
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

386 | P a g e

www.ijacsa.thesai.org

A Reversible Data Hiding Scheme for BTC-

Compressed Images

Ching-Chiuan Lin

Department of Information Technology

Overseas Chinese University

Taichung, Taiwan

Shih-Chieh Chen

Department of Multimedia and Game Design

Overseas Chinese University

Taichung, Taiwan

Kuo Feng Hwang

Department of Information Technology

Overseas Chinese University

Taichung, Taiwan

Chi-Ming Yao

Department of Information Technology

Overseas Chinese University

Taichung, Taiwan

Abstract—This paper proposes a reversible data hiding

scheme for BTC-compressed images. A block in the BTC-

compressed image consists of a larger block-mean pixel and a

smaller block-mean pixel. Two message bits are embedded into a

pair of neighboring blocks. One is embedded by expanding the

difference between the two larger block-mean pixels and the

other is embedded by expanding the one between the two smaller

block-mean pixels. Experimental results show that the

embedding strategy may decrease the modification of images.

The proposed scheme may obtain a stego-image with high visual

quality and a payload capacity of one bit per block,

approximately.

Keywords—Block Truncation Coding; Reversible Data Hiding;

Difference Expansion

I. INTRODUCTION

Transmitting secret data over the Internet is a popular
application. To prevent secret data from malicious attack, users
usually encrypt important data before transmission. Encrypting
data is a complicated computation which coverts data into a
meaningless format, which may attract hackers’ attention and
result in undesired attack. Hiding data in an image is an
alternative way for secret communication. It embeds important
data by slightly modifying the image. Hackers may not percept
that important data are embedded in the normal image.
Therefore, an undesired attack may be avoided.

To speed up transmission or decrease required storage,
images are usually converted into smaller ones with
compressed format. JPEG[1] is a popular image format which
applying Discrete Cosine Transform (DCT) to compress an
image. It needs complicated computation for image
compression and decompression. Another technique for image
compression is Vector Quantization (VQ) [2] which records
image blocks in a code book and uses an index of code word to
encode a block of image. A popular block-oriented image
compression method is Block Truncation Coding (BTC) [3].
Compared to JPEG and VQ, BTC is a simple and efficient
encoding method for image compression.

Many data hiding schemes for BTC-compressed images
were proposed [4–9]. However, most of them were irreversible

after secret data were extracted. Namely, the original image
may not be completely recovered. This may degrade the image
and decrease user’s motivation for hiding data in the image.
Therefore, a reversible data hiding scheme, which can
completely recover the original image, is required.

Reversible data hiding schemes embed data in redundant
space of an image [10–13]. Most of the schemes belong to the
two families: shifting histogram and difference expansion. The
former shifts histogram of pixels or differences to get
redundant space located in the peak point of histogram for
embedding a message. The latter expands the difference
between a pair of pixels, i.e. doubles the difference. As a result,
the expanded difference would be an even number and the least
significant bit of each expanded difference value is equal to 0
which is the available embedding space.

TABLE I. AN EXAMPLE OF DIFFERENCE EXPANSION

(𝑦1, 𝑦2) ∆y ∆Y
Embed a bit of 0 Embed a bit of 1

(𝑦1
′ , 𝑦2

′) ∆Y′ (𝑦1
′ , 𝑦2

′) ∆Y′
(95, 95) 0 0 (95, 95) 0 (95, 96) 1

(95, 96) 1 2 (94, 96) 2 (94, 97) 3

(94, 96) 2 4 (93, 97) 4 (93, 98) 5

(94, 97) 3 6 (92, 98) 6 (92, 99) 7

Table I is an example illustrating the embedding process of
difference expansion, where (𝑦1, 𝑦2) are pixel values, ∆y and
∆Y are original and expanded differences, respectively. After
embedding a bit of 0 or 1 into the pair of pixels, their stego-
pixel values and difference would become (𝑦1

′ , 𝑦2
′) and ∆Y′ ,

respectively, as shown in the table. If ∆y , expanding a
difference may be implemented by either increasing the larger
pixel or decreasing the smaller by one. If ∆y , increasing
the larger one and decreasing the smaller one at the same time
is a better option, since it may result in less modification of
pixel values and get a benefit of smaller perception of image
distortion by human vision.

In the decoding process, a bit of or is extracted
if ∆Y′ is equal to an even or odd number, respectively, and the
original difference may be obtained by calculating ∆y
⌊∆Y′ ⌋ . Then 𝑦1 𝑦1

′ ⌊(∆𝑦) ⌋ and 𝑦2 𝑦2
′

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

387 | P a g e

www.ijacsa.thesai.org

⌊∆𝑦 ⌋ are completely recovered. For a 256-level
grayscale image, if blocks with 𝑦1

′ or 𝑦2
′ , these

blocks would not be candidates for embedding a message.
These exceptions are recorded in the overhead information for
identifying if a block embeds a message.

This paper proposes a reversible data hiding scheme for
BTC-compressed images. Embedding space is gotten from
expanding a difference between mean pixel values. A block in
the BTC-compressed image consists of a larger block-mean
pixel and a smaller block-mean pixel. Two message bits are
embedded into a pair of neighboring blocks. One is embedded
by expanding the difference between the two larger block-
mean pixels and the other is embedded by expanding the one
between the two smaller block-mean pixels. Experimental
results show that the embedding strategy may decrease the
modification of images. The proposed scheme may obtain a
stego-image with high visual quality and a payload capacity of
one bit per block, approximately.

The rest of this paper is organized as follows. The BTC
algorithm is briefly reviewed in Section II. Section III
introduces the proposed scheme including embedding and
extraction processes. To help readers understand the proposed
scheme, an embedding example is also given in this section.
Section IV demonstrates our experimental results in terms of
image visual quality and payload capacity. Finally, conclusions
are given in Section V.

II. BLOCK TRUNCATION CODING

In the following, the BTC encoding algorithm is briefly
reviewed. Notations are defined as follows:

 is a block of image, with pixels in the
block,

 (,) is the pixel value of block where and are
indexes of pixels and , ,

 ̅
∑ ∑ (,)

 is the average pixel value of block

 ,

 is the number of pixels in block with (,) ̅ ,

 ̅
 ⌊

∑

 (,) ̅ ⌋ is the larger block-mean pixel

value, for (,) ̅ , in block ,

 ̅
 ⌊

∑

 (,) ̅ ⌋ is the smaller block-mean

pixel value, for (,) ̅ , in block , and


′ is the decoded block of BTC-compressed image.

The BTC encoding algorithm is introduced as follows:

1) Select an image and divide it into non-overlapping

blocks each of them contains pixels.

2) For each block , calculate ̅ , and then , ̅
 ,

 ̅
 .

3) Encode block denoted by ̂ (̅
 , ̅

 ,) ,

where * (,) (,) + is a binary block with

 (,) and (,) if (,) ̅ and (,)
 ̅ , respectively.

4) Repeat step 3 until all blocks are encoded.
The following example gives an illustration for the process

of BTC. Given, for a 256-level grayscale image, a block
 * (,) (,) + is as follows:

136 132 133 134

135 134 137 138

132 132 131 132

133 134 135 136

We have ̅ , , ̅
 , ̅

and * (,) (,) + as shown below.

1 0 0 1

1 1 1 1

0 0 0 0

0 1 1 1

Note that ̅ may not be exactly equal to (̅
 ̅

) .

For convenience, we use ̂ (̅
 , ̅

 ,) to denote an

encoded block. In the example, ̅
 , ̅

 and need a
memory space of 8, 8 and 16 bits, respectively. Compared to
its uncompressed block, the compression rate of BTC is
() () . This may significantly
decrease the required space for storing an image without
complicated computation.

The encoded image is decoded by replacing (,) with

 ̅
 or ̅

 if (,) or (,) , respectively. In

the above example,
′ is decoded as follows:

135 132 132 135

135 135 135 135

132 132 132 132

132 135 135 135

III. PROPOSED SCHEME

The proposed scheme is designated to embed a message
into a BTC-compressed image and extract the message from
the stego-image. Therefore, the BTC encoding procedure in
Section II must be applied to a grayscale cover image if it is
not compressed by the BTC algorithm. We will introduce the
proposed scheme, including the embedding and extraction
procedures in the following sections. Note that the stego-image
would be completely recovered in the proposed scheme.

A. Embedding procedure

The embedding procedure is used to embed a binary bit
string into a BTC-compressed image T. Required embedding
space is obtained from expanding the difference between
block-mean values in blocks. Details are listed as follows:

1) Convert a message into a binary bit string
 1 2 , where * , +. For example, a message (23)16

is converted into (00100011)2 and 1 , 2 , 3 , etc.

2) Sequentially scan the BTC-compressed image T in an

order which was negotiated with the decoder. For each pair of

blocks ̂2 1 (̅2 1
 , ̅2 1

 , 2 1) and

 ̂2 (̅2
 , ̅2

 , 2) , , , , in the image T,

calculate

∆
 | ̅2 1

 ̅2
 |

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

388 | P a g e

www.ijacsa.thesai.org

∆
 | ̅2 1

 ̅2
 |

(
 ̿2 1

 ̿2
)

{

 (
 ̅2 1
 ⌊∆

 ⌋ 2 1

 ̅2
 ⌊(∆

) ⌋
) ̅2 1

 ̅2
 ,

(
 ̅2 1
 ⌊(∆

) ⌋

 ̅2
 ⌊∆

 ⌋ 2 1
) ,



(
 ̿2 1

 ̿2

)

{

 (
 ̅2 1
 ⌊∆

 ⌋ 2

 ̅2
 ⌊(∆

) ⌋
) ̅2 1

 ̅2
 ,

(
 ̅2 1
 ⌊(∆

) ⌋

 ̅2
 ⌊∆

 ⌋ 2
)



3) If ̿2 1
 , ̿2 1

 , ̿2
 , ̿2

 , encode blocks

 and as ̈2 1 (̿2 1
 , ̿2 1

 , 2 1) and ̈2
(̿2
 , ̿2

 , 2).
4) If ̿2 1

 , ̿2
 , ̿2 1

 , or ̿2
 ,

let the pair of blocks be unchanged, i.e.

 ̈2 1 (̅2 1
 , ̅2 1

 , 2 1) and ̈2 (̅2
 , ̅2

 , 2) ,

and record the pair of blocks index as an overhead

information. In other words, this pair of blocks embeds

nothing, and 2 1 and 2 are embedded into the next pair of

blocks.

5) Obtain the stego-image ′ * ̈ , , , +.
Note that if ∆

 , ∆
 , 2 1 , and

 2 , the pair of blocks are also unchanged and they embed
two bits of 0. This means an unchanged pair of blocks is not
equivalent to embedding nothing.

The proposed scheme embeds two bits in a pair of blocks,
instead of embedding one bit in a block. Our embedding
strategy is to decrease the modification of an image. According

to our experiments, for most blocks, ∆
 or ∆

 is

usually less than | ̅2 1
 ̅2 1

 | or | ̅2
 ̅2

 |. Namely,

expanding a smaller difference can make slighter image
modification than expanding a larger one.

B. Extraction procedure

Whenever a decoder would like to extract the embedded
message from a stego-image and recover it to its original BTC-
compressed image T, the extraction procedure would be
applied. Details of the procedure are listed as follows:

1) Block by block scan the stego-image ′ as the order in

the embedding procedure.

2) For each pair of blocks ̈2 1 (̿2 1
 , ̿2 1

 , 2 1)
and ̈2 (̿2

 , ̿2
 , 2) , , , , if index is

not recorded in the overhead information, do step 3, otherwise

skip blocks ̈2 1 and ̈2 since they embed nothing and are

not needed to be recovered.

3) Calculate

∆ ̈
 | ̿2 1

 ̿2
 | 

∆ ̈
 | ̿2 1

 ̿2
 |

∆
 ⌊∆ ̈

 ⌋

∆
 ⌊∆ ̈

 ⌋

and extract

 2 1 ∆ ̈
 

 2 ∆ ̈
 

Then calculate

(
 ̅2 1

 ̅2
)

{

 (
 ̿2 1
 ⌊∆

 ⌋ 2 1

 ̿2
 ⌊(∆

) ⌋
) ̿2 1

 ̿2
 ,

(
 ̿2 1
 ⌊(∆

) ⌋

 ̿2
 ⌊∆

 ⌋ 2 1
) ,



(
 ̅2 1

 ̅2

)

{

 (
 ̿2 1
 ⌊∆

 ⌋ 2

 ̿2
 ⌊(∆

) ⌋
) ̿2 1

 ̿2
 ,

(
 ̿2 1
 ⌊(∆

) ⌋

 ̿2
 ⌊∆

 ⌋ 2
) ,



and recover the pair of blocks to

 ̂2 1 (̅2 1
 , ̅2 1

 , 2 1)and

 ̂2 (̅2
 , ̅2

 , 2)

4) Obtain the original BTC-compressed image T.

C. An example illustrating the proposed scheme

This section gives an example to illustrate the proposed
scheme. Figure 1(a) is a BTC-compressed cover image with 8
blocks. Since 2 1 and 2 are binary arrays and they remain
unchanged during the embedding procedure, their contents
would not be shown in the example for simplicity. Let the
message to be embedded be a character “A” and it’s ASCII
code is ()16 ()2.

The encoder calculates ∆ 1
 ̅1

 ̅2

 , ∆ 1
 | ̅1

 ̅2
 |

 , and

(
 ̿1

 ̿2
) (

 ̅1
 ⌊∆ 1

 ⌋ 1

 ̅2
 ⌊(∆ 2

) ⌋
)

 (
 ⌊ ⌋

 ⌊() ⌋
)

 (

),

(
 ̿1

 ̿2

) (

 ̅1
 ⌊(∆ 1

) ⌋

 ̅2
 ⌊∆ 2

 ⌋ 2
)

 (
 ⌊() ⌋

 ⌊ ⌋
)

 (

).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

389 | P a g e

www.ijacsa.thesai.org

Since ̿1
 , ̿1

 , ̿2
 , ̿2

 , we have stego-

blocks ̈1 (, , 1) and ̈2 (, , 2) as
shown in Figure 1(b). Blocks 3 and 4 embed a bit of 1 and 0 in
the larger and smaller block-mean pixels, respectively. Their

embedding results would be ̈3 (, , 3) and ̈4
(, , 4) . The embedding results of remaining four
blocks are shown in Figure 1(b).

i ̂2 1 ̂2
1 (135,130, 1) (134,132, 2)
2 (136,131, 3) (135,133, 4)
3 (134,132, 5) (135,131, 6)
4 (133,130, 7) (135,130, 8)

(a) Cover image

i ̈2 1 ̈2
1 (135,129, 1) (133,133, 2)
2 (137,130, 3) (134,134, 4)
3 (133,132, 5) (135,130, 6)
4 (132,130, 7) (136,131, 8)

(b) Stego-image

Fig. 1. An embedding example

To extract the embedded message from the stego-image in
Figure 1(b), the decoder scans the image as the order in the
embedding procedure and calculates

∆ ̈1
 ̿1

 ̿2
 ,

∆ ̈1
 | ̿1

 ̿2
 | ,

∆ 1
 ⌊∆ ̈1

 ⌋ ,

∆ 1
 ⌊∆ ̈1

 ⌋ and

extracts

 1 ∆ ̈1
 ,

 2 ∆ ̈1
 .

Then calculate

(
 ̅1

 ̅2
) (

 ̿1
 ⌊∆ 1

 ⌋ 1

 ̿2
 ⌊(∆ 1

) ⌋
)

 (
 ⌊ ⌋

 ⌊() ⌋
)

 (

), and

(
 ̅1

 ̅2

) (

 ̿1
 ⌊(∆ 1

) ⌋

 ̿2
 ⌊∆ 1

 ⌋ 2
)

 (
 ⌊() ⌋

 ⌊ ⌋
)

 (

).

Finally, the pair of blocks are recovered to ̂1
(, , 1) and ̂2 (, , 2) . A bit of 1 is

extracted from 3 ∆ ̈3
 ̿3

 ̿4

 . Similarly, a bit of 0 is extracted
from 4 . The process continues
until the remaining messages are extracted and stego-blocks
are recovered. Note that, in the example, none of block index is
recorded in the overhead information.

IV. EXPERIMENTAL RESULTS

To show the feasibility and performance of the proposed
scheme, we implemented the proposed scheme on a personal
computer with Java. The implementation included compressing
a grayscale image into a BTC-format image as that in Section
II. Test images are shown in Figure 2 and their dimension is
 . The block size of BTC-format image is
pixels. First, a randomly generated message, a binary bit string,
was generated and embedded into a test cover image, i.e. the
BTC-compressed image. Then we extracted the embedded
message from the stego-image and recovered the stego-image
to its cover image. The experimental results show that the
extracted message is exactly the same as the embedded
message and the cover image can be completely recovered.
This means our proposed scheme can reversibly embed a
message into a BTC-compressed image.

The peak signal noise ratio (PSNR) was used to evaluate
the performance of the proposed scheme. It was defined as
follows,

 1
255

dB

where MSE is the mean square error. For an image with N
pixels, MSE is computed as

1

∑ (

′)2
 1 

where and
′ are cover and stego-pixels, respectively.

A larger PSNR implies that a stego-image is more similar
to its cover image than a smaller one. It also implies that the
visual quality of a stego-image with a higher PSNR is better
than that with a smaller one. Researchers usually would like to
get an embedding scheme which can obtain a higher PSNR.

Table II shows the visual quality, in terms of PSNR, of a
stego-image applying the proposed scheme. When a message is
embedded into an image, the image may be distorted by the
modification of pixels. The more the messages are embedded,
the more the image will be distorted. A good embedding
scheme may provide enough embedding space and keep image
quality as high as possible. Table II shows that payload
capacity is approximately equal to the number of blocks, which
means most blocks may embed a message. In addition, the
image quality, i.e. PSNR, is more than 28 dB. This shows that
a stego-image is similar to its cover image and they may not be
distinguishable by human vision.

 (a) Lena (b) Baboon

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

390 | P a g e

www.ijacsa.thesai.org

 (c) Airplane (d) Boat

 (e) Pepper (f) Gold

Fig. 2. Test images

TABLE II. EMBEDDING PERFORMANCE OF THE PROPOSED SCHEME

Images PSNR(dB) Payload(bits)

Lena 28.25 16,272

Baboon 28.03 16,366

Airplane 28.38 16,356

Boat 28.67 16,308

Pepper 29.42 16,016

Gold 29.72 16,368

V. CONCLUSIONS

A reversible data hiding scheme for BTC-compressed
image has been proposed. In the proposed scheme, an image is
divided into non-overlapping blocks and the BTC algorithm is
applied to compress the image. Then a message with two bits is
embedded into two blocks by expanding the difference
between larger block-mean pair and the one between the
smaller block-mean pair. The original BTC-format image may

be completely reconstructed after the embedded message is
extracted. Experimental results show that the proposed scheme
may obtain a stego-image with high visual quality and a
payload capacity of one bit per block, approximately. The
proposed scheme is a good encoder for applications which
need a reversible embedding scheme for BTC-compressed
images without complicated computations.

REFERENCES

[1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Transactions on Consumer Electronics, 38(1), pp. xviii–xxxiv, 1992.

[2] R. Gray, “Vector quantization,” IEEE ASSP Magazine, 1(2), pp.4–29,
1984.

[3] E. Delp and O. Mitchell, “Image compression using block truncation
coding,” IEEE Transactions on Communications, 27(9), pp. 1335–1342,
1979.

[4] J. Chen, W. Hong, T.-S. Chen, and C.-W. Shiu, “Steganography for
BTC compressed images using no distortion technique,” The Imaging
Science Journal, 58(4), pp. 177–185, 2010.

[5] J.-M. Guo and Y.-F. Liu, “High capacity data hiding for error-diffused
block truncation coding,” IEEE Transactions on Image Processing,
21(12), pp. 4808–4818, 2012.

[6] D. Ou and W. Sun, “High payload image steganography with minimum
distortion based on absolute moment block truncation coding,”
Multimedia Tools and Applications, 74(21), pp 9117–9139, 2015.

[7] Y.-C. Chou and H.-H. Chang, “A high payload data hiding scheme for
color image based on BTC compression technique,” 2010 Fourth
International Conference on Genetic and Evolutionary Computing
(ICGEC), pp. 626–629, 2010.

[8] H. Luo, Z. Zhao, and Z.-M. Lu, “Joint secret sharing and data hiding for
block truncation coding compressed image transmission,” Information
Technology Journal, 10(3), pp.681–685, 2011.

[9] C.-C. Chang, Y.-H. Chen, and C.-C. Lin, “A data embedding scheme for
color images based on genetic algorithm and absolute moment block
truncation coding,” Soft Computing, 13(4), pp 321–331, 2009.

[10] J. Tian, “Reversible data embedding using a difference expansion,”
IEEE Transactions on Circuits Systems for Video Technolgy, 13 (8), pp.
890–896, 2003.

[11] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE
Transactions on Circuits and Systems for Video Technology, 16(3), pp.
354–362, 2006.

[12] C.-C. Lin and N.-L. Hsueh, “A lossless data hiding scheme based on
three-pixel block differences,” Pattern Recognition, 41(4), pp. 1415–
1425, 2008.

[13] C.-C. Chang, C.-C. Lin, C.-S. Tseng, and W.-L. Tai, “Reversible hiding
in DCT-based compressed images,” Information Sciences, 177(13), pp.
2768–2786, 2007.

