
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

349 | P a g e

www.ijacsa.thesai.org

Planning And Allocation of Tasks in a Multiprocessor

System as a Multi-Objective Problem and its

Resolution Using Evolutionary Programming*

Apolinar Velarde Martinez

Department of Computer Science

Technological Institute El Llano Aguascalientes

El Llano, Aguascalientes México

Eunice Ponce de León Sentí

Department of Computer Science

Universidad Autónoma de Aguascalientes

Aguascalientes, México

Juan Antonio Nungaray Ornelas

Department of Computer Science

Technological Institute El Llano Aguascalientes

El Llano, Aguascalientes México

Juan Alejandro Montañez de la Torre

Department of Computer Science

Technological Institute El Llano Aguascalientes

El Llano, Aguascalientes México

Abstract—the use of Linux-based clusters is a strategy for the

development of multiprocessor systems. These types of systems

face the problem of efficiently executing the planning and

allocation of tasks, for the efficient use of its resources. This

paper addresses this as a multi-objective problem, carrying out

an analysis of the objectives that are opposed during the planning

of the tasks, which are waiting in the queue, before assigning

tasks to processors. For this, we propose a method that avoids

strategies such as those that use genetic operators, exhaustive

searches of contiguous free processors on the target system, and

the use of the strict allocation policy: First Come First Serve

(FIFO). Instead, we use estimation and simulation of the joint

probability distribution as a mechanism of evolution, for

obtaining assignments of a set of tasks, which are selected from

the waiting queue through the planning policy Random-Order-

of-Service (ROS). A set of conducted experiments that compare

the results of the FIFO allocation policy, with the results of the

proposed method show better results in the criteria of: utilization,

throughput, mean turnaround time, waiting time and the total

execution time, when system loads are significantly increased.

Keywords—Multicomputer system; Evolutionary Multi-

objective Optimization; First Input First Output; Random-Order-

of-Service; Estimation of Distribution Algorithms; Univariate

Distribution Algorithm

I. INTRODUCTION

Multi computer systems with architectures and mesh
topologies using 2D and 3D interfaces, designed for
commercial and research purposes, have been two of the most
common networks in research and industrial environments
because of their simplicity, scalability, structural regularity and
ease of implementation [1, 2, 3]. Examples of such systems are
the IBM BlueGene / L [4] and the Intel Paragon [5]. Some of
the commercial Multi Computer systems are Multiple
Instruction Multiple Data (MIMD) systems with architectures
that enable partitions of processor submeshes, and have the
advantage of supporting multiple parallel (multi-tasks) jobs [1,
2, 3, 6]. Parallel jobs are usually represented by a Directed
Acyclic Graph (DAG), the nodes express the particular tasks

partitioned from an application and the edges represent the
inter-task communication [7]. The tasks can be dependent or
independent; independent tasks, can be executed
simultaneously to minimize processing time, and dependent
tasks are cumbersome and must be processed in a pre-defined
manner, to ensure that all dependencies are satisfied [6]. In an
SIMD mesh, that processes parallel jobs, tasks are planned in
the queue by a planning policy (usually being First Come First
Serve (FCFS)) [2, 3, 8, 9], they are then assigned to the mesh
processor, where they remain until they finish their
implementation [7]. Planning of resources in the mesh, through
hardware partitioning involves two components: a scheduler
and dispatcher to the mesh [2, 3, 8, 9]. The function of the
scheduler is to choose the next task, or the following tasks in
the queue that will be assigned to a sub-mesh, of free
processors for execution. The function of the submesh allocator
is to locate free submeshes, which are to be assigned to the
selected tasks by the scheduler. The allocator uses a contiguous
and/or of noncontiguous assignment method. When a
contiguous allocation method is used, the tasks partitioned
from an application can only be assigned to adjacent
processors, unlike a noncontiguous allocation method, where
tasks can be assigned in a scattered form across the mesh
wherever free processors are located [2,3,8,9]. To maximize
the use of resources in the target system, current computer
systems opt to use non-contiguous allocation methods,
applying wormhole routing and free submesh recognition
techniques.

Some examples of this are: the frames processor that uses
windows traveling the length and width of the grid [10];
iterative processes that divide submeshes in equal-sized
partitions [11], the use of the free-lists approach, [12, 13]
among others [22-26]. During the processing of tasks extracted
from the queue, we look to optimize a set of objectives that are
generally found to be opposite. Upon finalizing the total
processing of tasks running on the target system, we seek to
optimize a set of proper criteria, from the multiprocessor
systems. In the following paragraphs, we list the objectives and

This investigation is sponsored by Tecnológico Nacional de México, and
developed in Instituto Tecnológico el Llano, Aguascalientes, México.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

350 | P a g e

www.ijacsa.thesai.org

exemplify the form in which they are opposed, as well as the
list of criteria that is optimized.

The objectives sought to be optimized, for processing tasks
using the scheduler and proposed in [14] are:

1) Reduce the waiting time of tasks in the queue,

assigning more tasks to the mesh of processors once the

allocator reports, the number of processors in the free

submeshes.

2) Reduce task starvation, that is, avoid discrimination in

the allocation of tasks that require a lot of processors (great

tasks), caused by the continued allocation of tasks requiring a

lesser amount of processors (small tasks).

3) Minimize external fragmentation, that is, minimize the

percentage of free processors, after the allocation algorithm

places one or more tasks in the processor mesh.

4) Minimize the communication overhead or network

contention [15], through contiguity between processors (as

close as possible to assign the set of free processors), in order

to decrease the distance in the communication path, and avoid

interference between the processing elements (searches for the

best way to accommodate tasks in the free processors). This

point is then identified as the quadratic dynamic allocation of

tasks.
Upon complete processing of all tasks in the system, we

then seek to optimize the system utilization criteria,
throughput, response rate, mean turnaround time and overall
waiting time [15, 16].

A simple example of the contrast of the previous four
objectives occurs, when we look to minimize external
fragmentation by using a noncontiguous allocation method.
The largest number of jobs in the free processors is allocated
regardless of their location in the mesh, resulting in the
maximization of system utilization; however, the opposite
effect is produced upon maximizing the communication
overhead, between tasks if not assigned contiguously along the
length and width of the grid. Thus, in seeking to maximize or
minimize some of the objectives, in order to optimize your
results, usually the result of another objective is degraded,
producing contrasting results between themselves, enabling
oneself to view the problem of task planning and allocation as
a multi-objective problem.

A multi-objective problem, involves optimizing a number
of targets simultaneously, and its solution with or without the
presence of constraints, results in a set of interchangeable
optimal solutions called the search space, popularly known as
Pareto-optimal solutions. For an adequate solution in this,
evolutionary optimization algorithms are utilized (EOA),
which use a population focuses in their search procedure [17].
The EOA’s possess several characteristics that are desirable for
problems, involving multiple conflicting objectives and
intractably large and highly complex search spaces [18].

In this paper, a hybrid method is proposed to address the
problem of planning and allocation of multiple parallel jobs in
a multiprocessor system, as a multi-objective problem. In this
manner, it makes use of the scheduler and allocator to achieve
the best assignments in the processor grid, which optimize the

resources of the target system, during processing and
completion of tasks. This method uses a static task scheduling,
defined as a scheduling at compile time [19].

The proposed method is evaluated with two task selection
policies from the queue: FIFO and ROS [20]. This method
connects the planner and the dispatcher to conduct the process
of task selection, from the queue randomly and makes the best
assignment in the processor grid, by evaluating a set of
conflicting objectives. The work that the scheduler and
dispatcher does is divided into five steps as follows: first, the
dispatcher reports the number of free processors that the grid
has in time t, in the second step, by means of the Random-
Order policy-of-service the scheduler selects the same number
of tasks, with subtasks from the queue that the allocator
previously reported, regardless of the location of the processors
across the grid. This set of selected tasks, is considered a
feasible solution of the search space, to which three disjointed
objectives are evaluated: the waiting time from the rest of the
tasks that remain in the queue, the starvation of the tasks of the
queue (if occurs), the external fragmentation, and the
communication overhead. In the third step, the process of
dynamic selection of tasks by the planner continues until to the
stop criterion is fulfilled. Lastly, for the set of feasible
solutions, the joint probability distribution can be appreciated
using the algorithm UMDA (Univariate Marginal Distribution
Algorithm), to obtain the best allocation to the processor grid.
After finalizing the total execution of tasks, the following
criteria is evaluated and compared: system utilization,
throughput, response rate, mean waiting time and turnaround
time with different workloads in the target system; the
effectiveness of the proposed method is compared with the
most widely used task planning method: FCFS.

This paper is organized as follows: In section 2, we discuss
a classification of methods that throughout the years have been
proposed for the planning and allocation of tasks using
heuristics techniques and geometric models. In section 3, a
stopping criterion is performed using a definition of the
objectives, and the form in which they are opposed during the
execution of tasks. Section 4, describes the functionality
proposed in this research method. Section 5, describes the
experiments conducted by the method. In section 6, the future
work to develop after this research is described, and section 7,
conclusions, describes the findings of this research.

II. RELATED WORKS

In [19], two classes or categories for scheduling are
specified, a) list scheduling and b) clustering; in this paper,
related jobs are classified depending on 1) planner use and
heuristic techniques, and 2) allocator use in conjunction with
geometric patterns, and free submesh searches throughout the
grid.

A. Task scheduling methods that make use of the planner and

heuristic techniques

Heuristic methods base their functionality in genetic
algorithms (GA), which are global search techniques that
explore different regions of the search space simultaneously,
by keeping track of sets of potential solutions called a
population [21]. Over the years, different methods have been

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

351 | P a g e

www.ijacsa.thesai.org

proposed based on this search technique. In this section we can
observe how a set of these investigations show the similarities
in the operators used.

In [16], the multiprocessor scheduling problem is based on
the deterministic model, and the precedence relationship
among the tasks is represented by an acyclic directed graph.
This method uses a representation based on the schedule of the
tasks, in each individual processor. Several lists of
computational tasks represent the planner, respecting the order
of precedence of the tasks.

Each list can be further viewed as a specific permutation of
the tasks in the list. Crossover operators, reproduction and
mutation are applied to the created lists, in order to optimize
the finishing time of the schedule. Similar research is presented
in [22], where the scheduling problem is formulated in a
genetic search framework based on the observation, that if the
tasks of a parallel program are arranged properly in a list, an
optimal schedule may be obtained by scheduling the tasks, one
by one according to their order in the list. These lists are
codified in chromosomes, which represent feasible solutions in
the search space; genetic search operators are applied to these
chromosomes, such as crossover and mutation, as well as an
additional operator called “an investment operator”.
Chromosomes are manipulated by genetic operators, in order to
determine an optimal scheduling list, leading to an optimal
schedule. To improve convergence time of the proposed
algorithm, the connected synchronous island model is used. In
[23], the proposed genetic algorithm minimizes the schedule
length of a task graph, to be executed on a multiprocessor
system. It uses processes that evolve candidate solutions by the
use of a set of operators, such as fitness-proportionate
reproduction, crossover and mutation; doing so through a
traditional method of genetic algorithms. This algorithm does
not consider the communication time between tasks. In [24], an
initial chromosome, consisting of genes is generated, where
each gene will use the priority of node in a directed acyclic task
graph (DAG); trade, crossover and mutation operators are
applied to the chromosome in order maximize the makespan of
the k-th chromosome, using an evaluation function.
Communication costs are not considered in this paper. In [25],
a Modified List Scheduling Heuristic (MLSH) and hybrid
approach composed of genetic algorithms, and MLSH for task
scheduling in multiprocessor systems is used; this method uses
three new different types of chromosomes: task list, list
processor and a combination of both types. In order to
maximize the finishing time of schedule, the genetic operators:
crossover and mutation, used in the chromosomes are the
selection. The main features of this type of method are the use
of a set of genetic operators (parameters), which seek to
optimize a single objective function (maximize execution times
of the tasks). Nevertheless, if a researcher does not have
experience in using this type of an approach for the resolution
of a concrete optimization problem, then the choice of suitable
values for the parameters can be converted into an optimization
problem [26]. Similarly, in these methods as the complexity of
the task graphs and the proposed solution are increased, the
number of operators, that must manipulate the algorithm to try
to find the best solutions in the search space also increases;

best case scenario being the possibility that the algorithm will
land in the least amount of local minimums.

B. Methods with geometric models for scheduling

Alternately to heuristic methods, other methods seek to
solve the problem of task planning and allocation by looking
for free processors, that are contiguous to the length and width
of the grid; ensuring that the tasks assigned during
implementation remain as close together as possible.

In [27], a submesh reservation strategy for incoming tasks
is used, this method combines a submesh reservation technique
with a priority technique as follows: an incoming task requests
a number of processors, a reservation will occur if these cannot
be assigned to of a set of processors constituted in a sub-mesh,
as long as it does not exceed the threshold established within
the parameter FREE_FRAC. The priority of waiting tasks is
handled through a “no_supercede” parameter, which allows
you to suspend allocations if the threshold in the parameter
MAX_PRI is exceeded, and it also prioritizes tasks that have
aged in the waiting queue. In [28], the approach contains a list
of allocated submeshes, sorted in a non-increasing order by the
second coordinate in their upper right corner. This list serves
two purposes: first, it determines the nodes that cannot be used
as a basis for new free submesh applications and second, it
identifies nodes that are located on the right edge of the
assigned submeshes, in order find the nodes that could be used
as a basis in finding free submeshes. When a parallel job is
selected to be assigned, a search is performed to locate a
suitable sub-mesh, if this does not occur; the assignment is
made with longest free submesh, whose length of sides does
not exceed the requested submesh. Through a search process,
the free submesh that best fits the application is located. Other
current techniques, through an initial strategy, look to make the
allocation of tasks to the mesh, but if resulted in failure, a
second allocation strategy is activated to replace the first in
order achieve the assignment. For example in [29], the First Fit
technique (FF) proposed in [30], that searches for free
submeshes best suiting the application (to find the maximum
adjacency between processors while reducing communication
latency between tasks), is used in conjunction with the Best Fit
(BF) technique proposed in [31]. This technique searches for
the exact number of processors that the task requires in the free
submeshes; thus, in [29], if a task requests a 4x4 sub-mesh and
the request cannot be granted, the request size is reduced by a
multiple of 2, then a 2x2 grid will be requested and so on until
the request is the minimum number of processors, 1 X 1 in this
case. When the first technique fails, the second technique BF is
enabled, and through this, a search is performed within the free
submeshes which best fit, that is, with the exact number of
processors that the task requires [31].

III. BASIC CONCEPTS

This section describes the concepts and the evolutionary
algorithm used in this research.

A. Definitions

Definition 1. An n-dimensional mesh has k0 x k1 x... x kn-2 x
kn-1 nodes, where ki is the number of nodes along the length of
the i-th dimension and ki ≥ 2. Each node identified by n

coordinates: 0(a), 1(a),..., n-2(a), n-1(a) where 0 ≤ i(a) < ki

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

352 | P a g e

www.ijacsa.thesai.org

for 0 ≤ i< n. Nodes a and b are neighbors if and only if i(a) =

i (b) for all dimensions except for dimension j, where j(b) =

j(a) ± 1. Each node in a mesh refers to a processor and the two
neighbors are connected by a direct communication link.

Definition 2: A 2D mesh, which is referenced as M (W, L)
consists of W X L processors, where W is the width of the mesh
and L is the height of the mesh. Each processor is denoted by a
pair of coordinates (x, y), where: 0 ≤ x <W and 0≤ y <L. A
processor is connected by a bidirectional communication link
to each of its neighbors. For each 2D mesh 2D a=Pij.

Definition 3: In a 2D mesh, M (W, L), a sub-mesh: S (w, l)
is a two-dimensional mesh belonging to M (W, L) with width w
and height l, where 0 < w ≤ W and 0 < l ≤ L. S (w, l) are
represented by the coordinates (x, y, x’, y’), where (x, y) is the
lower left corner of the submesh and (x’, y’) is the upper right
corner. The node in the lower left corner is called the base node
of the sub-mesh, and the upper right corner is the end node. In
this case w=x’-x+1 and l=y’-y+1. The size of S (w, l) is: w x l
processors.

Definition 4: In a 2D mesh M (W, L), an available sub-
mesh S (w, l) is a sub-mesh that meets the conditions: w ≥ α y
w ≥ β assuming that the required allocation of S (α, β) refers to
selecting a set of available processors for task arrival.

Definition 5: The correspondence of a task or subtask to a

free processor in the mesh is defined as the following: if  is a

set of system tasks, and  = J1, J2,…, Jn where n is the number

of tasks in time t and k is a set of sub-tasks of task k where:

k = jk1, jk2,…, jkf(k) and f(k) is the total number of sub-tasks of

task j. For each task j and each sub-task f(k)  j has a processor

in mi  P in which it is to execute each task j and each sub-task

jkf(k), consuming an uninterrupted time tN.

Definition 6: Given two matrices size n x n: a flow matrix F
whose (i, j) -th elements represent flows between tasks i and j
and an arrangement of distances D, whose (i, j) -th elements
represent the distance between sites i and j. An assignment is
represented by vector p, which is a permutation of the numbers
1, 2,…, n and p(j) is where the task j is assigned. Thus, the
quadratic task assignments can be written as:


 

n

i

n

i
jip jpidpf

1 1

)()(min 
 (1)

Definition 7: An optimization problem is one whose
solution involves finding a set of candidate alternative
solutions that best meet the objectives. Formally, the problem
consists of the solution space S and function objective f.
Solving the optimization problem (S, f) consists of determining

an optimal solution, namely, a feasible solution x* S such that

f(x*) ≤ f(x), for any x  S. Alternative solutions can be
expressed by assigning values to some finite set of variables X
= {Xi: i = 1,2, ..., n}. If Ui is denoted the domain or universe
(set of possible values) of each of these n variables. The
problem consists of selecting the value xi that is assigned to
each variable Xi from domain Ui that when subjected to certain
restrictions, optimizes an objective function F. The universe of
solutions is identified with the set U = {x = (xi: i=1, 2, … , n):

xi  Ui}. The problem constraints reduce the universe of

solutions to a subset of S  U called feasible space.

A performance evaluation of a parallel system, upon
finalizing the processing of all running tasks, is evaluated on
the following criteria [1]:

Definition 8: The utilization is defined as the fraction of
time in which the system was used, and is given by:

)*(/ GGGG mCWU  (2)
Where: WG is the amount of work that the system performs,

CG is the completion time of execution of all tasks in the
system and mG is the total number of processors in the system.

Definition 9: Throughput. The number of completed tasks
per unit of time in the system is given by:

GCn / (3)
Where: n is the total number of jobs in the system.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

Definition 10: Mean turnaround time. The average time it
takes all tasks from entering the local queue until their
execution is finalized. Calculated as:




n

j

j

tt
n 1

1

 (4)
Where:

jjj

t rct 
c

j
 is the completion time of the task and r

j
 is the delivery

time of task j.

Definition 11: Waiting time, defined as the average waiting
time before starting the task execution. Calculated as:




n

j

j

wt
n 1

1

 (5)
Where:

jj

s

j

w rtt 

j

st is the start time of execution of task j.

Definition 12: Response ratio, defined as the coefficient
response average of all tasks. Defined as:





n

j

jjj

w ppt
n 1

/)(
1

 (6)

Where: p
j
 is the runtime and

j

wt is the waiting time of task
j.

B. UMDA for dynamic quadratic assignment to model the

problem of task scheduling

The EDA (Distribution Evolutionary Algorithm) uses
estimation and simulation, from the joint probability
distribution as a mechanism of evolution, instead of, directly
manipulating the individuals that represent solutions to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

353 | P a g e

www.ijacsa.thesai.org

problem [26]. An EDA begins by randomly generating a
population of individuals, which represent solutions to the
problem, iteratively performs three types of operations on the
population: a subset of the best individuals of the population is
generated; a learning process from a probability distribution
model from selected individuals is performed, and new
individuals that simulate the obtained distribution model are
generated. The algorithm stops when a certain number of
generations are reached, or when the performance of the
population fails to significantly improve; an UMDA is used to
estimate the joint distribution in each generation from selected
individuals. Thus, the joint probability distribution is factorized
as a product of independent univariate distributions, i.e.:

N

DxX
xp

N

j

S

liij

il

e  


1 1)|(
)(



Where:







 

 


casootroen

xXdeDcasoesimojelensi
DxX ii

S

lS

liij

e

e

0

,1
|(1

1

The pseudocode for an UMDA algorithm is as follows:

IV. STATEMENT OF THE PROPOSED METHOD

This section is structured as follows: Section 4.1 shows
three instantiations of the manner in which the objectives are
opposed during the planning and allocation of tasks. In section
4.2 the functionality of the proposed method is explained in
detail.

A. Contraposition of the objectives during job processing

The way that the objectives are opposed during job
processing is shown in [32], it is explained through three
examples in the following sections. In Figure 1, an 8x8 2D
processor mesh is shown; the 35 occupied processors are
shown in closed circles and the 29 free processors, with
unfilled circles. In the queue, a set of 6 dependent tasks
partitioned from an application wait for execution: task T0 with
4 subtasks, task T1 with 3 subtasks, task T2 with 4 subtasks,
task T3 with 3 subtasks, task T4 with two subtasks and task T5
with 25 subtasks, supposing that the planning method can
choose more than one task to be assigned in the processor mesh
with noncontiguous allocation method.

Fig. 1. System structure for task execution on a Multicomputer 2D mesh

system

Example 1: Consider that in time t, the allocator reports the
29 free processors, with this data the scheduler determines that
the set of 5 tasks: T0, T1, T2, T3 and T4 are candidates to occupy
21 processors in the mesh, or assign task T5 requiring 26
processors and task T4 requesting 3 processors.

By assigning the set of the 5 tasks, the same number of
positions in the queue are released allowing the entry of new
tasks, and the number of accesses to the queue is decreased in
order perform more task searches. The previous procedure
allows for more than one task to enter the mesh, and decreases
task waiting time at the head of the queue; but in opposition to
each other, the assigning of these 5 tasks generates an external
fragmentation of 8 processors and produces starvation of task
T5 in this assignment. The result that is had is a contrast
between objectives 1 and 2.

Objective 1 seeks to minimize the number of assignments
to the mesh of processors in order minimize task waiting time,
and objective 2 seeks to maximize the use of the processors in
the mesh and minimize starvation of the large tasks. Now, if
tasks T4 and T5 are assigned, neither starvation nor external
fragmentation occurs, but a smaller number of tasks can be
accepted in the queue, and so the number of assignments to the
mesh increases therefore, also increasing the time tasks must
wait to enter the processor mesh.

Example 2: In order to illustrate the contrast between
objectives 3 and 4, consider Figure 1. Objective 3 seeks to
maximize the use of the processors in the mesh, avoiding
external fragmentation, and Objective 4 seeks to minimize
overhead communication through minimizing the adjacency of
processors that are assigned to a task. The assumed set of the 5
selected tasks are: T0, T1, T2, T3 and T4, and are allocated in
contiguous processors as follows: T0 task is assigned in
submesh <4,0> <5,2> regardless of the processor in position
<4,2>, task T1 is assigned to the sub-mesh <2,0> <3,1>, task T2
is assigned the submesh in <0,5> <2,6> regardless of the
processor in position <2,5>, task T3 is assigned in submesh
<0,2> <1,3>, and task T4 is assigned in submesh <6,3> <7,4>
regardless of the processor in position <7,4>. This allocation
maximizes the adjacency between processors, and produces an
external fragmentation of 8 processors. Now if the system

Generate M individuals (the initial population)

randomly

Repeat for l = 1,2, .. until the stop criterion:

Select N ≤ M individuals of

in accordance to the selection method

Estimate the joint probability

distribution.

Dl  Sample M individuals (the

new population) from

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

354 | P a g e

www.ijacsa.thesai.org

assigns task T5, together with task T1 or T3, all of the free
processors will be used, and in opposition to the allocation of
the 5 tasks, external fragmentation will be minimized. Thus,
the contrast of goals 3 and 5 is produced.

Example 3: Exemplification of the contrast between the
objectives of the minimization of task, residence time in the
queue and the maximization of communication overhead
(objectives 1 and 4), is shown when a large number of tasks are
sought to be assigned in the processor mesh, and processors to
which tasks are to be assigned are not close enough together or
contiguous. This is done to avoid producing very high
communication costs. As an example, consider allocating the 5
task set: T0, T1, T2, T3 and T4. The number of allocations made
to the mesh is minimized, but if the allocator does not consider
assignment of disjoint processors by a previous calculation
method of communication overhead, tasks will be assigned
disjoint in the mesh, causing adjacency to be minimal and
communication costs between tasks to be very high.

B. Functionality of the proposed method

Proposal: In time t a 4X4 processor mesh is had, whose
status array is shown in Figure 2, where the number 1
represents the occupied processors that were assigned to a task
at time t-1, and the number 0 represents the free processors that
have not been assigned to a task or sub-task.

Fig. 2. 4X4 processor mesh represented by a matrix

Symmetrical distances between processors are given in
Table I (due to space constraints, only half of the table is
shown), these distances represent the “jumps” that a message
must execute in order to achieve communication between two
processors.

TABLE I. SYMMETRICAL DISTANCES BETWEEN PROCESSORS IN A 4X4

MESH FROM FIGURE 5

 1 2 3 4 5 6 7 8 9

1 0 1 2 3 1 2 3 4 2

2 1 0 1 2 2 1 2 3 3

3 2 1 0 1 3 2 1 2 4

4 3 2 1 0 4 3 2 1 5

5 1 2 3 4 0 1 2 3 1

6 2 1 2 3 1 0 1 2 2

7 3 2 1 2 2 1 0 2 3

8 4 3 2 1 3 2 1 0 4

9 2 3 4 5 1 2 3 4 0

Table 2 shows the waiting queue containing 4 pending
execution tasks; said tasks are waiting to be executed in the
mesh.

TABLE II. WAITING QUEUE IN TIME T WITH 4 TASKS EACH CONTAINING

4 SUBTASKS

T1 T11 T12 T13

T2 T21 T22

T3 T31 T32 T33

T4 T41

Previous knowledge is had of the extent of the degree of
communication (communication costs), between the main task
and sub-tasks that is composed of all tasks that are found in the
waiting queue, and the relationship between the same sub-
tasks. Table 3, shows the matrix of communication costs for
tasks T1 and T2; Table 4, shows the matrix of communication
costs for T3 and T4 tasks; communication costs are established
between the main task and subtasks and between subtasks. For
example, the communication cost between task T1 and subtask
T11 is 3.

TABLE III. MATRIX COMMUNICATION COSTS FOR TASKS T1, T2

 T1 T11 T12 T13 T2 T21 T22

T1 0 3 0 3 0 0 0

T11 2 0 1 4 0 0 0

T12 0 1 0 2 0 0 0

T13 3 5 3 0 0 0 0

T2 0 0 0 0 1 3 0

T21 0 0 0 0 1 3 0

T22 0 0 0 0 2 0 4

TABLE IV. MATRIX COMMUNICATION COSTS FOR T3, T4 TASKS

 T3 T31 T32 T33 T4 T41

T3 0 1 3 2 0 0

T31 1 0 1 2 0 0

T32 4 5 0 1 0 0

T33 2 5 2 0 0 0

T4 0 0 0 0 0 3

T41 0 0 0 0 2 0

To illustrate the relationship between task and subtasks,
consider that you have task T1 with three sub-tasks T11, T12 and
T13, (as shown in Figure 3). The lines show the transfer of
messages, thus task T1 can send and receive messages from
their sub-tasks; in turn sub-tasks can do the same with the main
task and each other.

Fig. 3. Message Path between tasks; task with 3 sub-tasks

The functionality of the proposed method is divided into
five stages: a) communication between the scheduler and
dispatcher, b) dynamic selection of tasks in queue, c) aptitude
evaluation of created solutions, d) generation of new
populations, and e) allocation of the best individual to the
processor mesh. The following sections explain each stage,
together with the proposed example.

Communication between the planner and the allocator:
Once the allocator counts the number of processors available in
the mesh, it reports this amount to the planner; using the
example from Figure 2, the allocator will inform the planner of
7 available processors. In our example we have shown a case
in which all free processors appear totally adjacent, but if they
are found to be disjoint, the process that the method follows is
the same.

T1 T11 T12 T13

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

355 | P a g e

www.ijacsa.thesai.org

Dynamic selection of tasks waiting in the queue and the
dynamic quadratic assignment of tasks to the processor mesh:
With the number of available processors on the grid, the
scheduler performs the following three steps to the pre-
selection of a set of tasks: 1) dynamically selects a task queue
using the ROS. In this method, all the tasks have the same
probability of selection [20]. 2) Verifies that number of
processors required by the task is less than or equal to the
number of processors detected by the allocator; if the condition
is met, the number of available processors is reduced by the
amount of processors required by the task; if the condition is
not met, another task will be randomly selected from the
queue. 3) Every time that a task is accepted, three checks are
made to the prompt completion of tasks: 1) if whether or not
the number of available processors is 0, 2) if the stop
condition is true, and 3) if all tasks in the queue have been
selected at least once. The Random-Order-of-Service policy,
allows the tasks that effectively fit the number of available
processors in the net to be selected.

In the example, the first task prompt occurs: a random
number is generated, based on the number of jobs in the queue
which in this case is 4; if the task can be chosen in the sub-
mesh or free submeshes, then it will be considered for
calculating its allocation and cost of message transfer; if not, it
will choose another task. For this exemplification case, the 2
randomly selected tasks are: T1 and T2; their placement in the
mesh with respective subtasks is shown in Table 5.

TABLE V. LOCATION OF TASKS T1, T2 AND T3 THAT REPRESENT THE

FIRST ASSIGNMENT IN THE MESH

1 1 1 1

1 1 1 1

T11 T12 T21 1

T1 T13 T2 T22

The second assignment, randomly generates a new
allocation in the free sub-mesh corresponding to the
assignment of tasks T3 and T4 (as shown in Table 6).

TABLE VI. TASK ALLOCATION MATRIX ACCORDING TO THE STATE

MATRIX OF THE MESH AT TIME T REPRESENTING A SECOND SOLUTION OF

THE QUADRATIC DYNAMIC ALLOCATION PROBLEM

1 1 1 1

1 1 1 1

T31 T33 0 1

T3 T32 T4 T41

Generation of the third allocation shown in Table 7
produces the assignment of tasks T2 y T4 to the mesh.

TABLE VII. MATRIX ASSIGNMENTS ACCORDING TO THE STATE MATRIX

OF THE MESH AT TIME T, REPRESENTING A THIRD SOLUTION OF THE

QUADRATIC DYNAMIC ALLOCATION PROBLEM

1 1 1 1

1 1 1 1

0 0 T21 1

T4 T41 T2 T22

In the fourth generation, the dynamic task selection
produces tasks T2 and T3 to the mesh. Produced allocation
shown in Table 8.

TABLE VIII. TASK ASSIGNMENT MATRIX ACCORDING TO THE STATE

MATRIX OF THE MESH, AT TIME T REPRESENTING A QUARTER SOLUTION OF

THE DYNAMIC QUADRATIC ASSIGNMENT PROBLEM

1 1 1 1

1 1 1 1

T31 T33 T21 1

T3 T32 T2 T22

Aptitude evaluation of created solutions. Evaluation of
created solutions suitability: At this stage the pre-selected set
of tasks in the previous step is evaluated with three different
objectives: a) the percentage of external fragmentation (ef)
produced after allocation in order to minimize the number of
idle processors in the mesh. For the example case, the first
assignment produces an ef=0%, the second allocation 0.14%,
the third allocation 0.28% and the fourth allocation 0%. b) The
number of tasks that the phenotype assigns to the mesh of
processors: In the example, the four allocations manage to
position two tasks in the processor mesh. c) Communication
Overhead or network contention: The allocation cost is
calculated for each task, based on communication costs
between tasks and the distances between processors, given the
message path from one processor to the other and vice versa.

When considering message passing between processors,
one must calculate the cost of transference, from the source to
the destination and vice versa. In the exemplified case, the
transfer rate from task T1 to subtask T11 is different than that
from sub-task T11 to task T1, although both measurements can
be equal, the values of the distances between processors remain
unchanged.

The values to be calculated are given in the operations
shown in Table 9 for task T1, in Table 10 for the task T2, in
Table 11 for the task T3, and in Table 12 for the task T4. The
total of the respective individuals are summed in order to
obtain the total solution cost, with a total of 35 for task T1 (as
shown in Table 9) and 17 for task T2 (shown in Table 10). The
representation of the above calculations is given by equation
(1).

TABLE IX. CALCULATION OF MESSAGE TRANSFER COST FOR TASK T1.

T1→T11 T11→T1 (3+2)*1 5

T1→ T12 T12→ T1 (0+0)*2 0

T1→T13 T13→T1 (3+3)*1 6

T11→T12 T12→T11 (1+1)*1 2

T11→T13 T13→T11 (4+5)*2 18

T12→T13 T13→T12 (2+3)*1 5

 Total 35

TABLE X. CALCULATION OF MESSAGE TRANSFER COST FOR TASK T2.

T2→T21 T21→T2 (1+2)*1 3

T2→ T22 T22→ T2 (3+4)*1 7

T21→T21 T22→T21 (4+3)*1 7

 Total 17

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

356 | P a g e

www.ijacsa.thesai.org

TABLE XI. CALCULATION OF MESSAGE TRANSFER COST FOR TASK T3.

T3→T31 T31→T3 (1+1)*1 1

T3→ T32 T32→ T3 (3+4)*1 7

T3→T33 T33→T3 (2+2)*2 8

T31→T32 T32→T31 (1+5)*2 12

T31→T33 T33→T31 (2+5)*1 7

T32→T33 T33→T32 (1+2)*1 3

 Total 39

TABLE XII. CALCULATION OF MESSAGE TRANSFER COST FOR TASK T4.

T4→T41 T41→T4 (3+2)*1 5

 Total 5

The totals obtained from each calculation, add up to make
an individual assessment by the value obtained in the objective
functions. This step allows the individuals with the best values
in each objective function, to be obtained and selected from the
population.

Generation of new populations: Once a population has been
obtained, the best individuals iteratively build new populations
of individuals from which to extract those that best fit, with
these, the probabilistic model is estimated.

Estimating the probabilistic model: in this part we will use
the simplest probabilistic model, in which all variables
describing the problem are independent. We calculate the
frequency of task occurrence from a part of the population,
containing the best individuals in each empty cell of the mesh
at time t, through truncation selection along with the
percentage of the truncation. In this case, the frequency of
occurrence can be shown in Table 13, due to space constraints,
only the frequencies for processor 0 are shown.

TABLE XIII. FREQUENCY OF OCCURRENCE OF EACH TASK IN EACH CELL.

 P(0,0) P(0,1) P(0,2) P(0,3) P(1,0)

T1 1 0 0 0 0

T11 0 0 0 0 1

T12 0 0 0 0 0

T13 0 1 0 0 0

T2 0 0 3 0 0

T21 0 0 0 0 0

T22 0 0 0 3 0

T3 2 0 0 0 0

T31 0 0 0 0 2

T32 0 2 0 0 0

T33 0 0 0 0 0

T4 1 0 1 0 0

T41 0 1 0 1 0

 4 4 4 4 3

Allocation of the best individual to the processor mesh
(Determination of the best individual). This step shows the task
or tasks that produce the best allocation representing the most
feasible solution, and which is assigned to the mesh.

V. EXPERIMENTS

In this section we explain the experiments conducted with
the proposed method, against those of the strict FCFS
allocation policy; most of the proposed works use this policy
(FCFS) during task planning. At the end of the workload

execution in the waiting queue, the five criteria components
that are sought to be optimized, in multiprocessor systems are
evaluated: utilization, throughput, mean turnaround time,
waiting time and total execution time. The parameters that the
algorithm uses for its normal operation, that do not need to be
optimized are:

1) The size of the 2D mesh: This sets the size of the mesh

and therefore the number of processors on the target system.

2) Number of tasks: the total number of tasks that the

system processes also called the overall system load.

3) Number of subtasks for each task.

4) Time of execution for each task: the parameter that

defines the number of seconds, the task will remain within the

mesh, constituted by the sum of seconds of each of the

subtasks that make up the task.

5) Capacity of the queue: the number of tasks that the

waiting queue accepts to be processed, and the number of

subtasks that each task may contain.

6) Number of tasks that the system will seek to enter into

the waiting queue: defined as the number of tasks that the

algorithm searches for, in the waiting queue using the ROS

planning method. The number of tasks is determined by the

conditions of the stopping algorithm, whether or not, the tasks

waiting in the queue have been selected at least once, or if the

number of processors available at time t was already covered.

7) Number of phenotypes or individuals per population

that will be created: the parameter that defines the number of

individuals, within each one of the populations that constructs

the algorithm to determine the best individual (set of tasks

assigned to the mesh of processors).

8) Number of Populations, that will be created: defined as

the number of stocks, that the system generates to extract the

best individuals and estimate the probabilistic model.
These are the normal operating parameters of the algorithm.

The execution of tests was carried out in the cluster of Liebres
InTELigentes servers, consisting of four servers: HP Proliant
Quad core with the Linux operating system.

Experiment 1: For the first experiment an 8X8 mesh is used
with different queue capabilities: from 10 to 10.000 tasks (as
shown in Charts 1 and 5). The number of subtasks per task for
this experiment was set 1 to 10 (light load). The task execution
time is 1 to 100 seconds. The number of tasks that the system
will seek into the waiting queue, once free submeshes are
produced in the mesh, is dynamic, and corresponds to the
stopping method set in the algorithm as well as the number of
phenotypes.

Total execution time: This approach is shown in graph 1.
The behavior of both methods, when loads are light, is very
similar in this approach. FCFS is a policy free of starvation and
non-discriminatory in nature, allowing the task at the head of
the queue waiting to be served, once the number of solicited
processors is released into the mesh; due to the fact that with
light loads, a large number of processors are not required and
requests can be quickly met.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

357 | P a g e

www.ijacsa.thesai.org

Graph 1. Total execution time

Utilization: For this experiment, system utilization is
measured by each total workload that the system processes.
When comparing system utilization, the behavior of both
methods is practically the same as illustrated in graph 2. A
previous allocation planning is not synonymous with better
system utilization when light loads are processed.

Graph 2. Utilization

Throughput: Due to the acceleration that occurs in the
allocation, the number of completed tasks per unit of time in
the system (when the FIFO allocation policy is used), produces
times very similar to the proposed method. That is, the
generation of a set of tasks with a small amount of subtasks,
upon finalizing execution, enables new tasks to be entered into
the mesh without waiting until a large number of processors
have been released. The results of this test appear in graph 3.

Graph 3. Throughput

Mean turnaround time: graph 4 shows how the proposed
policy exceeds the FIFO method, when there is an increase of
more than 250 tasks in the system load. The significant
improvement in time is produced by the response factor, to the
task that is at the head of the queue.

Graph 4. Mean turnaround time

Waiting time: The average waiting time of tasks before
starting its execution, is significantly improved with the
proposed method when the number of tasks in the waiting
queue increases (as shown in graph 5). It is assumed that, the
improvement in times of this criterion is due, to the utilized
ROS planning that does not consider the immediate assignment
of the task that is in the head of the waiting queue, but the task
search that best suits the free processors.

Graph 5. Waiting time

Response ratio: System performance remains constant in
both methods when the number of tasks is less than or equal to
500, and varies when loads are increased in the waiting queue
(as shown in graph 6). The system performance is considered
an important criterion in multiprocessor systems, because it
shows the constant and proper use of resources in the target
system, or in certain cases, processor waste generated in the
target system.

Graph 6. Response ratio

Experiment 2: Graphs 7 to 12 show the results of the
second experiment. In this experiment, the number of subtasks
per task is significantly increased, but the creation of tasks with
few subtasks is also allowed. The objective of this experiment
is to have a mixture of tasks: tasks with many processor
requirements and tasks with little processor requirements. This

0
0.0005

0.001
0.0015

U
ti

liz
at

io
n

 r
at

e

Number of tasks

Proposed method FCFS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

358 | P a g e

www.ijacsa.thesai.org

mix allows us to produce external fragmentation of the mesh,
and observe the behavior of the algorithm in order to solve the
dynamic quadratic assignment problem in the mesh.

Total execution time: When the proposed method plans a
large quantity of tasks in the waiting queue, you can choose
randomly from a variety of task requirements, causing the total
execution time to be reduced drastically (as shown in graph 7).

Graph 7. Total execution time

Utilization: A better percentage of system utilization is
reflected in graph 8, upon using the proposed method due to
the fact that in each assignment, all total free processors are
assigned to tasks (external fragmentation is decreased). When
using a high percentage of processors, network latency
increases exponentially because of message passing between
tasks.

Graph 8. Utilization

Throughput: Although the proposed method outperforms
the FCFS policy in number of completed tasks per unit time,
both provide similar behavior when there is an increase in the
number of subtasks per task (as shown in graph 9).

Graph 9. Throughput

Mean turnaround time: graph 10 shows the results of mean
turnaround time; the proposed method provides shorter times
in responses to tasks with a heavy workload.

Graph 10. Mean turnaround time

Waiting time: The observation in this approach (shown in
graph 11), is the reduction in the waiting time of tasks in the
waiting queue with the proposed method; the FCFS offers
longer waiting times for tasks. Here we observe, the wait that is
generated for the tasks with large requirements in the waiting
queue; these tasks, must wait until the number of free
processors required, to achieve their entry into the mesh are
available.

Graph 11.Waiting time

Another important factor is the external fragmentation that
occurs when the task at the head of the waiting queue is
assigned, and the next task at the head of waiting queue can no
longer be allocated due to the number of remaining free
processors after the assignment (this being different from the
number of processors that is required). Unlike the
aforementioned, the proposed method does not assign tasks
sequentially in the waiting queue but randomly looks for tasks
that best suit the free processors (thereby minimizing task
waiting times).

Response ratio: As a consequence of the obtained results in
the waiting time criterion, system utilization is significantly
improved producing better results in the response rate criterion
with the proposed method (as shown in graph 12). Achieving a
maximum utilization of free processors through planning,
every time an assignment is made, yields better results in
system utilization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

359 | P a g e

www.ijacsa.thesai.org

Graph 12. Response ratio

The goal of both experiments was to show the behavior
comparison of the FCFS scheduling policy, which is the most
widely, used policy in experiments carried out with the
proposed task planning methods in multiprocessor systems.
The results show variations in response times of both methods.
The main objective of the proposed method is to achieve a pre-
planning to the allocation through the optimization of 3 targets,
that at the end of workload processing achieves improvement
in the established criterion for its evaluation.

VI. FUTURE WORKS

Considered the basis of this work, future research that
arises, is a parallel evaluation of the objectives that are opposed
in the planning and allocation of tasks, in a multiprocessor
system using multi-core programming. This research is being
carried out in a server cluster.

VII. CONCLUSIONS

This paper, through the joint operation of the task planner
and the processor dispatcher considering all the parameters
involved in task planning and allocation, presents a strategy
that yields a more efficient use of computing resources in a
multiprocessor system.

The main objective of this research, is to achieve a pre-
planning to the allocation that considers the evaluation of three
objective functions that lead to obtaining, a structured
assignment avoiding a unique planning of task lists, based on
genetic operators or based on the exhaustive search of free
submeshes, using geometric models; the proposed method uses
the planning policy ROS, whose random behavior allows all
tasks to have the same probability of selection, each time the
scheduler selects a set of tasks to be assigned to the mesh.

Similarly, the method looks for the best position of the
tasks in the processors using a dynamic quadratic assignment,
which is determined by estimating and simulating the joint
probability distribution, as a mechanism of evolution in order
to reduce communication overhead in mesh processors.

The experiments carried out in our work, use the FCFS
against the method proposed in this paper. What happens when
a planning task with a strict FCFS policy is compared against a
totally random policy?

The set of conducted experiments, show the results of the
five criteria that are evaluated in multiprocessor systems upon
finalizing total execution of workloads, unlike other researches
that only seek to optimize a single evaluated criterion. When
system loads are light, both planning policies have a similar
behavior, and they manage to locate tasks quickly enough in

the mesh, but upon increasing the processor requirements with
a larger number of subtasks per task, the proposed method has
better results in the following evaluated criteria: utilization,
throughput, mean turnaround time, waiting time and the total
execution time.

The positivity of the proposed method lies in three key
areas: 1) that all tasks have the same probability to be served
once a set of tasks are selected for assignment, 2) actively
maintain a noncontiguous allocation strategy, which allows it
to confront the dynamic quadratic assignment for positioning
tasks on processors and 3) avoid producing communication
overhead in the processor mesh.

REFERENCES

[1] Grama A., Gupta A., Karypis G., and Kumar V. Introduction to Parallel
Computing. Second Edition Addison Wesley, January 16, 2003 ISBN:
0-201-64865-2

[2] Ababneh I., Bani-Mohammad S. “A new window-based job scheduling
scheme for 2D mesh Multicomputers”. Simulation Modeling Practice
and Theory 19 (2011) Pp. 482-493

[3] Ahmad S. E. “Processors Allocation with Reduced Internal and External
Fragmentation in 2D Mesh-based Multicomputers”. Journal of Applied
Science 11 (6) 943-952, 2011 ISSN 1812-5654 2011 Asian Network for
Scientific Information

[4] Adiga NR., Almasi G., Almasi GS., Aridor Y., et al. “An Overview of
the BlueGene/L Supercomputer”. Team IBM and Lawrence Livermore
National Laboratory

[5] Bokhari. S. H. “Communication Overhead on the Intel PARAGON,
IBM SP2 & MEIKO CS-2”. In
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19960004071.pdf

[6] Hussain H. Ur Rehman S., Hammed A., Ullah S., et al. “A survey on
resource allocation in high performance distributed computing system”.
Parallel Computing System & Applications 39 ELSEVIER Pp. 709-736.
2013

[7] Leung J. Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, 1st ed., CRC Press Inc., Boca Raton, FL, USA,
2004

[8] Walker P., Bundle D., and V. Leung. “Faster high-quality processor
allocation”. In Proceedings of the 11th LCI International Conference on
High-Performance Clustered Computing 2010

[9] Yoo S., Youn H., and Choo H. “Dynamic Scheduling and Allocation in
Two-Dimensional Mesh-Connected Multicomputers for Real-Time
Tasks”. IEICE TRANS. INF & SYST., VOL. E84-D, No. 5 May 2001

[10] Chuang P., and Tzeng N. “Allocation precise submesh in mesh
connected systems”. IEEE Transactions on Parallel and Distributed
Systems 5(2) (1994) Pp. 211-217

[11] Chuang P. and Tzeng N. “An Efficient Submesh Allocation Strategy for
Mesh Computer Systems”, Proc. Int’l Conf. on Distributed Computing
Systems, May 1991, Pp.256-263

[12] Liu T., Hwang K., Lombardi F., and Bhuyan L. “A Submesh Allocation
Scheme for Mesh-Connected Multiprocessor System”, Proc. 1995 Int’l
Conf. Parallel Processing, vol II, 1995 Pp. 159-163

[13] Ababneh I. “On submesh allocation for 2D mesh multicomputers using
the free-list approach: Global placement schemes”. Performance
Evaluation 66(2009) ELSEVIER Pp. 105-120

[14] Velarde A., Ponce de Leon E., and Diaz E. “Planning and Allocation
Tasks in a Multicomputer System as a Multi-objective Problem”.
Advances in Intelligent Systems and Computing 227. EVOLVE 2013.
International Conference Held at Leiden University, July 10-13, 2013.
Leiden, The Netherlands. Springer

[15] Feitelson D., Rudolph L., Schwiegelshohn U., Sevcik K., and Wong P.
Theory and Practice in Parallel Job Scheduling. Report in
http://www.cs.huji.ac.il/~feit/parsched/jsspp97/p-97-1.pdf

[16] Hou E., Ansari N. and Ren H. “A Genetic Algorithm for Multiprocessor
Scheduling”. IEEE Transactions On Parallel and Distributed Systems,
Vol 5, No. 2, February 1994 Pp. 113-120

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

360 | P a g e

www.ijacsa.thesai.org

[17] Deb K. Multi-objective Optimization Using Evolutionary Algorithm.
Wiley 2001.

[18] Zitzler E., Laumanns M., and Bleuler S. A Tutorial on Evolutionary
Multiobjective Optimization In Metaheuristics for Multiobjective
Optimization. 2003. In http://citeseerx.ist.psu.edu/viewdoc/

[19] Sinnen O. Tasks Scheduling for Parallel Systems. Wiley Series. 2007

[20] Rogiest W., Laevens K., Walraevens J., and Bruneel H. “When
Random-Order-of-Service outperforms First-Come-First-Served”.
Operations Research Letters 43. Elsevier. (2015) Pp. 504-506

[21] Goldberg D. E. “Genetic Algorithms in Search, Optimization and
Machine Learning”. Addisson –Wesley, Reading, MA, 1989

[22] Kwok Y. K. and Ahmad I. “Efficient Scheduling of Arbitrary Task
Graphs to Multiprocessors Using a Parallel Genetic Algorithm”. Journal
of Parallel and Distributed Computing 47, (1997) Pp. 58-77

[23] Bohler M., Moore F., and Pan Y. “Improved Multiprocessor Task
Scheduling Using Genetic Algorithms” MAICS-99 Proceedings. (1999)

[24] Hwang R., Gen M., and Katayama H. “A Performance Evaluation of
Multiprocessor Scheduling with Genetic Algorithm”. Asia Pacific
Management Review 11(2) 2006. Pp 67-72.

[25] Mohamed M. and Awadalla M. “Hybrid Algorithm for Multiprocessor
Task Scheduling”. International Journal of Computer Science Issues,
Vol 8, Issue 3, No. 2, May 2011

[26] Larrañaga P. “A Review on Estimation of Distribution Algorithms”.
Estimation of Distribution Algorithms Vol. 2, Kluwer Academic
Publishers. 2002. Pp. 57-100

[27] Das D. and Pradhan D. K. “Job Scheduling in Mesh Multicomputers”.
IEEE Transactions on Parallel and Distributed Systems, VOL. 9, NO. 1,
JANUARY 1998

[28] Bani-Mohamad S., Ould-Khaoua M., I Ababneh., and Mackenzie L.
“Non-contiguous Processor Allocation Strategy for 2D Mesh Connected
Multicomputers based on Sub-meshes Available for Allocation”.
Proceeding of the 12th International Conference on Parallel and
Distributed Systems (ICPADS’06) 2006 IEEE

[29] Bani A. S., “Submesh Allocation in 2D Mesh multicomputers:
Partitioning at the Longest Dimension of Request”. The International
Arab Journal of Information Technology, Vol. 10, No.3, May 2013. Pp.
245 252.

[30] Y. Zhu. “Efficient processor allocation strategies for mesh-connected
parallel computers”. Journal of Parallel and Distributed Computing.
ELSEVIER. Volume 16, Issue 4, December 1992, Pages 328-337

[31] G. Kim. “On submesh allocation for mesh multicomputers: a best-fit
allocation and a virtual submesh allocation for faulty meshes”. Parallel
and Distributed Systems, IEEE Transactions on. Volume: 9, Issue: 2.
1998. Pp. 175-185.

[32] Velarde A.”Objective Analysis in Task Planning and Allocation of
Multicomputer Systems”. RCS Research in Computer Science. Vol 104.
ISSN 1870-4069. (2015) Pp. 23-39

http://citeseerx.ist.psu.edu/viewdoc/
http://www.sciencedirect.com/science/journal/07437315/16/4
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=14542
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=14542

