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Abstract—Learning on non-stationary distribution has been 

shown to be a very challenging problem in machine learning and 

data mining, because the joint probability distribution between 

the data and classes changes over time. Many real time problems 

suffer concept drift as they changes with time. For example, in 

stock market, the customer’s behavior may change depending on 

the season of the year and on the inflation. Concept drift can 

occurs in the stock market for a number of reasons for example, 

trader’s preference for stocks change over time, increases in a 

stock’s value may be followed by decreases. The objective of this 

paper is to develop an ensemble based classification algorithm 

for non-stationary data stream which would consider 

misclassified instances during learning process. In addition, we 

are presenting here an exhaustive comparison of proposed 

algorithms with state-of-the-art classification approaches using 

different evaluation measures like recall, f-measure and g-mean. 
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I. INTRODUCTION 

Nowadays most of the applications are online applications, 
where huge amount of data increasingly arrives at every time 
stamp which is generated from different sources. So it is very 
important to train classifiers incrementally over the time so 
that they can learn different concepts of non-stationary data 
streams. 

Conventional data mining algorithms assumes that each 
dataset is produced from a single, static and hidden function 
i.e. the function (model/classifier) generating data at training 
time is the same as that of testing time. Whereas in non-
stationary data stream, data is continuously coming and the 
function which is generating instances at time t need not be 
the same function at time t+1. This difference in the 
underlying function is called as concept drift [1]. 

The concept drift problem is studied in literature with 
different terminology as “concept shift” , “concept drift”, 
dataset shift ,“change of classification”, “changing 
environments”, ”non-stationary environment” etc. Concept 
drift in data stream happens when the relationship between the 
input and class variables changes over time and this can 
happen because of change in the following: 

1) The class priors, P(ci), i = 1, 2, 3, . . . k, where k is the 

number of classes; 

2) The distribution of the classes, P(X| ci), where i = 1, 2, 

3, . . . k and X is a vector of labeled instances; and 

3) The posterior distribution of the class membership P(ci 

|X), i = 1, 2, 3, . . . k 
For providing training to classifiers incrementally over the 

time so that they can learn different concepts of non-stationary 
data streams we are using ensemble based approach [2] as 
shown in fig 1. 

 
Fig. 1. Ensemble Based Learning 

In data mining, the ensemble is a pool of classifiers whose 
individual classifications/predictions are combined in some 
way to classify unseen examples. The strategy in ensemble 
systems [3] is to create subsets of incoming data stream and 
for each subset a classifier is trained and tested and then these 
classifiers collectively would do decision making and predict 
the label for unseen data 

Performance of learning algorithms dependent upon the 
size of the data chunks (block/batch). Bigger blocks [4] can 
results in accurate classifiers as classifiers are getting more 
data for training, but can contain too many different concept 
drifts. Whereas smaller blocks are better for drifted data 
stream, but usually lead to poorer classifiers as training data is 
less. 
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In this paper, state of the art Learn
++

.NSE algorithm is 
evaluated for handling non-stationary data with our proposed 
approach. This paper is organized as follows: Section 2 offers 
an overview of related work. Section 3 presents proposed 
algorithm i.e. ENSDS_P and Section 4 provides detail of 
proposed algorithm with its pseudo code. Section 5 provides a 
rigorous evaluation of the proposed algorithm with one of the 
existing algorithms. Section 6 concludes the paper. 

II. RELATED WORK 

The first experiment of ensembles in data streams was the 
one proposed by Street and Kim with their Streaming 
Ensemble Algorithm [5] (SEA) where a chunk of d instances 
is read from the data stream and used to build a classifier. As 
fixed size of ensemble was used, so they compare new 
generated classifier against a pool of previously trained 
classifiers (from previous chunk), and if its current classifier 
improves the quality of ensemble it is included at the cost of 
the worst classifier. SEA uses a simple majority vote and may 
not be able to perform in recurring environments. 

Wang et al. proposed Accuracy Weighted Ensemble [6] 
(AWE) of classifiers on each incoming data chunk and use 
that chunk to evaluate the performance of all existing 
classifiers in the ensemble. The weight of each classifier is the 
difference of error rate of a random classifier and the mean 
square error of the classifier for the current chunk. The mean 
square errors of old classifiers are high, and thus the weights 
of old classifiers are small. 

Brzezinski and Stefanowski proposed the Accuracy 
Updated Ensemble [7] (AUE) which is derived from AWE.It 
uses the same principles of chunk-based ensembles, but with 
incremental base components/classifiers. It not only builds 
new classifiers, but also conditionally updates existing 
classifiers on new chunks rather than just adjusting their 
weights. The updation of existing base classifiers makes AUE 
better than AWE in case of gradual drift but conditionally 
updating of base classifiers is less accurate for sudden drift. 

Robi Polikar et al. proposed Learn
++

.NSE [8], [9], [10], 
[11], [12] (Nonstationary Environment) which generates 
classifiers sequentially using batches of examples/instances 
(Not true online learner as it converts the online data stream 
into a series of chunks of a fixed size). At each time step, one 
new classifier is trained on recent distribution, using an 
instance weighting distribution. In Learn

++
.NSE  each 

classifier’s weight is computed using a weighted average of its 
prediction error on old and current batch and finally  uses 
weighted majority voting  to obtain  ensemble’s output. 

Most recently, Brzezinski and Stefanowski proposed 
AUE2 [13] introduces a new weighting function, does not 
require cross-validation on the existing classifiers, does not 
keep a classifier buffer, prunes its base learners, and always  
unconditionally updates its components. Classifiers are 
updated after every chunk, so they can react to gradual drifts. 
It can react to sudden drifts and gradual drifts but not for 
reoccurring concepts. Compared to Learn

++
.NSE, AUE2 

incrementally trains existing component classifiers, retains 
only k of all the created components, and uses a different 

weighting mechanism which ensures that components will 
have non-zero weights. 

III. PROPOSED ALGORITHM 

Fig. 2 depicts the flow diagram of ensemble for non-
stationary data stream with propagation (ENSDS_P). 
ENSDS_P is our proposed algorithm, which is an ensemble of 
classifiers, where the classifiers are generated from data 
arrived at time t and evaluated on recent data. All generated 
classifiers are combined by using weighted majority voting to 
provide the predictions of unseen data. 

 
Fig. 2. Flow Diagram of ENSDS_P 

One of the major differences in ENSDS_P as compared to 
existing approaches is, we are not updating a set of weights for 
each instance rather we believe all instances are equally 
important while they are using in training so uniform weight is 
considered and secondly we are propagating the misclassified 
instances of a classifier to subsequent classifier for improving 
the performance. 

In this system, data is continuously arriving in non-
stationary manner. For learning purpose, we take dataset 
containing labeled instances. Divide this incoming data into 
number of batches where each batch contains equal number of 
instances. First apply any suitable classification scheme to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 5, 2016 

285 | P a g e  

www.ijacsa.thesai.org 

create a classifier. The performance of classifier is then 
evaluated with same batch of instances. If the error rate of 
classifier is more than 50% i.e. half of the predictions are 
wrong then delete that recently generated classifier and again 
repeat the classification process till we get a classifier having 
an error rate less than 50%. 

After creation of first classifier, a misclassified instance 
buffer is used to store hard to classify instances. All hard to 
classify instances are propagated to next classifier so that next 
subsequent classifier can learn them with their training chunk 
and overall system performance can be improved. 

When the next batch of data get available, the incorrect 
classified instances of previous classifier would be combined 
with labeled instances of current batch and then apply 
classification scheme. From this step we get next classifier. 
This process is continued till we get classifier for all batches 
and all these classifiers are combined using weighted majority 
voting scheme. When unlabeled data is arrived, it is predicted 
by created ensemble using weighted majority voting. 

Two variations of ENSDS_P are developed and analyzed, 
first approach named as ENSDS_P_F where we are 
propagating misclassified instances, but preserving fix batch 
size for all classifiers while other approach named as 
ENSDS_P_D where we are propagating misclassified 
instances and dynamic chunk size is used for training of 
classifiers. 

IV. ALGORITHMIC DESCRIPTION 

Fig. 3 presents the pseudo code of proposed algorithm. For 
each t, a new classifier generates on current training chunk   , 
and the performance of all previously generated classifiers 

would be evaluated on current data chunk by  k
  parameter and 

misclassified instances would be saved in a buffer     
 .The 

misclassified instances will be propagated to next subsequent 
classifier with their training chunk. 

In step 1, a uniform weight is assigned to all instances of 
current data chunk .Step 2 is only different in ENSDS_P_D 
and ENSDS_P_F rest of algorithm will remain same for both. 
ENSDS_P_D achieves    by eq. 1 where total no. of instances 
in current data chunk would be union of D

t
 and misclassified 

instances of previous data chunk. 

 D 
t 
=D

t
  U   

                                            (1) 

ENSDS_P_F achieves    by eq. 2 and 3 where ND
t
 

represent new dataset whose size equal to size of current data 
chunk minus size of misclassified instance buffer. 

 Size(ND
t
)= Size(D

t
) - Size(  

                             (2) 

 D
t
=ND

t
  U     

                                            (3) 

After formation of k
th

 classifier as in step 3, the 
performance of existing classifiers will be evaluated over the 

current training dataset    and we will get  k
   which is error 

of k
th

 classifier on current   . If error generated by current 
classifier is more than .5 that is half of the predictions are 
wrong then generate a new classifier for the current 
distribution. If error generated by one of theprevious classifier 

is more than .5 then set its  k
       as in step 4.We are not 

normalizing the  k
  as its value remains between 0 to 0.5 and 

voting power of a classifier having  k
       will remain low. 

 

Fig. 3. The Pseudo code of the algorithm ENSDS_P 

In step 5, we are creating   
  parameter which represents a 

buffer to hold misclassified instances. These misclassified 
instances would be propagated to next classifier before its 
formation with its training chunk. A nonlinear sigmoid 
function is used to set weight of a classifier. Because of this, if 
a classifier will be evaluated more than once then its sigmoid 
weight will get increased. 

The weight to a classifier is assigned based on its 
performance on previous distributions as well as on recent 
distribution so weighted average of classifier is computed in 

step 6. When a classifier is generated it’s   k
   , after its 

evaluation on recent environment its   k
  gets keep updated. If 

a classifier does not performs well on recent environment, 

then its weightederror ( k
   k

   will gets increased. In step 7 
the weight error average is computed to determine the voting 
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weight of classifiers. The voting power of each classifier is 
computed using logarithm of the inverse of its weighted error 
average. If weighted error average is high a classifier will get 
less power of voting. 

The time complexity of ENSDS_P is 
O(t*k*O(x*m)+k*t*m) where O(x*m) is the time complexity 
of Naïve Bayes classifier, x is number of features and m is 
number of instances in training set, k indicates number of 
classifiers, t indicates number of  data chunks to be predicted. 

V. COMPARATIVE EVALUATION AND ANALYSIS 

In the following subsections; we describe the tested 
datasets, experimental setup, and comparative analysis of 
experimental results. 

A. Datasets 

For doing the comparison of ENSDS_P and existing 
algorithm (Learn

++
.NSE) we are using different datasets with 

different batch sizes. The proposed algorithm is tested over 
real time datasets. 

1) IBM_EOD_Direction: The IBM_EOD_Direction 

dataset contains stock data of IBM Company, where we are 

considering open, high, low, close, volume and  rate of change 

in closing price to find out the stock index movement (Up, 

Down) for classification task. For training purpose data from 

period 2-Jan-2000 to 13-April-2016 (3999 examples) is 

fetched and for testing purpose data from period 2-Jan-2001 to 

13-April-2016 (3841 examples) is fetched using Google 

finance.  

2) IBM_EOD_Trading: The IBM_EOD_ Trading dataset 

contains stock data of IBM Company, where we are 

considering open, high, low, close, volume and rate of change 

in closing price to find out Buy or Sell class for Stock data. 

For training purpose data from period 2-Jan-2000 to 13-April-

2016 (3999 examples) is fetched and for testing purpose data 

from period 2-Jan-2001 to 13-April-2016 (3841 examples) is 

fetched using Google finance. 
The purpose of considering stock data is as we know that 

stock market data is high frequency data which is complex, 
non-stationary, chaotic and non-linear and suites our research 
topic .Concept drift can occurs in the stock market for a 
number of reasons for example, traders preference for stocks 
change over time, increases in a stock’s value may be 
followed by decreases. Stock market data can possess sudden, 
gradual and recurring drift at any moment of time. 

The analysis over IBM_EOD_Direction dataset would 
help trader to know the position of stock market index at next 
moment of time and analysis over IBM_EOD_Trading would 

help trader to take decision whether its right time to sell or 
purchase the stock. 

B. Experimental Setup 

For experiment analysis, the proposed algorithm is 
implemented in Java using MOA and WEKA framework. The 
source code of Learn

++
.NSE is obtained from MOA extensions 

for comparison purpose. The experiments were conducted on 
a machine equipped with Processor Intel(R) Core(TM) i3-
2120 CPU @ 3.30GHz, 2 Core(s), 4 Logical Processor(s) and 
4 GB of RAM. Here we have used different batch size for 
comparison purpose. However, the optimal batch size is 
different for each stream. For rigorous evaluation, we are 
considering different evaluation measures [14] like 
P=precision, R=recall, A=accuracy, F-M=f-measure, and G-
M=g-mean. 

C. Results 

Table 1 depicts the performance of Learn
++

.NSE and both 
the versions of ENSDS_P  respectively to classify the stock 
index movement(Up, Down) over IBM_EOD dataset where 
we are considering Naïve Bayes as base classifiers, different 

batch size and no pruning strategy is used. 

TABLE I.  COMPARISON OVER IBM_EOD_DIRECTION DATASET 

Batch 

Size 
Algorithms P R A F-M G-M 

500 

Learn++.NSE 58.77 94.13 91.07 72.36 92.37 

ENSDS_P_D 87.83 84.94 94.48 86.36 90.75 

ENSDS_P_F 88.61 76.84 92.42 82.31 86.36 

400 

Learn++.NSE 57.33 98.21 91.30 72.40 94.22 

ENSDS_P_D 79.32 94.98 95.05 86.45 95.03 

ENSDS_P_F 82.20 86.86 93.99 84.47 91.14 

300 

Learn++.NSE 29.84 87.02 85.16 44.44 86.02 

ENSDS_P_D 88.61 56.32 84.07 68.87 73.80 

ENSDS_P_F 91.23 63.71 87.92 75.03 78.84 

It is clear from fig. 4 that for each batch size we are 
retrieving high true positives and low false positives hence 
precision is higher. The results shows precision of both the 
versions of ENSDS_P is significantly high and recall is 
approximately equal. 

Generally, there always remains a tradeoff between 
precision and recall. F-measure is appropriate evaluation 
measure which gives the balance between precision and recall. 
As compare to Learn

++
.NSE we are able to maintain a good 

balance between precision and recall so proposed algorithm 
can also be used with imbalanced data. The values of 
evaluation measures proved the validity of proposed work 
hence evaluation results shows that proposed algorithms 
effectively provides incremental learning over high frequency 
stock market data. 
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Fig. 4. Performance Analysis of Learn++.NSE and ENSDS_P over 

IBM_EOD_Direction dataset 

Table 2 depicts the performance of Learn
++

.NSE and 
versions of ENSDS_P  respectively to classify the stock 
trading (Buy, Sell) over IBM_EOD_Trading dataset where we 
are considering Naïve Bayes as base classifiers, different 

batch size and no pruning strategy is used. 

TABLE II.  COMPARISON OVER IBM_EOD_TRADING DATASET 

Batch 

Size 
Algorithms P R A F-M G-M 

500 

Learn++.NSE 47.28 97.73 74.49 63.73 81.26 

ENSDS_P_D 99.29 88.11 93.31 93.36 93.52 

ENSDS_P_F 92.20 77.98 83.96 84.50 84.51 

400 

Learn++.NSE 76.06 98.30 88.02 85.76 89.82 

ENSDS_P_D 99.12 75.40 84.25 85.65 86.35 

ENSDS_P_F 83.31 95.95 90.42 89.18 91.13 

300 

Learn++.NSE 91.21 89.25 90.63 90.22 90.58 

ENSDS_P_D 99.07 87.02 92.55 92.66 92.84 

ENSDS_P_F 99.18 88.23 93.34 93.38 93.54 

Fig. 5 represents that as compared to Learn
++

.NSE we have 
achieved high precision, accuracy, f-measure and g-mean for 
all batches on IBM_EOD_Trading dataset. 

 

Fig. 5. Performance Analysis of Learn++.NSE and ENSDS_P over 

IBM_EOD_Trading Stock dataset 

After testing proposed algorithm on different datasets, 
evaluation measures confirm the validity and excellence of 
proposed algorithm.  The non-stationary data can have class 
imbalanced problem so result can be biased toward the 
majority class; thus the classifier tends to misclassify the 
minority class instances. In imbalanced application area, 
proposed algorithm can be used and can provide a balance 
between majority and minority instances. 

VI. CONCLUSION 

From the implementation and analysis of ENSDS_P we 
can conclude that the performance of ENSDS_P is better as 
compared to Learn

++
.NSE on different datasets. Evaluation 

measures also confirm the validity of proposed algorithm’s 
scores. The selection of optimal batch size varies from dataset 
to datasets. The non-stationary data can have class imbalanced 
problem so result can be biased toward the majority class; thus 
the classifier tends to misclassify the minority class instances. 
If dataset is highly imbalanced then there is need to add some 
balancing mechanism in proposed algorithm to achieve high 
performance. 
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