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Abstract—Trajectory optimization is a crucial process during 

the planning phase of a spacecraft landing mission. Once a 

trajectory is determined, guidance algorithms are created to 

guide the vehicle along the given trajectory. Because fuel mass is 

a major driver of the total vehicle mass, and thus mission cost, 

the objective of most guidance algorithms is to minimize the 

required fuel consumption. Most of the existing algorithms are 

termed as “near-optimal” regarding fuel expenditure. The 

question arises as to how close to optimal are these guidance 

algorithms. To answer this question, numerical trajectory 

optimization techniques are often required. With the emergence 

of improved processing power and the application of new 

methods, more direct approaches may be employed to achieve 

high accuracy without the associated difficulties in computation 

or pre-existing knowledge of the solution. An example of such an 

approach is DIDO optimization. This technique is applied in the 

current research to find these minimum fuel optimal trajectories. 

Keywords—lunar landing; trajectory optimization; optimization 

techniques; DIDO optimization 

I. INTRODUCTION 

Return to the moon becomes a demanding issue. A lot of 
scientists and engineers confirmed considerable interests in the 
past couple of decades [1, 2, 3, 7, 8, 9].  Two-dimensional 
solution for lunar descent and landing from orbital speed 
conditions is presented in [4]. The same guidance scheme is 
improved to 3-dimensional point of view in [6]. More precise 
3- Dimensional advanced solution of lunar descent and landing 
is discussed in [5]. Trajectory optimization capabilities during 
the Apollo era were severely limited by computing power. An 
analytic solution for the one-dimensional vertical terminal 
descent of a lunar soft-landing, based on an application of 
Pontryagin‟s minimum principle, was found by Meditch [10] in 
1964. Meditch showed the existence of an optimum thrust 
program that achieves soft landing under powered descent. 
Extensive numerical research on the one-dimensional problem 
was performed by Teng and Kumar [11], using various cost 
functionals. Their method is based on a time transformation, 
applied to the calculus of variations. The solution was found 
numerically, using a quasi-linearization method. In 1971, Shi 
and Eckstein [12] derived an exact analytic solution for the 
problem which Teng and Kumar addressed. With the increase 
in computing power, trajectory optimization techniques, of the 
type to be discussed in Section 3, have greatly increased the 
feasibility of generating  optimal trajectories with higher 
complexity and applicability. Recently, Vasile and 

Floberghagen [13] applied a Spectral Elements in Time (SET) 
approach to the lunar soft-landing problem. Within the work, a 
lunar landing descent from three parking orbit scenarios down 
to an altitude of 2 [m] above the surface was optimized. The 
cost function used was based on the square of the control input, 
which has been noted to be different from the minimum fuel 
solution [14]. The optimization method used to explore the 
Moon landing problem in the current research is the Legendre 
Pseudospectral Method. The Legendre Pseudospectral Method 
has been applied to a variety of trajectory optimization 
problems, including problems of ascent guidance [15], satellite 
formation flying [16], and impulsive orbit transfers [17]. DIDO 
[18] is used to implement the Legendre Pseudospectral Method 
in the current research which is discussed in this paper. 

The rest of present paper is arranged as follow: The 
optimization theory has been presented in Section II. The 
methods of optimization have been explained in Section III. 
DIDO optimization is introduced in Section IV. The Section V 
Illustrates the vehicle specification for Moon landing. The 
Section VI and VII demonstrate the trajectory results and 
optimized responses with discussion. The conclusion has been 
given in Section VIII. 

II. OPTIMIZATION THEORY 

To maximize or minimize a specified criterion is the task of 
an optimization problem. This criterion is a function of the 
parameter which is referred to as a cost function. On this cost 
function, optimization takes place. Let        be a vector of 
parameters and let  ( )      define a cost function. It is 
desired to find the value x

*
 which minimizes J out of all 

admissible x. The global minimum is defined as: 

  (  )   ( )  for all admissible x                 (1) 
 

A local minimum is defined as: 

 (  )   ( )  for all x in the neighborhood of x            (2) 
 

In a globally convex system, any local optimum found is 
also the global optimum. On the other hand if the function is 
non-convex, finding a local optimum does not necessarily 
imply that it is also the global optimum solution. Fig. 1 
illustrates the concept of convexity vs. non-convexity and local 
vs. global optimums for an arbitrary one-dimensional function 
f(x). 
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Fig. 1. One-dimensional convexity 

Only one optimal solution which is the global optimum is 
available in the example shown for convexity. Two optimal, 
local and global optimum solutions exist in the non-convex 
example. Most trajectory optimization problems are non-
convex, and therefore, only local optimums are readily found. 

A parameter optimization problem that has a linear cost 
function, linear constraints, and has only real values is known 
as a linear programming problem. The term is only used for 
problems which have real values; otherwise, it falls into the 
category of integer or mixed-integer programming. If the 
problem has only real values but includes a nonlinear cost 
function or nonlinear constraints, it is referred to as a nonlinear 
programming (NLP) problem. 

From basic calculus, recall that a local minimum of a 
function, which is the function of one variable (i.e., f(x)), can 
be found by locating a point where the first derivative of the 
function on the variable equals zero and the second derivative 
is positive. This notion is expanded to higher dimensions with 
gradients and Hessians. A gradient is a vector consisting of the 
first-order partial derivatives of a function on each variable. 
The Hessian is a matrix consisting of the second-order partial 
derivatives of the function. For example, the following 
conditions are satisfied at a local minimum for the cost 
function J(x): 

  

  
               (3) 

   

             (4) 

One could attempt to determine the minimum of the cost 
function analytically, but it may be difficult or impossible. 
Therefore, iterative techniques are used to locate the minimum 
by searching over the region of admissible x. Newton‟s 
method, the most common technique, uses the gradient and 
Hessian information at the current location to determine a 
search direction. There are numerous other iterative techniques 
used, most being based on the principle of Newton‟s method. 

A. Constrained Optimization 

Constrained optimization problem can be either equality 
constraints or inequality constraints. While a function, or 
functions, of the parameters, equal to a specific value, then it is 
added to the optimization problem as an equality constraints. 
The parameters can vary, but relationships between the 
parameters remain fixed. An equality constraint has the form: 

 ( )            (5) 
where f:         

Formulating the augmented cost function, the most 
convenient method of solving equality constrained 

optimization problem, which is a combination of the cost 
function and the constraints with multipliers. 

    ( )      ( )        (6) 
To find the minimum, the gradient of J’ is taken on x and λ 

and set to zero. The first-order necessary conditions for 
optimality become: 

   

  
 

  

  
  

  

  
           (7) 

   

  
  ( )           (8) 

On the other hand, an inequality constraint has the form: 

 ( )            (9) 
where g:         

The constraints are adjoined to the cost function in a similar 
manner as the equality constraints, but with the multipliers µ. 
The augmented cost function is now defined as follows: 

    ( )      ( )     ( )        (10) 
Inequality constraints can be categorized into either „active‟ 

or „inactive‟ classes. The vector g(x) can be written as seen in 
(11), with gi(x) for (i = 1...p) representing individual 
components of the p-dimensional vector. An active constraint 
is when a component of the constraint vector equals zero at the 
optimum solution, (i.e., gi(x ) = 0). The optimization problem 
is bounded by these constraints. Inactive constraints are 
constraints where gi(x ) < 0 and these constraints do not affect 
the optimal solution. The equation μ

T
g = 0, which is known as 

complementary slackness, ensures that the individual 
inequality constraints are either active or do not affect the 
solution. 

  

[
 
 
 
 
 
  ( )

 

 
 

  ( )]
 
 
 
 
 

         (11) 

Karush-Kuhn-Tucker (KKT) conditions are named for the 
first-order necessary optimality conditions. These are given by 
(8) and (9), and the following: 

   

  
           (12) 

            (13) 

              (14) 

B. Concept of optimal control 

A particular category of optimization problems which 
comprise dynamical constraints that vary with time is 
recognized as functional optimization problems, where the 
term ”functional” is used to denote a function of a function. 
Functional optimization problems that have an input, or 
control, to be determined are identified as an optimal control 
problems. Optimal control problems have an extensive 
diversity of applications, together with the field of trajectory 
optimization. 

Let        be the state of a continuous system where  
      is time. Furthermore, let   ( )      be the control of 
input. Lastly, let the dynamical constraints that govern the 
change of x(t) with respect to time be given as: 
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 ̇   ( ( )  ( )  )         (15) 
To search for the function u(t) that minimize the cost 

functional, J is a general optimal control problem, with the 
condition that the constraints imposed on the problem. This 
problem should include the dynamical constraints. It is 
normally desired to either minimize a functional of the state 
and control over the entire time span or the final value of a 
criterion. The cost functional is therefore composed of two 
parts: a terminal cost                (commonly referred 
to as the Mayer cost) and an integrated cost L:           
       (known as the Lagrange cost). The Bolza form of the 
cost functional, as seen in (16), is a combination of the terminal 
and integrated costs. 

   ( (  )   )  ∫  ( ( )  ( ))  
  
  

    (16) 

The initial and final boundary conditions that the system 
must satisfy are given by (17) and (18), respectively. 

  ( (  )   )           (17) 

   (  )   )           (18) 

Where      
             and      

           . 

Augmented cost functional     is formulated to combine all 
of this information. A vector of Lagrange multipliers is called 
the costate. This costate adjoined by the dynamical and 
terminal constraints to the cost functional. Here,  ( )     is 

Lagrange multipliers, and        is terminal constraint 
multipliers. The equation given below is similar in Reference 
[19]. 

    ( (  )   )     ( (  )   )         

 ∫ [ ( ( )  ( )  )   ( ) ( ( ( )  ( )  )   ̇)]  
  
  

      

          (19) 
Hamiltonian and end point functional are defined in (20) 

and (21), respectively to simplify the augmented cost 
functional.    is simplified to (22). The functional dependencies 
have been omitted for clarity. 

             (20) 

             (21) 

      ∫ [     ̇]
  
  

      (22) 

It is determined a stationary point of the augmented cost 
functional using calculus of variations. Using the previous 

concept, the variation of   is taken and appropriate functions 
are set to zero. The resulting necessary conditions for a local 
minimum for the free final time problem are derived by Hull 
[20] as: 

 ̇  
  

  
  (     )    (23) 

 ̇   
  

  
    (24) 

  
  

  
     (25) 

  ( (  )   )       (26) 

   (  )   )           (27) 

  (  )   (
  

  
)    

    (28) 

( )    
   (

  

  
)    

    (29) 

III. OPTIMIZATION METHODS 

Optimality conditions described in the previous are to be 
solved to find a stationary point. An analytical solution is 
almost impossible for most non-linear optimization problems. 
Therefore, computer-aided numerical methods are the alternate 
way in finding the optimal solution. There are numerous 
numerical methods that have been formulated to solve optimal 
control problems, and it is not in the scope of this thesis to 
explore them all. The method used in this research is the 
Legendre Pseudospectral Method, which is a direct 
transcription method that uses a spectral technique. The 
meanings of „direct‟, „transcription‟, and „spectral‟ will be 
discussed below. 

A. Direct Methods 

Computer aided numerical methods can be divided into two 
distinct categories: direct and indirect. An indirect method uses 
information from the costate differential, the maximum 
principle, and the boundary conditions shown in (26 - 29), to 
find the optimal solution. To use this method, an estimate of 
the costate is required a priori, which may pose a problem 
since the costate does not usually have physical significance. 

The direct method is commonly used to optimize directly 
the cost function such as (16). The method searches for the 
feasible region for a minimum of the cost function starting 
from an initial guess of the state and control. It is reported as a 
local minimum solution because it is impossible to search the 
entire feasible region. If it can be proven that the problem is 
convex, then local optimality implies global optimality. Being 
familiar with the dynamics of the problem, it can provide an 
initial guess of the state and control rather than costate. In some 
cases, a simple propagation of the state from the desired initial 
conditions with no control input is sufficient. However, if the 
problem is highly non-convex, a good initial guess may be 
crucial in finding the correct local optimal solution. 

B. Direct Transcription Methods 

The direct method implies some different ways such as 
direct shooting methods, direct transcription, etc. A direct 
transcription method is used in this research and described as 
follows. 

Transformation of continuous time domain system into 
discrete time domain system is an important issue in real-time 
optimal control problem to be implemented on a computer. The 
locations in time at which the problem is discretized are 
referred to as „nodes‟, and can be uniformly or non-uniformly 
distributed in the time domain. At each node, the discrete 
system represents the continuous system, and links must be 
made between the nodes to represent the dynamics of the 
original continuous system. A transcription method is used to 
transform the continuous system into the discrete problem. 
Most optimal control problems include either a nonlinear cost 
function or nonlinear constraints (which may include nonlinear 
dynamical constraints) that are only functions of real variables. 
As a result, the transcribed problem is an NLP. 

Two consecutive tasks are performed by this transcription 
method. One is to transform the problem from a continuous 
system to a discrete system, and another is to link the nodes 
together in a way that represents the dynamics of the original 
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problem. Representing the dynamics of a continuous system is 
done by different ways such as the Euler method, the Runge-
Kutta method, and spectral methods. The method used in this 
research is a spectral method, which fits globally orthogonal 
polynomials to the discrete data over the entire time span. The 
Legendre Pseudospectral Method uses a special class of 
orthogonal polynomials, known as Legendre Polynomials. The 
interior nodes are placed at the roots of the Legendre 
polynomial derivative, known as the Legendre-Gauss-Lobatto 
(LGL) points, which provides higher accuracy in the results. 

IV. DIDO OPTIMIZATION 

In the past, it was an extremely difficult task to analyze 
fully a complex system involving numerous dependent 
variables. It was an indirect and approximate method to allow 
solutions to be found. But now computers have improved 
exponentially in processing speed and ability, allowing 
complex computations to be completed quickly and efficiently 
without imposing a significant drain on resources. One 
example of this improvement is in the field of optimization 
analysis. With the emergence of such improved processing 
power and the application of new methods, more direct 
approaches may be employed to achieve high accuracy without 
the associated difficulties in computation or pre-existing 
knowledge of the solution. An example of such an approach is 
DIDO optimization. The method is named for Queen Dido of 
Carthage (circa 850BC) who was the first person known to 
have solved a dynamic optimization problem. 

DIDO relies on the Legendre Pseudospectral Method, 
which has been developed and employed primarily in fluid 
flow modeling. This method employs Legendre Polynomials to 
create an approximation of variables over multiple nodes as 
opposed to the use of a fixed order polynomial. This allows, 
despite discontinuities in the governing equations, a solution to 
be attained with high accuracy which also satisfies the imposed 
optimization criterion, where most direct methods do not [21]. 
The result is a method of solving a complex dynamic 
optimization problem without a priori knowledge of the 
solution or incredibly complex analytic computations. This is 
exactly the type of method required to optimize a problem as 
complex as an examination of the trade space for lunar landing. 

The DIDO optimization code requires the development of 
five different files to specify the problem accurately. Once the 
problem is defined, DIDO optimizes a solution using the 
restrictions found in the problem definition and on the cost 
function as previously discussed. These files include the Cost 
Function File, Dynamics-Function File, Events File, Path File 
and Problem File [22]. 

V. VEHICLE SPECIFICATION 

The vehicle is assumed to be axially symmetric with a 
thrust to mass ratio that varies between 4.0 [N/kg] and 10.0 
[N/kg]. It assumed that the vehicle has one throttle-able main 
engine, which is fixed to the vehicle and does not gimbal. For a 
hypothetical initial mass of 1800 [kg] (which is representative 
of an unmanned vehicle), a value of 8000 [N] was chosen for 
the engine‟s maximum thrust limit, Fmax. The engine‟s exhaust 
velocity, Vex, was chosen as 3500 [m/s], which corresponds to 
a specific impulse of 358 s. 

In comparison, the Surveyor vehicles had final landed 
masses varying from 1431[kg] to 1486 [kg] [23, 24]. Each 
lander had a propulsion system which consisted of one main 
solid propellant retro-fire engine and three throttlable liquid 
propellant vernier engines. The vernier engines, which were 
used to remove the final 100 [m/s] of velocity and also for 
attitude control during the retro-fire, were capable of providing 
133 [N] to 463 [N] of thrust each. They had a specific impulse 
which varied from 273 [s] at minimum thrust to 287 [s] at 
maximum thrust [25]. 

VI. TRAJECTORY RESULTS 

This section explores the results obtained during trajectory 
optimization of the Moon landing problem. The equations of 
motion derived in References [4, 5, 6,] were coded in DIDO. In 
this section, all work is limited to planar motion, but can easily 
be extended to three-dimensions. The convexity of this 
problem was not determined; therefore, all results are reported 
as local optimal solutions. 

An initial parking orbit 100 [km] was chosen for the 
analysis throughout this simulation. The objective of the 
current research is to minimize fuel usage while meeting 
specified operational constraints. The cost function was chosen 
to be the final mass of the vehicle because this is the most 
direct measurement of fuel usage, as seen in (30). 

        (  )          (30) 

 
The main criterion is to land with almost zero velocity at 

the surface while using bounded thrust. 

A. Boundary Conditions 

The vehicle parameters, as described in Section 5, are listed 
along with the initial and end conditions in Table 1 and 2. 

TABLE I.  INITIAL CONDITIONS AND VEHICLE PARAMETERS 

Parameters Value Unit 

Maximum available thrust   8000  [N] 

Specific Impulse 358  [s] 

Initial altitude  100  [km] 

Initial down range distance 0  [km] 

Initial velocity vector pitch angle 90  [deg] 

TABLE II.  END CONDITIONS OF POWERED DESCENT CONDITIONS 

Parameters Value Unit 

Final altitude  1  [km] 

Final down range distance  425  [km] 

Final velocity vector pitch angle 0.1  [deg] 

Lunar gravitation acceleration  1.623  [m/s2] 

 

VII. RESPONSES 

Initially, it is assumed that the expected landing point is 
about 425 [km] far. Other initial and end conditions are 
dictated in Table 1 and 2. The physical path of the trajectory is 
shown in Fig. 2. The path solved for by DIDO and depicted in 
the Fig. is the most efficient in terms of fuel consumption, and 
thus is the optimal solution regarding this analysis. 
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Fig. 2. Optimized lunar landing trajectory 

 
Fig. 3. Optimized lunar landing trajectory: Vertical range 

 
Fig. 4. Optimized lunar landing trajectory: Vertical range as a function of 

velocity 

To instill a better understanding of the trajectory, the 
vertical and horizontal positions relative to time are displayed 
in Fig.s 3 and 5. Further, trajectory profiles regarding vertical 
and horizontal positions as a function of velocity vector pitch 
angle are shown in Fig.s 4 and 6. Fig. 3 illustrates the 
parametric shape of the burn that takes place, indicating 

features of perfect fuel optimization. The burn is timed 
precisely, in this case, to minimize the amount of fuel 
consumed. 

 
Fig. 5. Optimized lunar landing trajectory: Horizontal span 

 
Fig. 6. Optimized lunar landing trajectory: Horizontal span as a function 

velocity vector pitch angle 

 
Fig. 7. Optimized lunar landing trajectory: Vehicle mass 

Fig. 5 demonstrates the nearly constant progression in the 
horizontal plane. Another parameter of interest is that which 
drives the optimization, mass, and is  shown in Fig. 7. It is 
observed that the 400 [kg] fuel was used to minimize the 
amount of addition fuel being carried. The intent is that this 
approximately simulates the eventual fuel budget of the lunar 
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landing vehicle though safety reserves and other factors will 
affect the final value. When compared to Fig. 3 it can be seen 
that the main usage of fuel occurs during the vertical braking 
burns, as would be expected due to a large amount of thrust 
required during these periods. Movement in the horizontal 
plane causes this line to continuously decrease, but at a much 
slower rate, due to the relatively small amount of thrust in this 
direction. 

 
Fig. 8. Optimized lunar landing trajectory: Vehicle speed 

 
Fig. 9. Optimized lunar landing trajectory: Vehicle speed as a function of 

velocity vector pitch angle 

 
Fig. 10. Optimized lunar landing trajectory: Velocity vector pitch angle 

 
Fig. 11. Hamiltonian evaluation for optimality verification 

Details of trajectory, including vehicle speed against time 
and velocity vector pitch angle are shown in Fig. 8 and 9, 
respectively. It is important to note the difference in y-axis 
scales on the vehicle speed plots. This trajectory is largely 
horizontal, having a maximum velocity of 1609 [m/s] which 
decreases rapidly once the final braking burn commences. 
Again, the velocity vector pitch angle is plotted against time in 
Fig. 10. 

VIII. CONCLUSION 

According to the Minimum Principle, given a candidate 
optimal solution, there exists a collection of dual functions and 
variables such that certain statements are true. Depending upon 
the problem these statements are examined as a means to test 
the optimality of the DIDO run. From the Minimum Principle, 
it must satisfy the Hamiltonian Minimization Condition [26, 
27], Therefore, the current investigation with the help of DIDO 
includes the results of Hamiltonian. This is plotted in Fig. 11. 
The Hamiltonian should be constant over the entire time span. 
Looking at the Fig. 11, the estimate of the Hamiltonian is fairly 
small, but oscillation is present. A large fluctuation is seen 
where the throttle switch occurs, because of the initialization in 
the control during descent start. Thus, the computer simulation 
has indeed found the exact optimal solution at a very high 
precision. Using this direct approach like DIDO optimization 
helped to achieve high accuracy without the associated 
difficulties in computation or pre-existing knowledge of the 
solution. 
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