(Population) 

      F* ← f(P*) 

      *P ← bestCromosome(Population) 

      *f ← f(*P) 

      P ←    

      f ←   

      for i ← 0 to MaxIter do 
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            P ← Crossover(Population, seed) 

            P ← Mutation(P, seed) 

           SubTour ←    

           while isFeasible(P)   TRUE do  

                  Model ← GenerateReducedModel(P, SubTour)  

                  P ← BalasAlgorithm(Model, P) 

                  SubTour ← findSubTour(P)   

            end while  

            if diversityCriteria(P) = TRUE then 

                  if ( f(P) < F*) 

                        AddToPopulation(Population, P, P*) 

                        P* ← worstCromosome(Population) 

                        F* ← f(P*) 

                  end if 

            else 

                  if ( f(P) < *f) 

                        AddToPopulation(Population, P, *P) 

                        *P ← P 

                        *f ← f(*P) 

                  end if                  

            end if 

            end for 
      bestP ← findBest(Population) 

      return bestP 

end procedure GACBIE 

 

Algorithm 2. Crossover 

procedure Crossover(Population, seed) 

      ParentSet_1 ← SelectRandomParents(Population, seed) 

      ParentSet_2 ← SelectRandomParents(Population, seed) 

      Paren_1 ← FindBestObjetiveFunction(ParentSet_1) 

      Paren_2 ← FindBestObjetiveFunction(ParentSet_2) 

      while AllCustomersIncluded(P)   TRUE do 

            R ← SelectRandomRoute(Parent_1, Parent_2) 

            P ← P   R - (P ∩ R)  

      end while 

      return P 

end procedure Crossover 

 

Algorithm 3. Mutation 

procedure Mutation(s, seed) 

       s' ← s 

      iter ← 0 

      s* ← s 

      f* ← f(s)   

      while iter to MaxMutIter do 

            s ← LocalSearch(s) 

            if f(s) < f(s') then 

                  s' ← s 

                  iter ← 0 

            end if 
            iter ← iter + 1 

            s ← Perturbation(s, seed) 

      end while 
      if f(s') < f* then 

            s* ← s' 

            f* ← f(s') 

      end if 
      return s* 

end procedure Mutation 

 

 

Algorithm 4. BalasAlgorithm 

procedure BalasAlgorithm (Model, Path) 

      M ← Model 

         ← InitialSolution(M, Path) 

     NodeStack ←    

     NodeStack ←    
     while NodeStack     do 

            if isFeasible(  , M) then 

                  if f(  )< f* then 

                       f* ← f(  ) 
                      J* ←    
                         ← backwardMove(  , M, NodeStack) 

                 else 

                       if PruningTest(  ) = TRUE then 

                                 ← backwardMove(  ,M,  NodeStack) 

                       else 

                                 ←  forwardMove(  , M, NodeStack)                     

                       end if 

                 end if 

      return J* 

end procedure BalasAlgorithm 

VI. COMPUTATIONAL EXPERIMENTS 

As a final step, computational tests are done to analyse the 
performance, behavior and contribution of the GACBIE 
methodology.  Results are compared to BKS (Best Known 
Solution). 

The implementation of the proposed methodology was 
done in C ++ language under the G++ compiler that is part of 
a set of free license compilers from the collection of GNU 
compilers (GCC). The operating system used was Ubuntu 
14.04 with kernel version 3.14, on an Intel Core i5 3.2 GHz 
and 8 GB RAM machine. Below there is a comparison 
between the best solutions obtained in the literature, for 
instances of CVRP, as also implementation of the various 
proposals for implicit enumeration 0-1 method. 

A. Parameter setting 

The correct behavior of the proposed algorithm is directly 
dependent on the parameters used, which is the reason to 
make a parameter assignment, so that in this way it is possible 
to determine a range in which the methodology can vary with 
a semi-random form. 

In the development process of the algorithm, some 
parameters come to dominate the behavior of the algorithm. 
This is because some stages as mutation and improvement 
processes are highly structured, while the selection step 
depends on the number of individuals into competition. In this 
regard, some authors like [36] warn that a large number of 
individuals can make the algorithm too elitist. So the values 
assigned are intended to allow the range to preserve the 
diversity of algorithm individuals avoiding taking very good 
quality repetitively. 

In addition, portions of the initial population assigned to 
the heuristics are presented in an equitable way for the LKH 
and NN, because they are algorithms that makes low use of 
computing resources.  

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 3, 2016 

266 | P a g e  

www.ijacsa.thesai.org 

While the modified savings algorithm, has a much smaller 
portion of the population since the algorithm can take much 
longer to generate individuals, given their division in stages, 
there is a very high probability that the best individual who 
can be generate by the algorithm, is present in the generation 
of the first stage. 

TABLE I.  PARAMETER SETTING 

Description Range/Value 

Population size 60 

LKH 40% 

NN 40% 

MSA 20% 

Selection 2-3 

MaxIter 100-1000 

Table I shows, respectively, the values for: the population 
size, the corresponding portions of the Lin-population 
Kernigan heuristics (LKH), nearest neighbor (NN) and the 
modified savings algorithm (MSA), the selection range (the 
number of individuals entering the tournament) and MaxIter 

range (iterations number range), which may be increased 
depending on the size of each instance. 

B. Computational results 

1) GACBIE vs GACB and GACBC 
Table II summarizes the results for three algorithms:  the 

GACBIE (with implicit enumeration method as step 
improvement), the genetic algorithm with CPLEX® as 
improvement step (GACBC) and the same genetic algorithm 
without implicit enumeration but heuristics (nearest neighbor 
and simple inter-routes exchange) as improvement stage 
(GACB). All the algorithms were tested with 20 instances 
proposed by Augerat et al. (1995) (available at [35]) and 
compared with BKS to measure performance and 
effectiveness in the search for the optimal response. In the first 
two columns of Table 2, the instance name used followed by 
the number of customers (n) followed by the results of tests 
with the GACBIE, GACBC and GACB, accompanied by the 
GAP (denoted by equation (25)) between the BKS and the 
best solution reached each methodology, the average 
responses and their execution time. Finally The last column 
represents the number of iterations for execution. 

TABLE II.  RESULTS OF THE TEST ON INSTANCES OF AUGERAT ET AL

Instance n BKS 

GACBIE GACBC GACB 

Iterations 
Best Avg. GAP(%) 

Time 

(min) 
Best Avg. GAP(%) 

Time 

(min) 
Best Avg. GAP(%) 

Time 

(min) 

A-n32-k5 32 784 784 784.00 0.0 6.12 784 784.00 0.0 1.12 784 784 0.0 0.11 300 

A-n33-k5 33 661 661 662.00 0.0 6.40 661 662.00 0.0 1.40 662 663.89 0.15 0.09 300 

A-n33-k6 33 742 742 742.00 0.0 5.58 742 742.00 0.0 2.58 742 742.78 0.0 0.08 300 

A-n34-k5 34 778 778 778.08 0.0 5.81 778 778.00 0.0 1.81 778 779.05 0.0 0.08 300 

A-n36-k5 36 799 799 810.15 0.0 6.41 799 816.06 0.0 2.41 817 822.47 2.25 0.13 300 

A-n37-k5 37 669 669 674.07 0.0 8.66 669 674.71 0.0 3.66 677 681.26 1.196 0.15 300 

A-n37-k6 37 949 949 956.26 0.0 9.71 949 952.00 0.0 6.71 960 963.02 1.159 0.16 600 

A-n38-k5 38 730 730 745.56 0.0 10.32 730 747.00 0.0 8.32 756 759.67 3.562 0.17 600 

A-n39-k5 39 822 822 833.60 0.0 18.84 822 834.00 0.0 9.84 842 843.11 2.43 0.24 600 

A-n39-k6 39 831 831 834.39 0.0 18.36 831 835.97 0.0 10.36 850 852.01 2.28 0.22 600 

A-n44-k6 44 937 946 955.09 1.07 20.26 946 953.34 1.07 12.26 952 954.86 1.60 0.34 600 

P-n16-k8 16 450 450 450.00 0.0 1.13 450 450.00 0.0 0.12 450 452.42 0.0 0.02 200 

P-n19-k2 19 212 212 212.00 0.0 1.30 212 212.00 0.0 0.10 212 212 0.0 0.04 200 

P-n20-k2 20 216 216 216.00 0.0 2.25 216 216.00 0.0 0.13 216 220.01 0.0 0.04 200 

P-n21-k2 21 211 211 211.00 0.0 2.05 211 211.00 0.0 0.20 211 215.62 0.0 0.05 200 

P-n22-k2 22 216 216 218.35 0.0 2.58 216 218.35 0.0 0.60 216 225.36 0.0 0.05 200 

P-n22-k8 22 590 590 593.84 0.0 2.23 590 593.14 0.0 0.23 590 595.12 0.0 0.05 200 

P-n23-k8 23 529 529 529 0.0 2.80 529 529 0.0 0.40 529 529.87 0.0 0.06 200 

P-n40-k5 40 458 462 462 0.8 18.18 462 462 0.8 10.11 462 504.9 0.04 0.30 600 

P-n45-k5 45 510 523 525.65 2.5 26.8 523 520.06 2.5 9.06 523 613.5 0.15 0.37 600 

  Avg. GAP 0.2185 
 

Avg. GAP 0.2185 
 

Avg. GAP 0.74085   

 

     
            

   
      

(25) 

2) NIC vs NIRSD 
The strategy to reduce sub-tours constraints for routes of 

VRP that are repaired by the methodology of implicit 
enumeration, proves to be an interesting idea to reduce 
computational time for large problems.  As observed in Table 
III, the computational time reduction that occurs with the 
increase of size of the problems is due to the implicit 
enumeration methodology is responsible for testing each of 
the possible connections possible that cannot be pruned for 
their selection strategies variables. 

 

To revise the advantage of using a strategy of identifying 
sub-tours, tests were conducted where it was possible to make 
a comparison of computation times between the method of 
implicit enumeration with the full model including restrictions 
on sub-tours (NIC), the same method of implicit enumeration 
constrained dynamic sub-tours (NIRSD) and the speed up gap 
(denoted by equation (26)), wherein the steps of perturbation 
and crossover alter the continuity of each of the routes of the 
customer involved. 

     
        

          
  (26) 
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TABLE III.  NIC VS NIRSD RESULTS 

Test n NIC(s) NIRSD(s) GAP(times) 

1 5 2.02 5.5 -0.36 

2 6 5.76 8.12 -0.7 

3 7 8.04 10.28 0.78 

4 8 18.22 14.97 1.21 

5 9 37.19 28.43 1.31 

VII. CONCLUSIONS 

At the end of the proposed project, a series of results found 
through the tests conducted in the modified genetic algorithm 
method relied on a technique of implicit enumeration stage 1-
0 improvement implemented for the routing problem of 
trained vehicles with homogeneous fleet with diverse 
neighborhoods and a set of perturbation techniques. Results 
could be obtained the following observations: 

 Replacing the typical crossover combinations by a 
crossover based on route exchange proved to be a very 
efficient strategy to keep good characteristics of the 
routes obtained in the population. 

 By using the implicit enumeration technique the use of 
commercial solvers is avoid, which is an advantage in 
terms of cost for the implementation. 

 Compared to those techniques that have to solve 
matrixes (Simplex, for instance) the Balas’s technique 
is less complex since it has to realize simple algebraic 
operations. 

 Computational experiments show that the algorithm 
proposed is able to obtain high quality solutions within 
reasonable computing times. 

 Adding all restrictions on sub-tours is prohibitive for 
the slave problem as shown in the table III. It is more 
convenient to add only sub-tours constraints  
necessary. 

 The results suggest that the proposed algorithm can be 
applied to other variants of problem routing vehicle, 
considering the inclusion of multiple depots, and use 
fleets heterogeneous vehicles, and the possible addition 
of techniques they can further narrow is the solution 
space. 

 The use of genetic algorithm with CPLEX® compared 
with the methodology of implicit enumeration, shows 
equivalent results in reasonable computer times, 
considering that the solver CPLEX® has strong 
pruning techniques, allowing the solver to reduce the 
dimension of the solution space in a quickly and 
efficiently way. Compared with the proposed 
methodology, it shows a very good performance since 
the technique achieves global optimal in traveling 
salesman problems assigned. Furthermore, the use of 
the genetic algorithm with simple heuristics 
movements as improvement stage demonstrate the 
need for a strong methodology to repair the 
connections that can be generated at the stage of 
mutation and crossover. 
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