
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

283 | P a g e

www.ijacsa.thesai.org

Learning on High Frequency Stock Market Data

Using Misclassified Instances in Ensemble

Meenakshi A.Thalor

Research Scholar,Computer Engineering

Vishwakarma Institute of Technology

Savitribai Phule Pune University

Pune, India

Dr. S.T.Patil

Professor, Computer Engineering

Vishwakarma Institute of Technology

Savitribai Phule Pune University

Pune, India

Abstract—Learning on non-stationary distribution has been

shown to be a very challenging problem in machine learning and

data mining, because the joint probability distribution between

the data and classes changes over time. Many real time problems

suffer concept drift as they changes with time. For example, in

stock market, the customer’s behavior may change depending on

the season of the year and on the inflation. Concept drift can

occurs in the stock market for a number of reasons for example,

trader’s preference for stocks change over time, increases in a

stock’s value may be followed by decreases. The objective of this

paper is to develop an ensemble based classification algorithm

for non-stationary data stream which would consider

misclassified instances during learning process. In addition, we

are presenting here an exhaustive comparison of proposed

algorithms with state-of-the-art classification approaches using

different evaluation measures like recall, f-measure and g-mean.

Keywords—Classifiers; Concept drift; Data stream; Ensemble;

Non-stationary Environment

I. INTRODUCTION

Nowadays most of the applications are online applications,
where huge amount of data increasingly arrives at every time
stamp which is generated from different sources. So it is very
important to train classifiers incrementally over the time so
that they can learn different concepts of non-stationary data
streams.

Conventional data mining algorithms assumes that each
dataset is produced from a single, static and hidden function
i.e. the function (model/classifier) generating data at training
time is the same as that of testing time. Whereas in non-
stationary data stream, data is continuously coming and the
function which is generating instances at time t need not be
the same function at time t+1. This difference in the
underlying function is called as concept drift [1].

The concept drift problem is studied in literature with
different terminology as “concept shift” , “concept drift”,
dataset shift ,“change of classification”, “changing
environments”, ”non-stationary environment” etc. Concept
drift in data stream happens when the relationship between the
input and class variables changes over time and this can
happen because of change in the following:

1) The class priors, P(ci), i = 1, 2, 3, . . . k, where k is the

number of classes;

2) The distribution of the classes, P(X| ci), where i = 1, 2,

3, . . . k and X is a vector of labeled instances; and

3) The posterior distribution of the class membership P(ci

|X), i = 1, 2, 3, . . . k
For providing training to classifiers incrementally over the

time so that they can learn different concepts of non-stationary
data streams we are using ensemble based approach [2] as
shown in fig 1.

Fig. 1. Ensemble Based Learning

In data mining, the ensemble is a pool of classifiers whose
individual classifications/predictions are combined in some
way to classify unseen examples. The strategy in ensemble
systems [3] is to create subsets of incoming data stream and
for each subset a classifier is trained and tested and then these
classifiers collectively would do decision making and predict
the label for unseen data

Performance of learning algorithms dependent upon the
size of the data chunks (block/batch). Bigger blocks [4] can
results in accurate classifiers as classifiers are getting more
data for training, but can contain too many different concept
drifts. Whereas smaller blocks are better for drifted data
stream, but usually lead to poorer classifiers as training data is
less.

Step2:
Build

Multiple

Classifiers

Step1:

Create

Multiple

Datasets

Step3:

Combine

Classifiers

D

D2

Dt

D1

…

…

C2 Ct

C*

C1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

284 | P a g e

www.ijacsa.thesai.org

In this paper, state of the art Learn
++

.NSE algorithm is
evaluated for handling non-stationary data with our proposed
approach. This paper is organized as follows: Section 2 offers
an overview of related work. Section 3 presents proposed
algorithm i.e. ENSDS_P and Section 4 provides detail of
proposed algorithm with its pseudo code. Section 5 provides a
rigorous evaluation of the proposed algorithm with one of the
existing algorithms. Section 6 concludes the paper.

II. RELATED WORK

The first experiment of ensembles in data streams was the
one proposed by Street and Kim with their Streaming
Ensemble Algorithm [5] (SEA) where a chunk of d instances
is read from the data stream and used to build a classifier. As
fixed size of ensemble was used, so they compare new
generated classifier against a pool of previously trained
classifiers (from previous chunk), and if its current classifier
improves the quality of ensemble it is included at the cost of
the worst classifier. SEA uses a simple majority vote and may
not be able to perform in recurring environments.

Wang et al. proposed Accuracy Weighted Ensemble [6]
(AWE) of classifiers on each incoming data chunk and use
that chunk to evaluate the performance of all existing
classifiers in the ensemble. The weight of each classifier is the
difference of error rate of a random classifier and the mean
square error of the classifier for the current chunk. The mean
square errors of old classifiers are high, and thus the weights
of old classifiers are small.

Brzezinski and Stefanowski proposed the Accuracy
Updated Ensemble [7] (AUE) which is derived from AWE.It
uses the same principles of chunk-based ensembles, but with
incremental base components/classifiers. It not only builds
new classifiers, but also conditionally updates existing
classifiers on new chunks rather than just adjusting their
weights. The updation of existing base classifiers makes AUE
better than AWE in case of gradual drift but conditionally
updating of base classifiers is less accurate for sudden drift.

Robi Polikar et al. proposed Learn
++

.NSE [8], [9], [10],
[11], [12] (Nonstationary Environment) which generates
classifiers sequentially using batches of examples/instances
(Not true online learner as it converts the online data stream
into a series of chunks of a fixed size). At each time step, one
new classifier is trained on recent distribution, using an
instance weighting distribution. In Learn

++
.NSE each

classifier’s weight is computed using a weighted average of its
prediction error on old and current batch and finally uses
weighted majority voting to obtain ensemble’s output.

Most recently, Brzezinski and Stefanowski proposed
AUE2 [13] introduces a new weighting function, does not
require cross-validation on the existing classifiers, does not
keep a classifier buffer, prunes its base learners, and always
unconditionally updates its components. Classifiers are
updated after every chunk, so they can react to gradual drifts.
It can react to sudden drifts and gradual drifts but not for
reoccurring concepts. Compared to Learn

++
.NSE, AUE2

incrementally trains existing component classifiers, retains
only k of all the created components, and uses a different

weighting mechanism which ensures that components will
have non-zero weights.

III. PROPOSED ALGORITHM

Fig. 2 depicts the flow diagram of ensemble for non-
stationary data stream with propagation (ENSDS_P).
ENSDS_P is our proposed algorithm, which is an ensemble of
classifiers, where the classifiers are generated from data
arrived at time t and evaluated on recent data. All generated
classifiers are combined by using weighted majority voting to
provide the predictions of unseen data.

Fig. 2. Flow Diagram of ENSDS_P

One of the major differences in ENSDS_P as compared to
existing approaches is, we are not updating a set of weights for
each instance rather we believe all instances are equally
important while they are using in training so uniform weight is
considered and secondly we are propagating the misclassified
instances of a classifier to subsequent classifier for improving
the performance.

In this system, data is continuously arriving in non-
stationary manner. For learning purpose, we take dataset
containing labeled instances. Divide this incoming data into
number of batches where each batch contains equal number of
instances. First apply any suitable classification scheme to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

285 | P a g e

www.ijacsa.thesai.org

create a classifier. The performance of classifier is then
evaluated with same batch of instances. If the error rate of
classifier is more than 50% i.e. half of the predictions are
wrong then delete that recently generated classifier and again
repeat the classification process till we get a classifier having
an error rate less than 50%.

After creation of first classifier, a misclassified instance
buffer is used to store hard to classify instances. All hard to
classify instances are propagated to next classifier so that next
subsequent classifier can learn them with their training chunk
and overall system performance can be improved.

When the next batch of data get available, the incorrect
classified instances of previous classifier would be combined
with labeled instances of current batch and then apply
classification scheme. From this step we get next classifier.
This process is continued till we get classifier for all batches
and all these classifiers are combined using weighted majority
voting scheme. When unlabeled data is arrived, it is predicted
by created ensemble using weighted majority voting.

Two variations of ENSDS_P are developed and analyzed,
first approach named as ENSDS_P_F where we are
propagating misclassified instances, but preserving fix batch
size for all classifiers while other approach named as
ENSDS_P_D where we are propagating misclassified
instances and dynamic chunk size is used for training of
classifiers.

IV. ALGORITHMIC DESCRIPTION

Fig. 3 presents the pseudo code of proposed algorithm. For
each t, a new classifier generates on current training chunk ,
and the performance of all previously generated classifiers

would be evaluated on current data chunk by k
 parameter and

misclassified instances would be saved in a buffer
 .The

misclassified instances will be propagated to next subsequent
classifier with their training chunk.

In step 1, a uniform weight is assigned to all instances of
current data chunk .Step 2 is only different in ENSDS_P_D
and ENSDS_P_F rest of algorithm will remain same for both.
ENSDS_P_D achieves by eq. 1 where total no. of instances
in current data chunk would be union of D

t
 and misclassified

instances of previous data chunk.

 D
t
=D

t
 U

 (1)

ENSDS_P_F achieves by eq. 2 and 3 where ND
t

represent new dataset whose size equal to size of current data
chunk minus size of misclassified instance buffer.

 Size(ND
t
)= Size(D

t
) - Size(

 (2)

 D
t
=ND

t
 U

 (3)

After formation of k
th

 classifier as in step 3, the
performance of existing classifiers will be evaluated over the

current training dataset and we will get k
 which is error

of k
th

 classifier on current . If error generated by current
classifier is more than .5 that is half of the predictions are
wrong then generate a new classifier for the current
distribution. If error generated by one of theprevious classifier

is more than .5 then set its k
 as in step 4.We are not

normalizing the k
 as its value remains between 0 to 0.5 and

voting power of a classifier having k
 will remain low.

Fig. 3. The Pseudo code of the algorithm ENSDS_P

In step 5, we are creating
 parameter which represents a

buffer to hold misclassified instances. These misclassified
instances would be propagated to next classifier before its
formation with its training chunk. A nonlinear sigmoid
function is used to set weight of a classifier. Because of this, if
a classifier will be evaluated more than once then its sigmoid
weight will get increased.

The weight to a classifier is assigned based on its
performance on previous distributions as well as on recent
distribution so weighted average of classifier is computed in

step 6. When a classifier is generated it’s k
 , after its

evaluation on recent environment its k
 gets keep updated. If

a classifier does not performs well on recent environment,

then its weightederror (k
 k

 will gets increased. In step 7
the weight error average is computed to determine the voting

𝜀𝑘
𝑡 𝐷𝑡 𝑖 [|ℎ𝑘 𝑋𝑖 ≠ 𝑦𝑖|]

𝑚

𝑖=

𝑆𝑖𝑔𝑘
𝑡

 + 𝑒 𝑎 𝑡 𝑘 𝑏

 k

 t k
Sigk

Sigk
 + k

 j
j=

, other ise

𝐻𝑡 𝑋𝑖 𝑎𝑟𝑔 max
𝑐

 𝑤𝑘∗
𝑡

𝑘

[|ℎ𝑘 𝑋𝑖 𝑐|]

Algorithm: ENSDS_P

Input: For each dataset 𝐷𝑡 where t=1, 2, ….

Training Data: {𝑋𝑖
𝑡 ∈ 𝑋; 𝑦𝑖

𝑡 ∈ 𝑌 { , … , 𝑐}}, i=1,…, m

instances

Description: Supervised learning algorithm to handle non-

stationary data stream

Do for t = 1, 2, ...

1. Initialize 𝐷𝑡 𝑖 𝑚 , ∀𝑖,
2. If t = 1 then

 Goto step 3

Else

 Refer Eq. 1 for ENSDS_P_D

 or

 Refer Eq. 2,3 for ENSDS_P_F

3. Call base classifier with 𝐷𝑡 , obtain ℎ𝑘: 𝑋 → 𝑌 where k

= 1, 2, ...t

4. Evaluate all existing classifiers ℎ𝑘 on 𝐷𝑡

If 𝜀𝑘=𝑡
𝑡 >

2
 generate a new ℎ𝑘

If 𝜀𝑘<𝑡
𝑡 >

2
 Set 𝜀𝑘

𝑡

2

5. 𝑀𝑘
𝑡 = ∀i here [|hk xi ≠ yi|] is true

6. Compute the weight for kth classifierℎ𝑘

7. Calculate classifier voting weights

Voting 𝑤𝑘
𝑡 ln

 w
k
j
ε
k
jt

j=1

 for k = 1, …, t

8. Obtain the final hypothesis

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

286 | P a g e

www.ijacsa.thesai.org

weight of classifiers. The voting power of each classifier is
computed using logarithm of the inverse of its weighted error
average. If weighted error average is high a classifier will get
less power of voting.

The time complexity of ENSDS_P is
O(t*k*O(x*m)+k*t*m) where O(x*m) is the time complexity
of Naïve Bayes classifier, x is number of features and m is
number of instances in training set, k indicates number of
classifiers, t indicates number of data chunks to be predicted.

V. COMPARATIVE EVALUATION AND ANALYSIS

In the following subsections; we describe the tested
datasets, experimental setup, and comparative analysis of
experimental results.

A. Datasets

For doing the comparison of ENSDS_P and existing
algorithm (Learn

++
.NSE) we are using different datasets with

different batch sizes. The proposed algorithm is tested over
real time datasets.

1) IBM_EOD_Direction: The IBM_EOD_Direction

dataset contains stock data of IBM Company, where we are

considering open, high, low, close, volume and rate of change

in closing price to find out the stock index movement (Up,

Down) for classification task. For training purpose data from

period 2-Jan-2000 to 13-April-2016 (3999 examples) is

fetched and for testing purpose data from period 2-Jan-2001 to

13-April-2016 (3841 examples) is fetched using Google

finance.

2) IBM_EOD_Trading: The IBM_EOD_ Trading dataset

contains stock data of IBM Company, where we are

considering open, high, low, close, volume and rate of change

in closing price to find out Buy or Sell class for Stock data.

For training purpose data from period 2-Jan-2000 to 13-April-

2016 (3999 examples) is fetched and for testing purpose data

from period 2-Jan-2001 to 13-April-2016 (3841 examples) is

fetched using Google finance.
The purpose of considering stock data is as we know that

stock market data is high frequency data which is complex,
non-stationary, chaotic and non-linear and suites our research
topic .Concept drift can occurs in the stock market for a
number of reasons for example, traders preference for stocks
change over time, increases in a stock’s value may be
followed by decreases. Stock market data can possess sudden,
gradual and recurring drift at any moment of time.

The analysis over IBM_EOD_Direction dataset would
help trader to know the position of stock market index at next
moment of time and analysis over IBM_EOD_Trading would

help trader to take decision whether its right time to sell or
purchase the stock.

B. Experimental Setup

For experiment analysis, the proposed algorithm is
implemented in Java using MOA and WEKA framework. The
source code of Learn

++
.NSE is obtained from MOA extensions

for comparison purpose. The experiments were conducted on
a machine equipped with Processor Intel(R) Core(TM) i3-
2120 CPU @ 3.30GHz, 2 Core(s), 4 Logical Processor(s) and
4 GB of RAM. Here we have used different batch size for
comparison purpose. However, the optimal batch size is
different for each stream. For rigorous evaluation, we are
considering different evaluation measures [14] like
P=precision, R=recall, A=accuracy, F-M=f-measure, and G-
M=g-mean.

C. Results

Table 1 depicts the performance of Learn
++

.NSE and both
the versions of ENSDS_P respectively to classify the stock
index movement(Up, Down) over IBM_EOD dataset where
we are considering Naïve Bayes as base classifiers, different

batch size and no pruning strategy is used.

TABLE I. COMPARISON OVER IBM_EOD_DIRECTION DATASET

Batch

Size
Algorithms P R A F-M G-M

500

Learn++.NSE 58.77 94.13 91.07 72.36 92.37

ENSDS_P_D 87.83 84.94 94.48 86.36 90.75

ENSDS_P_F 88.61 76.84 92.42 82.31 86.36

400

Learn++.NSE 57.33 98.21 91.30 72.40 94.22

ENSDS_P_D 79.32 94.98 95.05 86.45 95.03

ENSDS_P_F 82.20 86.86 93.99 84.47 91.14

300

Learn++.NSE 29.84 87.02 85.16 44.44 86.02

ENSDS_P_D 88.61 56.32 84.07 68.87 73.80

ENSDS_P_F 91.23 63.71 87.92 75.03 78.84

It is clear from fig. 4 that for each batch size we are
retrieving high true positives and low false positives hence
precision is higher. The results shows precision of both the
versions of ENSDS_P is significantly high and recall is
approximately equal.

Generally, there always remains a tradeoff between
precision and recall. F-measure is appropriate evaluation
measure which gives the balance between precision and recall.
As compare to Learn

++
.NSE we are able to maintain a good

balance between precision and recall so proposed algorithm
can also be used with imbalanced data. The values of
evaluation measures proved the validity of proposed work
hence evaluation results shows that proposed algorithms
effectively provides incremental learning over high frequency
stock market data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

287 | P a g e

www.ijacsa.thesai.org

Fig. 4. Performance Analysis of Learn++.NSE and ENSDS_P over

IBM_EOD_Direction dataset

Table 2 depicts the performance of Learn
++

.NSE and
versions of ENSDS_P respectively to classify the stock
trading (Buy, Sell) over IBM_EOD_Trading dataset where we
are considering Naïve Bayes as base classifiers, different

batch size and no pruning strategy is used.

TABLE II. COMPARISON OVER IBM_EOD_TRADING DATASET

Batch

Size
Algorithms P R A F-M G-M

500

Learn++.NSE 47.28 97.73 74.49 63.73 81.26

ENSDS_P_D 99.29 88.11 93.31 93.36 93.52

ENSDS_P_F 92.20 77.98 83.96 84.50 84.51

400

Learn++.NSE 76.06 98.30 88.02 85.76 89.82

ENSDS_P_D 99.12 75.40 84.25 85.65 86.35

ENSDS_P_F 83.31 95.95 90.42 89.18 91.13

300

Learn++.NSE 91.21 89.25 90.63 90.22 90.58

ENSDS_P_D 99.07 87.02 92.55 92.66 92.84

ENSDS_P_F 99.18 88.23 93.34 93.38 93.54

Fig. 5 represents that as compared to Learn
++

.NSE we have
achieved high precision, accuracy, f-measure and g-mean for
all batches on IBM_EOD_Trading dataset.

Fig. 5. Performance Analysis of Learn++.NSE and ENSDS_P over

IBM_EOD_Trading Stock dataset

After testing proposed algorithm on different datasets,
evaluation measures confirm the validity and excellence of
proposed algorithm. The non-stationary data can have class
imbalanced problem so result can be biased toward the
majority class; thus the classifier tends to misclassify the
minority class instances. In imbalanced application area,
proposed algorithm can be used and can provide a balance
between majority and minority instances.

VI. CONCLUSION

From the implementation and analysis of ENSDS_P we
can conclude that the performance of ENSDS_P is better as
compared to Learn

++
.NSE on different datasets. Evaluation

measures also confirm the validity of proposed algorithm’s
scores. The selection of optimal batch size varies from dataset
to datasets. The non-stationary data can have class imbalanced
problem so result can be biased toward the majority class; thus
the classifier tends to misclassify the minority class instances.
If dataset is highly imbalanced then there is need to add some
balancing mechanism in proposed algorithm to achieve high
performance.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Le
ar
n
+
+.
N
SE

EN
SD

S_
P
_D

EN
SD

S_
P
_F

Le
ar
n
+
+.
N
SE

EN
SD

S_
P
_D

EN
SD

S_
P
_F

Le
ar
n
+
+.
N
SE

EN
SD

S_
P
_D

EN
SD

S_
P
_F

500 400 300

%

Algorithms with Different Batch Size

Performance Evaluation over IBM_EOD

Direction Dataset

P

R

A

F-M

G-M
45.00

55.00

65.00

75.00

85.00

95.00

105.00

Le
ar
n
+
+.
N
SE

EN
SD

S_
P
_D

EN
SD

S_
P
_F

Le
ar
n
+
+.
N
SE

EN
SD

S_
P
_D

EN
SD

S_
P
_F

Le
ar
n
+
+.
N
SE

EN
SD

S_
P
_D

EN
SD

S_
P
_F

500 400 300

%

Algorithms with Different Batch Size

Performance Evaluation over IBM_Trading

Dataset

P

R

A

F-M

G-M

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

288 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Moreno-Torres, J., Raeder, T., Alaiz-Rodríguez, R., Chawla,
N.V.,Herrera, F., “A unifying view on dataset shift in classification”,
Pattern Recogniion, 45, 521–530 , 2011.

[2] R. Polikar , “Ensemble based systems in decision making”, IEEE
Circuits and Systems Magazine, Vol. 6, No. 3 ,pp. 21-45, 2006

[3] Meenakshi A.Thalor ,Dr.S.T.Patil, “Review of ensemble based
classification algorithms for nonstationary and imbalanced data” ,IOSR
Journal of Computer Engineering,e-ISSN: 2278-0661, Vol. 16, pp. 103-
107, Feb 2014.

[4] Read, J., Bifet, A., Pfahringer, B. & Holmes, G. “Batch-incremental
versus instance-incremental learning in dynamic and evolving data “,
IDA 2012, pp. 313-323, Helsinki, Finland, October 25-27 2012

[5] W. N. Street and Y. Kim, “A streaming ensemble algorithm (SEA) for
large-scale classification," Intellegent Conference on Knowledge
Discovery & Data Mining, pp. 377-382, 2001.

[6] H. Wang, W. Fan, P. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proc. ACM SIGKDD Int. Conf.
Knowl. Disc. Data Min., pp. 226–235, 2003.

[7] Dariusz Brzezinski and Jerzy Stefanowski , “Accuracy updated
ensemble for data streams with concept drift,”Proceedings of the 6th
international conference on Hybrid artificial intelligent systems -
Volume Part II,2011,pp. 155-163.

[8] Elwell R. and Polikar R., “Incremental learning of concept drift in non-
stationary environments, ”IEEE Trans. on Neural Networks, vol. 22,
2011,pp. 1517-1531.

[9] R. Elwell and R. Polikar, “Incremental learning of variable rate concept
drift, ”International Workshop on Multiple Classifier Systems (MCS
2009) in Lecture Notes in Computer Science, vol. 5519, pp. 142-151,
2009.

[10] M. Karnick, M. Ahiskali, M. Muhlbaier, and R. Polikar, “Learning
concept drift in nonstationary environments using an ensemble of
classifiers based approach, ”International Joint Conerence.on Neural
Network,2008, pp. 3455-3462.

[11] M. Muhlbaier and R. Polikar, “An ensemble approach for incremental
learning in nonstationary environments, ”Multiple Classifier Systems,
pp. 490-500, 2007.

[12] Michael D. Muhlbaier and RobiPolikar, “Multiple classifiers based
incremental learning algorithm for learning in nonstationary
environments”, Proceedings of the Sixth International Conference on
Machine Learning and Cybernetics, vol. 6, 2007,pp. 3618–3623.

[13] Brzezinski, D.; Stefanowski, J., “Reacting to different types of concept
drift: the accuracy updated ensemble algorithm, ” , IEEE Transactions
on Neural Networks and Learning Systems Vol. 25(1),2014, 81-94.

[14] Jesse Davis, Mark Goadrich , “The Relationship Between Precision-
Recall and ROC Curves,” In Proceedings of the 23rd international
conference on Machine learning , pp. 233-240,2006.

