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Abstract—the use of Linux-based clusters is a strategy for the 

development of multiprocessor systems. These types of systems 

face the problem of efficiently executing the planning and 

allocation of tasks, for the efficient use of its resources. This 

paper addresses this as a multi-objective problem, carrying out 

an analysis of the objectives that are opposed during the planning 

of the tasks, which are waiting in the queue, before assigning 

tasks to processors. For this, we propose a method that avoids 

strategies such as those that use genetic operators, exhaustive 

searches of contiguous free processors on the target system, and 

the use of the strict allocation policy: First Come First Serve 

(FIFO). Instead, we use estimation and simulation of the joint 

probability distribution as a mechanism of evolution, for 

obtaining assignments of a set of tasks, which are selected from 

the waiting queue through the planning policy Random-Order-

of-Service (ROS). A set of conducted experiments that compare 

the results of the FIFO allocation policy, with the results of the 

proposed method show better results in the criteria of: utilization, 

throughput, mean turnaround time, waiting time and the total 

execution time, when system loads are significantly increased. 

Keywords—Multicomputer system; Evolutionary Multi-

objective Optimization;  First Input First Output; Random-Order-

of-Service; Estimation of Distribution Algorithms; Univariate 

Distribution Algorithm 

I. INTRODUCTION 

Multi computer systems with architectures and mesh 
topologies using 2D and 3D interfaces, designed for 
commercial and research purposes, have been two of the most 
common networks in research and industrial environments 
because of their simplicity, scalability, structural regularity and 
ease of implementation [1, 2, 3]. Examples of such systems are 
the IBM BlueGene / L [4] and the Intel Paragon [5]. Some of 
the commercial Multi Computer systems are Multiple 
Instruction Multiple Data (MIMD) systems with architectures 
that enable partitions of processor submeshes, and have the 
advantage of supporting multiple parallel (multi-tasks ) jobs [1, 
2, 3, 6]. Parallel jobs are usually represented by a Directed 
Acyclic Graph (DAG), the nodes express the particular tasks 

partitioned from an application and the edges represent the 
inter-task communication [7]. The tasks can be dependent or 
independent; independent tasks, can be executed 
simultaneously to minimize processing time, and dependent 
tasks are cumbersome and must be processed in a pre-defined 
manner, to ensure that all dependencies are satisfied [6]. In an 
SIMD mesh, that processes parallel jobs, tasks are planned in 
the queue by a planning policy (usually being First Come First 
Serve (FCFS)) [2, 3, 8, 9], they are then assigned to the mesh 
processor, where they remain until they finish their 
implementation [7]. Planning of resources in the mesh, through 
hardware partitioning involves two components: a scheduler 
and dispatcher to the mesh [2, 3, 8, 9]. The function of the 
scheduler is to choose the next task, or the following tasks in 
the queue that will be assigned to a sub-mesh, of free 
processors for execution. The function of the submesh allocator 
is to locate free submeshes, which are to be assigned to the 
selected tasks by the scheduler. The allocator uses a contiguous 
and/or of noncontiguous assignment method. When a 
contiguous allocation method is used, the tasks partitioned 
from an application can only be assigned to adjacent 
processors, unlike a noncontiguous allocation method, where 
tasks can be assigned in a scattered form across the mesh 
wherever free processors are located [2,3,8,9]. To maximize 
the use of resources in the target system, current computer 
systems opt to use non-contiguous allocation methods, 
applying wormhole routing and free submesh recognition 
techniques. 

Some examples of this are: the frames processor that uses 
windows traveling the length and width of the grid [10]; 
iterative processes that divide submeshes in equal-sized 
partitions [11], the use of the free-lists approach, [12, 13] 
among others [22-26]. During the processing of tasks extracted 
from the queue, we look to optimize a set of objectives that are 
generally found to be opposite. Upon finalizing the total 
processing of tasks running on the target system, we seek to 
optimize a set of proper criteria, from the multiprocessor 
systems. In the following paragraphs, we list the objectives and 
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exemplify the form in which they are opposed, as well as the 
list of criteria that is optimized. 

The objectives sought to be optimized, for processing tasks 
using the scheduler and proposed in [14] are: 

1) Reduce the waiting time of tasks in the queue, 

assigning more tasks to the mesh of processors once the 

allocator reports, the number of processors in the free 

submeshes. 

2) Reduce task starvation, that is, avoid discrimination in 

the allocation of tasks that require a lot of processors (great 

tasks), caused by the continued allocation of tasks requiring a 

lesser amount of processors (small tasks). 

3) Minimize external fragmentation, that is, minimize the 

percentage of free processors, after the allocation algorithm 

places one or more tasks in the processor mesh. 

4) Minimize the communication overhead or network 

contention [15], through contiguity between processors (as 

close as possible to assign the set of free processors), in order 

to decrease the distance in the communication path, and avoid 

interference between the processing elements (searches for the 

best way to accommodate tasks in the free processors). This 

point is then identified as the quadratic dynamic allocation of 

tasks. 
Upon complete processing of all tasks in the system, we 

then seek to optimize the system utilization criteria, 
throughput, response rate, mean turnaround time and overall 
waiting time [15, 16]. 

A simple example of the contrast of the previous four 
objectives occurs, when we look to minimize external 
fragmentation by using a noncontiguous allocation method. 
The largest number of jobs in the free processors is allocated 
regardless of their location in the mesh, resulting in the 
maximization of system utilization; however, the opposite 
effect is produced upon maximizing the communication 
overhead, between tasks if not assigned contiguously along the 
length and width of the grid. Thus, in seeking to maximize or 
minimize some of the objectives, in order to optimize your 
results, usually the result of another objective is degraded, 
producing contrasting results between themselves, enabling 
oneself to view the problem of task planning and allocation as 
a multi-objective problem. 

A multi-objective problem, involves optimizing a number 
of targets simultaneously, and its solution with or without the 
presence of constraints, results in a set of interchangeable 
optimal solutions called the search space, popularly known as 
Pareto-optimal solutions. For an adequate solution in this, 
evolutionary optimization algorithms are utilized (EOA), 
which use a population focuses in their search procedure [17]. 
The EOA’s possess several characteristics that are desirable for 
problems, involving multiple conflicting objectives and 
intractably large and highly complex search spaces [18]. 

In this paper, a hybrid method is proposed to address the 
problem of planning and allocation of multiple parallel jobs in 
a multiprocessor system, as a multi-objective problem. In this 
manner, it makes use of the scheduler and allocator to achieve 
the best assignments in the processor grid, which optimize the 

resources of the target system, during processing and 
completion of tasks. This method uses a static task scheduling, 
defined as a scheduling at compile time [19]. 

The proposed method is evaluated with two task selection 
policies from the queue: FIFO and ROS [20]. This method 
connects the planner and the dispatcher to conduct the process 
of task selection, from the queue randomly and makes the best 
assignment in the processor grid, by evaluating a set of 
conflicting objectives. The work that the scheduler and 
dispatcher does is divided into five steps as follows: first, the 
dispatcher reports the number of free processors that the grid 
has in time t, in the second step, by means of the Random-
Order policy-of-service the scheduler selects the same number 
of tasks, with subtasks from the queue that the allocator 
previously reported, regardless of the location of the processors 
across the grid. This set of selected tasks, is considered a 
feasible solution of the search space, to which three disjointed 
objectives are evaluated: the waiting time from the rest of the 
tasks that remain in the queue, the starvation of the tasks of the 
queue (if occurs), the external fragmentation, and the 
communication overhead. In the third step, the process of 
dynamic selection of tasks by the planner continues until to the 
stop criterion is fulfilled. Lastly, for the set of feasible 
solutions, the joint probability distribution can be appreciated 
using the algorithm UMDA (Univariate Marginal Distribution 
Algorithm), to obtain the best allocation to the processor grid. 
After finalizing the total execution of tasks, the following 
criteria is evaluated and compared: system utilization, 
throughput, response rate, mean waiting time and turnaround 
time with different workloads in the target system; the 
effectiveness of the proposed method is compared with the 
most widely used task planning method: FCFS. 

This paper is organized as follows: In section 2, we discuss 
a classification of methods that throughout the years have been 
proposed for the planning and allocation of tasks using 
heuristics techniques and geometric models. In section 3, a 
stopping criterion is performed using a definition of the 
objectives, and the form in which they are opposed during the 
execution of tasks. Section 4, describes the functionality 
proposed in this research method. Section 5, describes the 
experiments conducted by the method. In section 6, the future 
work to develop after this research is described, and section 7, 
conclusions, describes the findings of this research. 

II. RELATED WORKS 

In [19], two classes or categories for scheduling are 
specified, a) list scheduling and b) clustering; in this paper, 
related jobs are classified depending on 1) planner use and 
heuristic techniques, and 2) allocator use in conjunction with 
geometric patterns, and free submesh searches throughout the 
grid. 

A. Task scheduling methods that make use of the planner and 

heuristic techniques 

Heuristic methods base their functionality in genetic 
algorithms (GA), which are global search techniques that 
explore different regions of the search space simultaneously, 
by keeping track of sets of potential solutions called a 
population [21].  Over the years, different methods have been 
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proposed based on this search technique. In this section we can 
observe how a set of these investigations show the similarities 
in the operators used. 

In [16], the multiprocessor scheduling problem is based on 
the deterministic model, and the precedence relationship 
among the tasks is represented by an acyclic directed graph. 
This method uses a representation based on the schedule of the 
tasks, in each individual processor. Several lists of 
computational tasks represent the planner, respecting the order 
of precedence of the tasks. 

Each list can be further viewed as a specific permutation of 
the tasks in the list. Crossover operators, reproduction and 
mutation are applied to the created lists, in order to optimize 
the finishing time of the schedule. Similar research is presented 
in [22], where the scheduling problem is formulated in a 
genetic search framework based on the observation, that if the 
tasks of a parallel program are arranged properly in a list, an 
optimal schedule may be obtained by scheduling the tasks, one 
by one according to their order in the list. These lists are 
codified in chromosomes, which represent feasible solutions in 
the search space; genetic search operators are applied to these 
chromosomes, such as crossover and mutation, as well as an 
additional operator called “an investment operator”. 
Chromosomes are manipulated by genetic operators, in order to 
determine an optimal scheduling list, leading to an optimal 
schedule. To improve convergence time of the proposed 
algorithm, the connected synchronous island model is used. In 
[23], the proposed genetic algorithm minimizes the schedule 
length of a task graph, to be executed on a multiprocessor 
system. It uses processes that evolve candidate solutions by the 
use of a set of operators, such as fitness-proportionate 
reproduction, crossover and mutation; doing so through a 
traditional method of genetic algorithms. This algorithm does 
not consider the communication time between tasks. In [24], an 
initial chromosome, consisting of genes is generated, where 
each gene will use the priority of node in a directed acyclic task 
graph (DAG); trade, crossover and mutation operators are 
applied to the chromosome in order maximize the makespan of 
the k-th chromosome, using an evaluation function. 
Communication costs are not considered in this paper. In [25], 
a Modified List Scheduling Heuristic (MLSH) and hybrid 
approach composed of genetic algorithms, and MLSH for task 
scheduling in multiprocessor systems is used; this method uses 
three new different types of chromosomes: task list, list 
processor and a combination of both types. In order to 
maximize the finishing time of schedule, the genetic operators: 
crossover and mutation, used in the chromosomes are the 
selection. The main features of this type of method are the use 
of a set of genetic operators (parameters), which seek to 
optimize a single objective function (maximize execution times 
of the tasks). Nevertheless, if a researcher does not have 
experience in using this type of an approach for the resolution 
of a concrete optimization problem, then the choice of suitable 
values for the parameters can be converted into an optimization 
problem [26]. Similarly, in these methods as the complexity of 
the task graphs and the proposed solution are increased, the 
number of operators, that must manipulate the algorithm to try 
to find the best solutions in the search space also increases; 

best case scenario being the possibility that the algorithm will 
land in the least amount of local minimums. 

B. Methods with geometric models for scheduling 

Alternately to heuristic methods, other methods seek to 
solve the problem of task planning and allocation by looking 
for free processors, that are contiguous to the length and width 
of the grid; ensuring that the tasks assigned during 
implementation remain as close together as possible. 

In [27], a submesh reservation strategy for incoming tasks 
is used, this method combines a submesh reservation technique 
with a priority technique as follows: an incoming task requests 
a number of processors, a reservation will occur if these cannot 
be assigned to of a set of processors constituted in a sub-mesh, 
as long as it does not exceed the threshold established within 
the parameter FREE_FRAC. The priority of waiting tasks is 
handled through a “no_supercede” parameter, which allows 
you to suspend allocations if the threshold in the parameter 
MAX_PRI is exceeded, and it also prioritizes tasks that have 
aged in the waiting queue. In [28], the approach contains a list 
of allocated submeshes, sorted in a non-increasing order by the 
second coordinate in their upper right corner. This list serves 
two purposes: first, it determines the nodes that cannot be used 
as a basis for new free submesh applications and second, it 
identifies nodes that are located on the right edge of the 
assigned submeshes, in order find the nodes that could be used 
as a basis in finding free submeshes. When a parallel job is 
selected to be assigned, a search is performed to locate a 
suitable sub-mesh, if this does not occur; the assignment is 
made with longest free submesh, whose length of sides does 
not exceed the requested submesh. Through a search process, 
the free submesh that best fits the application is located. Other 
current techniques, through an initial strategy, look to make the 
allocation of tasks to the mesh, but if resulted in failure, a 
second allocation strategy is activated to replace the first in 
order achieve the assignment. For example in [29], the First Fit 
technique (FF) proposed in [30], that searches for free 
submeshes best suiting the application (to find the maximum 
adjacency between processors while reducing communication 
latency between tasks), is used in conjunction with the Best Fit 
(BF) technique proposed in [31]. This technique searches for 
the exact number of processors that the task requires in the free 
submeshes; thus, in [29], if a task requests a 4x4 sub-mesh and 
the request cannot be granted, the request size is reduced by a 
multiple of 2, then a 2x2 grid will be requested and so on until 
the request is the minimum number of processors, 1 X 1 in this 
case. When the first technique fails, the second technique BF is 
enabled, and through this, a search is performed within the free 
submeshes which best fit, that is, with the exact number of 
processors that the task requires [31]. 

III. BASIC CONCEPTS 

This section describes the concepts and the evolutionary 
algorithm used in this research. 

A. Definitions 

Definition 1. An n-dimensional mesh has k0 x k1 x... x kn-2 x 
kn-1 nodes, where ki is the number of nodes along the length of 
the i-th dimension and ki ≥ 2. Each node identified by n 

coordinates: 0(a), 1(a),..., n-2(a), n-1(a)  where 0 ≤ i(a) < ki 
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for 0 ≤ i< n. Nodes a and b are neighbors if and only if i(a) = 

i (b) for all dimensions except for dimension j, where j(b) = 

j(a) ± 1. Each node in a mesh refers to a processor and the two 
neighbors are connected by a direct communication link. 

Definition 2: A 2D mesh, which is referenced as M (W, L) 
consists of W X L processors, where W is the width of the mesh 
and L is the height of the mesh. Each processor is denoted by a 
pair of coordinates (x, y), where: 0 ≤ x <W and 0≤ y <L. A 
processor is connected by a bidirectional communication link 
to each of its neighbors. For each 2D mesh 2D a=Pij. 

Definition 3: In a 2D mesh, M (W, L), a sub-mesh: S (w, l) 
is a two-dimensional mesh belonging to M (W, L) with width w 
and height l, where 0 < w ≤ W and 0 < l ≤  L. S (w, l) are 
represented by the coordinates (x, y, x’, y’), where (x, y) is the 
lower left corner of the submesh and (x’, y’) is the upper right 
corner. The node in the lower left corner is called the base node 
of the sub-mesh, and the upper right corner is the end node. In 
this case w=x’-x+1 and l=y’-y+1. The size of S (w, l) is: w x l 
processors. 

Definition 4: In a 2D mesh M (W, L), an available sub-
mesh S (w, l) is a sub-mesh that meets the conditions: w ≥ α y 
w ≥ β assuming that the required allocation of S (α, β) refers to 
selecting a set of available processors for task arrival. 

Definition 5: The correspondence of a task or subtask to a 

free processor in the mesh is defined as the following: if  is a 

set of system tasks, and  = J1, J2,…, Jn where n is the number 

of tasks in time t and k is a set of sub-tasks of task k where: 

k = jk1, jk2,…, jkf(k) and f(k) is the total number of sub-tasks of  

task j. For each task j and each sub-task f(k)  j has a processor 

in mi  P in which it is to execute each task j and each sub-task 

jkf(k), consuming an uninterrupted time tN. 

Definition 6: Given two matrices size n x n: a flow matrix F 
whose (i, j) -th elements represent flows between tasks i and j 
and an arrangement of distances D, whose (i, j) -th elements 
represent the distance between sites i and j. An assignment is 
represented by vector p, which is a permutation of the numbers 
1, 2,…, n and  p(j)  is where the task j is assigned. Thus, the 
quadratic task assignments can be written as: 


 

n

i

n

i
jip jpidpf

1 1

)()(min 
                                      (1) 

Definition 7: An optimization problem is one whose 
solution involves finding a set of candidate alternative 
solutions that best meet the objectives. Formally, the problem 
consists of the solution space S and function objective f. 
Solving the optimization problem (S, f) consists of determining 

an optimal solution, namely, a feasible solution x* S such that 

f(x*) ≤ f(x), for any x  S. Alternative solutions can be 
expressed by assigning values to some finite set of variables X 
= {Xi: i = 1,2, ..., n}. If Ui is denoted the domain or universe 
(set of possible values) of each of these n variables. The 
problem consists of selecting the value xi that is assigned to 
each variable Xi from domain Ui that when subjected to certain 
restrictions, optimizes an objective function F. The universe of 
solutions is identified with the set U = {x = (xi: i=1, 2, … , n): 

xi  Ui}. The problem constraints reduce the universe of 

solutions to a subset of S  U called feasible space. 

A performance evaluation of a parallel system, upon 
finalizing the processing of all running tasks, is evaluated on 
the following criteria [1]: 

Definition 8: The utilization is defined as the fraction of 
time in which the system was used, and is given by: 

)*(/ GGGG mCWU                                                  (2) 
Where: WG is the amount of work that the system performs, 

CG is the completion time of execution of all tasks in the 
system and mG is the total number of processors in the system. 

Definition 9: Throughput. The number of completed tasks 
per unit of time in the system is given by: 

GCn /                                                                   (3) 
Where: n is the total number of jobs in the system. 

Finally, complete content and organizational editing before 
formatting. Please take note of the following items when 
proofreading spelling and grammar: 

Definition 10: Mean turnaround time. The average time it 
takes all tasks from entering the local queue until their 
execution is finalized. Calculated as: 




n

j

j

tt
n 1

1

                                                                  (4) 
Where: 

jjj

t rct   
c

j
 is the completion time of the task and r

j
 is the delivery 

time of task j. 

Definition 11: Waiting time, defined as the average waiting 
time before starting the task execution.  Calculated as: 




n

j

j

wt
n 1

1

                                                      (5) 
Where: 

jj

s

j

w rtt 
 

j

st  is the start time of execution of task j. 

Definition 12: Response ratio, defined as the coefficient 
response average of all tasks. Defined as: 





n

j

jjj

w ppt
n 1

/)(
1

                                            (6) 

Where: p
j
 is the runtime and 

j

wt  is the waiting time of task 
j. 

B. UMDA for dynamic quadratic assignment to model the 

problem of task scheduling 

The EDA (Distribution Evolutionary Algorithm) uses 
estimation and simulation, from the joint probability 
distribution as a mechanism of evolution, instead of, directly 
manipulating the individuals that represent solutions to the  
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problem [26]. An EDA begins by randomly generating a 
population of individuals, which represent solutions to the 
problem, iteratively performs three types of operations on the 
population: a subset of the best individuals of the population is 
generated; a learning process from a probability distribution 
model from selected individuals is performed, and new 
individuals that simulate the obtained distribution model are 
generated. The algorithm stops when a certain number of 
generations are reached, or when the performance of the 
population fails to significantly improve; an UMDA is used to 
estimate the joint distribution in each generation from selected 
individuals. Thus, the joint probability distribution is factorized 
as a product of independent univariate distributions, i.e.: 

N

DxX
xp

N

j

S

liij

il

e  


1 1)|(
)(


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e

0
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The pseudocode for an UMDA algorithm is as follows: 

 

IV. STATEMENT OF THE PROPOSED METHOD 

This section is structured as follows: Section 4.1 shows 
three instantiations of the manner in which the objectives are 
opposed during the planning and allocation of tasks. In section 
4.2 the functionality of the proposed method is explained in 
detail. 

A. Contraposition of the objectives during job processing 

The way that the objectives are opposed during job 
processing is shown in [32], it is explained through three 
examples in the following sections. In Figure 1, an 8x8 2D 
processor mesh is shown; the 35 occupied processors are 
shown in closed circles and the 29 free processors, with 
unfilled circles. In the queue, a set of 6 dependent tasks 
partitioned from an application wait for execution: task T0 with 
4 subtasks, task T1 with 3 subtasks, task T2 with 4 subtasks, 
task T3 with 3 subtasks, task T4 with two subtasks and task T5 
with 25 subtasks, supposing that the planning method can 
choose more than one task to be assigned in the processor mesh 
with noncontiguous allocation method. 

 
Fig. 1. System structure for task execution on a Multicomputer 2D mesh 

system 

Example 1: Consider that in time t, the allocator reports the 
29 free processors, with this data the scheduler determines that 
the set of 5 tasks: T0, T1, T2, T3 and T4 are candidates to occupy 
21 processors in the mesh, or assign task T5 requiring 26 
processors and task T4 requesting 3 processors. 

By assigning the set of the 5 tasks, the same number of 
positions in the queue are released allowing the entry of new 
tasks, and the number of accesses to the queue is decreased in 
order perform more task searches. The previous procedure 
allows for more than one task to enter the mesh, and decreases 
task waiting time at the head of the queue; but in opposition to 
each other, the assigning of these 5 tasks generates an external 
fragmentation of 8 processors and produces starvation of task 
T5 in this assignment. The result that is had is a contrast 
between objectives 1 and 2. 

Objective 1 seeks to minimize the number of assignments 
to the mesh of processors in order minimize task waiting time, 
and objective 2 seeks to maximize the use of the processors in 
the mesh and minimize starvation of the large tasks. Now, if 
tasks T4 and T5 are assigned, neither starvation nor external 
fragmentation occurs, but a smaller number of tasks can be 
accepted in the queue, and so the number of assignments to the 
mesh increases therefore, also increasing the time tasks must 
wait to enter the processor mesh. 

Example 2: In order to illustrate the contrast between 
objectives 3 and 4, consider Figure 1. Objective 3 seeks to 
maximize the use of the processors in the mesh, avoiding 
external fragmentation, and Objective 4 seeks to minimize 
overhead communication through minimizing the adjacency of 
processors that are assigned to a task. The assumed set of the 5 
selected tasks are: T0, T1, T2, T3 and T4, and are allocated in 
contiguous processors as follows: T0 task is assigned in 
submesh <4,0> <5,2> regardless of the processor in position 
<4,2>, task T1 is assigned to the sub-mesh <2,0> <3,1>, task T2 
is assigned the submesh in <0,5> <2,6> regardless of the 
processor in position <2,5>, task T3 is assigned in submesh 
<0,2> <1,3>, and task T4 is assigned in submesh <6,3> <7,4> 
regardless of the processor in position <7,4>. This allocation 
maximizes the adjacency between processors, and produces an 
external fragmentation of 8 processors. Now if the system 

Generate M individuals (the initial population) 

randomly 

Repeat for l = 1,2, .. until the stop criterion: 

 
Select N ≤ M individuals of  

in accordance to the selection method 

 

Estimate the joint probability 

distribution. 

Dl  Sample M individuals (the 

new population) from  
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assigns task T5, together with task T1 or T3, all of the free 
processors will be used, and in opposition to the allocation of 
the 5 tasks, external fragmentation will be minimized. Thus, 
the contrast of goals 3 and 5 is produced. 

Example 3: Exemplification of the contrast between the 
objectives of the minimization of task, residence time in the 
queue and the maximization of communication overhead 
(objectives 1 and 4), is shown when a large number of tasks are 
sought to be assigned in the processor mesh, and processors to 
which tasks are to be assigned are not close enough together or 
contiguous. This is done to avoid producing very high 
communication costs. As an example, consider allocating the 5 
task set: T0, T1, T2, T3 and T4. The number of allocations made 
to the mesh is minimized, but if the allocator does not consider 
assignment of disjoint processors by a previous calculation 
method of communication overhead, tasks will be assigned 
disjoint in the mesh, causing adjacency to be minimal and 
communication costs between tasks to be very high. 

B. Functionality of the proposed method 

Proposal: In time t a 4X4 processor mesh is had, whose 
status array is shown in Figure 2, where the number 1 
represents the occupied processors that were assigned to a task 
at time t-1, and the number 0 represents the free processors that 
have not been assigned to a task or sub-task. 

 
Fig. 2. 4X4 processor mesh represented by a matrix 

Symmetrical distances between processors are given in 
Table I (due to space constraints, only half of the table is 
shown), these distances represent the “jumps” that a message 
must execute in order to achieve communication between two 
processors. 

TABLE I.  SYMMETRICAL DISTANCES BETWEEN PROCESSORS IN A 4X4 

MESH FROM FIGURE 5 

 1 2 3 4 5 6 7 8 9 

1 0 1 2 3 1 2 3 4 2 

2 1 0 1 2 2 1 2 3 3 

3 2 1 0 1 3 2 1 2 4 

4 3 2 1 0 4 3 2 1 5 

5 1 2 3 4 0 1 2 3 1 

6 2 1 2 3 1 0 1 2 2 

7 3 2 1 2 2 1 0 2 3 

8 4 3 2 1 3 2 1 0 4 

9 2 3 4 5 1 2 3 4 0 

Table 2 shows the waiting queue containing 4 pending 
execution tasks; said tasks are waiting to be executed in the 
mesh. 

TABLE II.  WAITING QUEUE IN TIME T WITH 4 TASKS EACH CONTAINING 

4 SUBTASKS 

T1 T11 T12 T13  

T2 T21 T22   

T3 T31 T32 T33  

T4 T41    

Previous knowledge is had of the extent of the degree of 
communication (communication costs), between the main task 
and sub-tasks that is composed of all tasks that are found in the 
waiting queue, and the relationship between the same sub-
tasks. Table 3, shows the matrix of communication costs for 
tasks T1 and T2; Table 4, shows the matrix of communication 
costs for T3 and T4 tasks; communication costs are established 
between the main task and subtasks and between subtasks. For 
example, the communication cost between task T1 and subtask 
T11 is 3. 

TABLE III.  MATRIX COMMUNICATION COSTS FOR TASKS T1, T2 

 T1 T11 T12 T13 T2 T21 T22 

T1 0 3 0 3 0 0 0 

T11 2 0 1 4 0 0 0 

T12 0 1 0 2 0 0 0 

T13 3 5 3 0 0 0 0 

T2 0 0 0 0 1 3 0 

T21 0 0 0 0 1 3 0 

T22 0 0 0 0 2 0 4 

TABLE IV.  MATRIX COMMUNICATION COSTS FOR T3, T4 TASKS 

 T3 T31 T32 T33 T4 T41 

T3 0 1 3 2 0 0 

T31 1 0 1 2 0 0 

T32 4 5 0 1 0 0 

T33 2 5 2 0 0 0 

T4 0 0 0 0 0 3 

T41 0 0 0 0 2 0 

To illustrate the relationship between task and subtasks, 
consider that you have task T1 with three sub-tasks T11, T12 and 
T13, (as shown in Figure 3). The lines show the transfer of 
messages, thus task T1 can send and receive messages from 
their sub-tasks; in turn sub-tasks can do the same with the main 
task and each other. 

 

Fig. 3. Message Path between tasks; task with 3 sub-tasks 

The functionality of the proposed method is divided into 
five stages: a) communication between the scheduler and 
dispatcher, b) dynamic selection of tasks in queue, c) aptitude 
evaluation of created solutions, d) generation of new 
populations, and e) allocation of the best individual to the 
processor mesh. The following sections explain each stage, 
together with the proposed example. 

Communication between the planner and the allocator: 
Once the allocator counts the number of processors available in 
the mesh, it reports this amount to the planner; using the 
example from Figure 2, the allocator will inform the planner of 
7 available processors. In our example we have shown a case 
in which all free processors appear totally adjacent, but if they 
are found to be disjoint, the process that the method follows is 
the same. 

T1 T11 T12 T13 
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Dynamic selection of tasks waiting in the queue and the 
dynamic quadratic assignment of tasks to the processor mesh: 
With the number of available processors on the grid, the 
scheduler performs the following three steps to the pre-
selection of a set of tasks: 1) dynamically selects a task queue 
using the ROS. In this method, all the tasks have the same 
probability of selection [20]. 2) Verifies that number of 
processors required by the task is less than or equal to the 
number of processors detected by the allocator; if the condition 
is met, the number of available processors is reduced by the 
amount of processors required by the task; if the condition is 
not met, another task will be randomly selected from the 
queue. 3) Every time that a task is accepted, three checks are 
made to the prompt completion of tasks: 1) if whether or not 
the  number of available processors is 0,  2) if the stop 
condition is true, and 3) if all tasks in the queue have been 
selected at least once. The Random-Order-of-Service policy, 
allows the tasks that effectively fit the number of available 
processors in the net to be selected. 

In the example, the first task prompt occurs: a random 
number is generated, based on the number of jobs in the queue 
which in this case is 4; if the task can be chosen in the sub-
mesh or free submeshes, then it will be considered for 
calculating its allocation and cost of message transfer; if not, it 
will choose another task. For this exemplification case, the 2 
randomly selected tasks are: T1 and T2; their placement in the 
mesh with respective subtasks is shown in Table 5. 

TABLE V.  LOCATION OF TASKS T1, T2 AND T3 THAT REPRESENT THE 

FIRST ASSIGNMENT IN THE MESH 

1 1 1 1 

1 1 1 1 

T11 T12 T21 1 

T1 T13 T2 T22 

The second assignment, randomly generates a new 
allocation in the free sub-mesh corresponding to the 
assignment of tasks T3 and T4 (as shown in Table 6). 

TABLE VI.  TASK ALLOCATION MATRIX ACCORDING TO THE STATE 

MATRIX OF THE MESH AT TIME T REPRESENTING A SECOND SOLUTION OF 

THE QUADRATIC DYNAMIC ALLOCATION PROBLEM 

1 1 1 1 

1 1 1 1 

T31 T33 0 1 

T3 T32 T4 T41 

Generation of the third allocation shown in Table 7 
produces the assignment of tasks T2 y T4 to the mesh. 

TABLE VII.  MATRIX ASSIGNMENTS ACCORDING TO THE STATE MATRIX 

OF THE MESH AT TIME T, REPRESENTING A THIRD SOLUTION OF THE 

QUADRATIC DYNAMIC ALLOCATION PROBLEM 

1 1 1 1 

1 1 1 1 

0 0 T21 1 

T4 T41 T2 T22 

In the fourth generation, the dynamic task selection 
produces tasks T2 and T3 to the mesh. Produced allocation 
shown in Table 8. 

TABLE VIII.  TASK ASSIGNMENT MATRIX ACCORDING TO THE STATE 

MATRIX OF THE MESH, AT TIME T REPRESENTING A QUARTER SOLUTION OF 

THE DYNAMIC QUADRATIC ASSIGNMENT PROBLEM 

1 1 1 1 

1 1 1 1 

T31 T33 T21 1 

T3 T32 T2 T22 

Aptitude evaluation of created solutions. Evaluation of 
created solutions suitability: At this stage the pre-selected set 
of tasks in the previous step is evaluated with three different 
objectives: a) the percentage of external fragmentation (ef) 
produced after allocation in order to minimize the number of 
idle processors in the mesh. For the example case, the first 
assignment produces an ef=0%, the second allocation 0.14%, 
the third allocation 0.28% and the fourth allocation 0%. b) The 
number of tasks that the phenotype assigns to the mesh of 
processors: In the example, the four allocations manage to 
position two tasks in the processor mesh. c) Communication 
Overhead or network contention: The allocation cost is 
calculated for each task, based on communication costs 
between tasks and the distances between processors, given the 
message path from one processor to the other and vice versa. 

When considering message passing between processors, 
one must calculate the cost of transference, from the source to 
the destination and vice versa. In the exemplified case, the 
transfer rate from task T1 to subtask T11 is different than that 
from sub-task T11 to task T1, although both measurements can 
be equal, the values of the distances between processors remain 
unchanged. 

The values to be calculated are given in the operations 
shown in Table 9 for task T1, in Table 10 for the task T2, in 
Table 11 for the task T3, and in Table 12 for the task T4. The 
total of the respective individuals are summed in order to 
obtain the total solution cost, with a total of 35 for task T1 (as 
shown in Table 9) and 17 for task T2 (shown in Table 10). The 
representation of the above calculations is given by equation 
(1). 

TABLE IX.  CALCULATION OF MESSAGE TRANSFER COST FOR TASK T1. 

T1→T11 T11→T1 (3+2)*1 5 

T1→ T12 T12→ T1 (0+0)*2 0 

T1→T13 T13→T1 (3+3)*1 6 

T11→T12 T12→T11 (1+1)*1 2 

T11→T13 T13→T11 (4+5)*2 18 

T12→T13 T13→T12 (2+3)*1 5 

  Total 35 

TABLE X.  CALCULATION OF MESSAGE TRANSFER COST FOR TASK T2. 

T2→T21 T21→T2 (1+2)*1 3 

T2→ T22 T22→ T2 (3+4)*1 7 

T21→T21 T22→T21 (4+3)*1 7 

  Total 17 
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TABLE XI.  CALCULATION OF MESSAGE TRANSFER COST FOR TASK T3. 

T3→T31 T31→T3 (1+1)*1 1 

T3→ T32 T32→ T3 (3+4)*1 7 

T3→T33 T33→T3 (2+2)*2 8 

T31→T32 T32→T31 (1+5)*2 12 

T31→T33 T33→T31 (2+5)*1 7 

T32→T33 T33→T32 (1+2)*1 3 

  Total 39 

TABLE XII.  CALCULATION OF MESSAGE TRANSFER COST FOR TASK T4. 

T4→T41 T41→T4 (3+2)*1 5 

  Total 5 

The totals obtained from each calculation, add up to make 
an individual assessment by the value obtained in the objective 
functions. This step allows the individuals with the best values 
in each objective function, to be obtained and selected from the 
population. 

Generation of new populations: Once a population has been 
obtained, the best individuals iteratively build new populations 
of individuals from which to extract those that best fit, with 
these, the probabilistic model is estimated. 

Estimating the probabilistic model: in this part we will use 
the simplest probabilistic model, in which all variables 
describing the problem are independent. We calculate the 
frequency of task occurrence from a part of the population, 
containing the best individuals in each empty cell of the mesh 
at time t, through truncation selection along with the 
percentage of the truncation. In this case, the frequency of 
occurrence can be shown in Table 13, due to space constraints, 
only the frequencies for processor 0 are shown. 

TABLE XIII.  FREQUENCY OF OCCURRENCE OF EACH TASK IN EACH CELL. 

 P(0,0) P(0,1) P(0,2) P(0,3) P(1,0) 

T1 1 0 0 0 0 

T11 0 0 0 0 1 

T12 0 0 0 0 0 

T13 0 1 0 0 0 

T2 0 0 3 0 0 

T21 0 0 0 0 0 

T22 0 0 0 3 0 

T3 2 0 0 0 0 

T31 0 0 0 0 2 

T32 0 2 0 0 0 

T33 0 0 0 0 0 

T4 1 0 1 0 0 

T41 0 1 0 1 0 

 4 4 4 4 3 

Allocation of the best individual to the processor mesh 
(Determination of the best individual). This step shows the task 
or tasks that produce the best allocation representing the most 
feasible solution, and which is assigned to the mesh. 

V. EXPERIMENTS 

In this section we explain the experiments conducted with 
the proposed method, against those of the strict FCFS 
allocation policy; most of the proposed works use this policy 
(FCFS) during task planning. At the end of the workload 

execution in the waiting queue, the five criteria components 
that are sought to be optimized, in multiprocessor systems are 
evaluated: utilization, throughput, mean turnaround time, 
waiting time and total execution time. The parameters that the 
algorithm uses for its normal operation, that do not need to be 
optimized are: 

1) The size of the 2D mesh: This sets the size of the mesh 

and therefore the number of processors on the target system. 

2) Number of tasks:  the total number of tasks that the 

system processes also called the overall system load. 

3) Number of subtasks for each task. 

4) Time of execution for each task: the parameter that 

defines the number of seconds, the task will remain within the 

mesh, constituted by the sum of seconds of each of the 

subtasks that make up the task. 

5) Capacity of the queue: the number of tasks that the 

waiting queue accepts to be processed, and the number of 

subtasks that each task may contain. 

6) Number of tasks that the system will seek to enter into 

the waiting queue: defined as the number of tasks that the 

algorithm searches for, in the waiting queue using the ROS 

planning method. The number of tasks is determined by the 

conditions of the stopping algorithm, whether or not, the tasks 

waiting in the queue have been selected at least once, or if the 

number of processors available at time t was already covered. 

7) Number of phenotypes or individuals per population 

that will be created: the parameter that defines the number of 

individuals, within each one of the populations that constructs 

the algorithm to determine the best individual (set of tasks 

assigned to the mesh of processors). 

8) Number of Populations, that will be created: defined as 

the number of stocks, that the system generates to extract the 

best individuals and estimate the probabilistic model. 
These are the normal operating parameters of the algorithm. 

The execution of tests was carried out in the cluster of Liebres 
InTELigentes servers, consisting of four servers: HP Proliant 
Quad core with the Linux operating system. 

Experiment 1: For the first experiment an 8X8 mesh is used 
with different queue capabilities: from 10 to 10.000 tasks (as 
shown in Charts 1 and 5). The number of subtasks per task for 
this experiment was set 1 to 10 (light load). The task execution 
time is 1 to 100 seconds. The number of tasks that the system 
will seek into the waiting queue, once free submeshes are 
produced in the mesh, is dynamic, and corresponds to the 
stopping method set in the algorithm as well as the number of 
phenotypes. 

Total execution time: This approach is shown in graph 1. 
The behavior of both methods, when loads are light, is very 
similar in this approach. FCFS is a policy free of starvation and 
non-discriminatory in nature, allowing the task at the head of 
the queue waiting to be served, once the number of solicited 
processors is released into the mesh; due to the fact that with 
light loads, a large number of processors are not required and 
requests can be quickly met. 
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Graph 1. Total execution time 

Utilization: For this experiment, system utilization is 
measured by each total workload that the system processes. 
When comparing system utilization, the behavior of both 
methods is practically the same as illustrated in graph 2. A 
previous allocation planning is not synonymous with better 
system utilization when light loads are processed. 

 
Graph 2. Utilization 

Throughput: Due to the acceleration that occurs in the 
allocation, the number of completed tasks per unit of time in 
the system (when the FIFO allocation policy is used), produces 
times very similar to the proposed method. That is, the 
generation of a set of tasks with a small amount of subtasks, 
upon finalizing execution, enables new tasks to be entered into 
the mesh without waiting until a large number of processors 
have been released. The results of this test appear in graph 3. 

 
Graph 3. Throughput 

Mean turnaround time: graph 4 shows how the proposed 
policy exceeds the FIFO method, when there is an increase of 
more than 250 tasks in the system load. The significant 
improvement in time is produced by the response factor, to the 
task that is at the head of the queue. 

 
Graph 4. Mean turnaround time 

Waiting time: The average waiting time of tasks before 
starting its execution, is significantly improved with the 
proposed method when the number of tasks in the waiting 
queue increases (as shown in graph 5). It is assumed that, the 
improvement in times of this criterion is due, to the utilized 
ROS planning that does not consider the immediate assignment 
of the task that is in the head of the waiting queue, but the task 
search that best suits the free processors. 

 
Graph 5. Waiting time 

Response ratio: System performance remains constant in 
both methods when the number of tasks is less than or equal to 
500, and varies when loads are increased in the waiting queue 
(as shown in graph 6). The system performance is considered 
an important criterion in multiprocessor systems, because it 
shows the constant and proper use of resources in the target 
system, or in certain cases, processor waste generated in the 
target system. 

 
Graph 6. Response ratio 

Experiment 2: Graphs 7 to 12 show the results of the 
second experiment. In this experiment, the number of subtasks 
per task is significantly increased, but the creation of tasks with 
few subtasks is also allowed. The objective of this experiment 
is to have a mixture of tasks: tasks with many processor 
requirements and tasks with little processor requirements. This 
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mix allows us to produce external fragmentation of the mesh, 
and observe the behavior of the algorithm in order to solve the 
dynamic quadratic assignment problem in the mesh. 

Total execution time: When the proposed method plans a 
large quantity of tasks in the waiting queue, you can choose 
randomly from a variety of task requirements, causing the total 
execution time to be reduced drastically (as shown in graph 7). 

 
Graph 7. Total execution time 

Utilization: A better percentage of system utilization is 
reflected in graph 8, upon using the proposed method due to 
the fact that in each assignment, all total free processors are 
assigned to tasks (external fragmentation is decreased). When 
using a high percentage of processors, network latency 
increases exponentially because of message passing between 
tasks. 

 
Graph 8. Utilization 

Throughput: Although the proposed method outperforms 
the FCFS policy in number of completed tasks per unit time, 
both provide similar behavior when there is an increase in the 
number of subtasks per task (as shown in graph 9). 

 
Graph 9. Throughput 

Mean turnaround time: graph 10 shows the results of mean 
turnaround time; the proposed method provides shorter times 
in responses to tasks with a heavy workload. 

 
Graph 10. Mean turnaround time 

Waiting time: The observation in this approach (shown in 
graph 11), is the reduction in the waiting time of tasks in the 
waiting queue with the proposed method; the FCFS offers 
longer waiting times for tasks. Here we observe, the wait that is 
generated for the tasks with large requirements in the waiting 
queue; these tasks, must wait until the number of free 
processors required, to achieve their entry into the mesh are 
available. 

 
Graph 11.Waiting time 
 

Another important factor is the external fragmentation that 
occurs when the task at the head of the waiting queue is 
assigned, and the next task at the head of waiting queue can no 
longer be allocated due to the number of remaining free 
processors after the assignment (this being different from the 
number of processors that is required). Unlike the 
aforementioned, the proposed method does not assign tasks 
sequentially in the waiting queue but randomly looks for tasks 
that best suit the free processors (thereby minimizing task 
waiting times). 

Response ratio: As a consequence of the obtained results in 
the waiting time criterion, system utilization is significantly 
improved producing better results in the response rate criterion 
with the proposed method (as shown in graph 12). Achieving a 
maximum utilization of free processors through planning, 
every time an assignment is made, yields better results in 
system utilization. 
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Graph 12. Response ratio 

The goal of both experiments was to show the behavior 
comparison of the FCFS scheduling policy, which is the most 
widely, used policy in experiments carried out with the 
proposed task planning methods in multiprocessor systems. 
The results show variations in response times of both methods. 
The main objective of the proposed method is to achieve a pre-
planning to the allocation through the optimization of 3 targets, 
that at the end of workload processing achieves improvement 
in the established criterion for its evaluation. 

VI. FUTURE WORKS 

Considered the basis of this work, future research that 
arises, is a parallel evaluation of the objectives that are opposed 
in the planning and allocation of tasks, in a multiprocessor 
system using multi-core programming. This research is being 
carried out in a server cluster. 

VII. CONCLUSIONS 

This paper, through the joint operation of the task planner 
and the processor dispatcher considering all the parameters 
involved in task planning and allocation, presents a strategy 
that yields a more efficient use of computing resources in a 
multiprocessor system. 

The main objective of this research, is to achieve a pre-
planning to the allocation that considers the evaluation of three 
objective functions that lead to obtaining, a structured 
assignment avoiding a unique  planning of task lists, based on 
genetic operators or based on the exhaustive search of free 
submeshes, using geometric models; the proposed method uses 
the planning policy ROS, whose random behavior allows all 
tasks to have the same probability of selection, each time the 
scheduler selects a set of tasks to be assigned to the mesh. 

Similarly, the method looks for the best position of the 
tasks in the processors using a dynamic quadratic assignment, 
which is determined by estimating and simulating the joint 
probability distribution, as a mechanism of evolution in order 
to reduce communication overhead in mesh processors. 

The experiments carried out in our work, use the FCFS 
against the method proposed in this paper. What happens when 
a planning task with a strict FCFS policy is compared against a 
totally random policy? 

The set of conducted experiments, show the results of the 
five criteria that are evaluated in multiprocessor systems upon 
finalizing total execution of workloads, unlike other researches 
that only seek to optimize a single evaluated criterion. When 
system loads are light, both planning policies have a similar 
behavior, and they manage to locate tasks quickly enough in 

the mesh, but upon increasing the processor requirements with 
a larger number of subtasks per task, the proposed method has 
better results in the following evaluated criteria: utilization, 
throughput, mean turnaround time, waiting time and the total 
execution time. 

The positivity of the proposed method lies in three key 
areas: 1) that all tasks have the same probability to be served 
once a set of tasks are selected for assignment, 2) actively 
maintain a noncontiguous allocation strategy, which allows it 
to confront the dynamic quadratic assignment for positioning 
tasks on processors and 3) avoid producing communication 
overhead in the processor mesh. 
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