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Abstract—This paper proposes a reversible data hiding 

scheme for BTC-compressed images. A block in the BTC-

compressed image consists of a larger block-mean pixel and a 

smaller block-mean pixel. Two message bits are embedded into a 

pair of neighboring blocks. One is embedded by expanding the 

difference between the two larger block-mean pixels and the 

other is embedded by expanding the one between the two smaller 

block-mean pixels. Experimental results show that the 

embedding strategy may decrease the modification of images. 

The proposed scheme may obtain a stego-image with high visual 

quality and a payload capacity of one bit per block, 

approximately. 
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I. INTRODUCTION 

Transmitting secret data over the Internet is a popular 
application. To prevent secret data from malicious attack, users 
usually encrypt important data before transmission. Encrypting 
data is a complicated computation which coverts data into a 
meaningless format, which may attract hackers’ attention and 
result in undesired attack. Hiding data in an image is an 
alternative way for secret communication. It embeds important 
data by slightly modifying the image. Hackers may not percept 
that important data are embedded in the normal image. 
Therefore, an undesired attack may be avoided. 

To speed up transmission or decrease required storage,  
images are usually converted into smaller ones with 
compressed format. JPEG[1] is a popular image format which 
applying Discrete Cosine Transform (DCT) to compress an 
image. It needs complicated computation for image 
compression and decompression. Another technique for image 
compression is Vector Quantization (VQ) [2] which records 
image blocks in a code book and uses an index of code word to 
encode a block of image. A popular block-oriented image 
compression method is Block Truncation Coding (BTC) [3]. 
Compared to JPEG and VQ, BTC is a simple and efficient 
encoding method for image compression. 

Many data hiding schemes for BTC-compressed images 
were proposed [4–9]. However, most of them were irreversible 

after secret data were extracted. Namely, the original image 
may not be completely recovered. This may degrade the image 
and decrease user’s motivation for hiding data in the image. 
Therefore, a reversible data hiding scheme, which can 
completely recover the original image, is required. 

Reversible data hiding schemes embed data in redundant 
space of an image [10–13]. Most of the schemes belong to the 
two families: shifting histogram and difference expansion. The 
former shifts histogram of pixels or differences to get 
redundant space located in the peak point of histogram for 
embedding a message. The latter expands the difference 
between a pair of pixels, i.e. doubles the difference. As a result, 
the expanded difference would be an even number and the least 
significant bit of each expanded difference value is equal to 0 
which is the available embedding space. 

TABLE I.  AN EXAMPLE OF DIFFERENCE EXPANSION 

(𝑦1, 𝑦2) ∆y ∆Y 
Embed a bit of 0 Embed a bit of 1 

(𝑦1
′ , 𝑦2

′ ) ∆Y′ (𝑦1
′ , 𝑦2

′ ) ∆Y′ 
(95, 95) 0 0 (95, 95) 0 (95, 96) 1 

(95, 96) 1 2 (94, 96) 2 (94, 97) 3 

(94, 96) 2 4 (93, 97) 4 (93, 98) 5 

(94, 97) 3 6 (92, 98) 6 (92, 99) 7 

Table I is an example illustrating the embedding process of 
difference expansion, where (𝑦1, 𝑦2) are pixel values, ∆y and 
∆Y are original and expanded differences, respectively. After 
embedding a bit of 0 or 1 into the pair of pixels, their stego-
pixel values and difference would become (𝑦1

′ , 𝑦2
′ )  and ∆Y′ , 

respectively, as shown in the table. If ∆y   , expanding a 
difference may be implemented by either increasing the larger 
pixel or decreasing the smaller by one. If ∆y   , increasing 
the larger one and decreasing the smaller one at the same time 
is a better option, since it may result in less modification of 
pixel values and get a benefit of smaller perception of image 
distortion by human vision. 

In the decoding process, a bit of     or     is extracted 
if ∆Y′ is equal to an even or odd number, respectively, and the 
original difference may be obtained by calculating ∆y  
⌊∆Y′  ⌋ . Then 𝑦1  𝑦1

′  ⌊(∆𝑦   )  ⌋  and 𝑦2  𝑦2
′  
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⌊∆𝑦  ⌋    are completely recovered. For a 256-level 
grayscale image, if blocks with 𝑦1

′    or 𝑦2
′     , these 

blocks would not be candidates for embedding a message. 
These exceptions are recorded in the overhead information for 
identifying if a block embeds a message. 

This paper proposes a reversible data hiding scheme for 
BTC-compressed images. Embedding space is gotten from 
expanding a difference between mean pixel values. A block in 
the BTC-compressed image consists of a larger block-mean 
pixel and a smaller block-mean pixel. Two message bits are 
embedded into a pair of neighboring blocks. One is embedded 
by expanding the difference between the two larger block-
mean pixels and the other is embedded by expanding the one 
between the two smaller block-mean pixels. Experimental 
results show that the embedding strategy may decrease the 
modification of images. The proposed scheme may obtain a 
stego-image with high visual quality and a payload capacity of 
one bit per block, approximately. 

The rest of this paper is organized as follows. The BTC 
algorithm is briefly reviewed in Section II. Section III 
introduces the proposed scheme including embedding and 
extraction processes. To help readers understand the proposed 
scheme, an embedding example is also given in this section. 
Section IV demonstrates our experimental results in terms of 
image visual quality and payload capacity. Finally, conclusions 
are given in Section V. 

II. BLOCK TRUNCATION CODING 

In the following, the BTC encoding algorithm is briefly 
reviewed. Notations are defined as follows: 

    is a block of image, with       pixels in the 
block,  

   ( ,  ) is the pixel value of block   where   and   are 
indexes of pixels and    ,    , 

  ̅  
∑ ∑   ( , )

 
   

 
   

   
 is the average pixel value of block 

 ,  

    is the number of pixels in block   with   ( ,  )   ̅ , 

  ̅ 
    ⌊

∑  

  
   ( , )  ̅ ⌋ is the larger block-mean pixel 

value, for   ( ,  )   ̅ , in block  , 

  ̅ 
    ⌊

∑  

    
   ( , )  ̅ ⌋  is the smaller block-mean 

pixel value, for   ( ,  )   ̅ , in block  , and 

   
′ is the decoded block of BTC-compressed image. 

The BTC encoding algorithm is introduced as follows: 

1) Select an image and divide it into non-overlapping 

blocks each of them contains     pixels. 

2) For each block  , calculate  ̅ , and then   ,  ̅ 
   , 

 ̅ 
   . 

3) Encode block   denoted by  ̂  ( ̅ 
   ,  ̅ 

   ,   ) , 

where    *  ( ,  )   ( ,  )        + is a binary block with 

  ( ,  )    and   ( ,  )    if   ( ,  )   ̅  and   ( ,  )  
 ̅ , respectively. 

4) Repeat step 3 until all blocks are encoded. 
The following example gives an illustration for the process 

of BTC. Given, for a 256-level grayscale image, a block 
   *  ( ,  )     ( ,  )     + is as follows: 

136 132 133 134 

135 134 137 138 

132 132 131 132 

133 134 135 136 

We have  ̅     ,     ,  ̅ 
       ,  ̅ 

        
and    *  ( ,  )   ( ,  )        + as shown below. 

1 0 0 1 

1 1 1 1 

0 0 0 0 

0 1 1 1 

Note that  ̅  may not be exactly equal to ( ̅ 
     ̅ 

   )  . 

For convenience, we use  ̂  ( ̅ 
   ,  ̅ 

   ,   ) to denote an 

encoded block. In the example,  ̅ 
   ,  ̅ 

    and    need a 
memory space of 8, 8 and 16 bits, respectively. Compared to 
its uncompressed block, the compression rate of BTC is 
(      ) (    )      . This may significantly 
decrease the required space for storing an image without 
complicated computation. 

The encoded image is decoded by replacing   ( ,  ) with 

 ̅ 
    or  ̅ 

    if   ( ,  )    or   ( ,  )   , respectively. In 

the above example,   
′ is decoded as follows: 

135 132 132 135 

135 135 135 135 

132 132 132 132 

132 135 135 135 

III. PROPOSED SCHEME 

The proposed scheme is designated to embed a message 
into a BTC-compressed image and extract the message from 
the stego-image. Therefore, the BTC encoding procedure in 
Section II must be applied to a grayscale cover image if it is 
not compressed by the BTC algorithm. We will introduce the 
proposed scheme, including the embedding and extraction 
procedures in the following sections. Note that the stego-image 
would be completely recovered in the proposed scheme. 

A. Embedding procedure 

The embedding procedure is used to embed a binary bit 
string into a BTC-compressed image T. Required embedding 
space is obtained from expanding the difference between 
block-mean values in blocks. Details are listed as follows: 

1) Convert a message into a binary bit string   
 1 2    , where    * , +. For example, a message (23)16 

is converted into (00100011)2 and  1   ,  2   ,  3   , etc. 

2) Sequentially scan the BTC-compressed image T in an 

order which was negotiated with the decoder. For each pair of 

blocks  ̂2  1  ( ̅2  1
   ,  ̅2  1

   ,  2  1)  and 

 ̂2  ( ̅2 
   ,  ̅2 

   ,  2 ) ,    , , ,   in the image T, 

calculate 

∆  
    | ̅2  1

      ̅2 
   |
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∆  
    | ̅2  1

      ̅2 
   |

(
 ̿2  1
   

 ̿2 
   )  

{
 
 

 
 (
 ̅2  1
    ⌊∆  

     ⌋   2  1

 ̅2 
    ⌊(∆  

     )  ⌋   
)      ̅2  1

      ̅2 
   ,

(
 ̅2  1
    ⌊(∆  

     )  ⌋   

 ̅2 
    ⌊∆  

     ⌋   2  1
)           ,           



(
 ̿2  1
   

 ̿2 
   
)  

{
 
 

 
 (
 ̅2  1
    ⌊∆  

     ⌋   2 

 ̅2 
    ⌊(∆  

     )  ⌋
)      ̅2  1

      ̅2 
   ,

(
 ̅2  1
    ⌊(∆  

     )  ⌋

 ̅2 
    ⌊∆  

     ⌋   2   
)                     



3) If    ̿2  1
   ,  ̿2  1

   ,  ̿2 
   ,  ̿2 

       , encode blocks 

     and    as  ̈2  1  ( ̿2  1
   ,  ̿2  1

   ,  2  1)  and  ̈2  
( ̿2 
   ,  ̿2 

   ,  2 ). 
4) If  ̿2  1

     ,  ̿2 
     ,  ̿2  1

       , or  ̿2 
       , 

let the pair of blocks be unchanged, i.e. 

 ̈2  1  ( ̅2  1
   ,  ̅2  1

   ,  2  1)  and  ̈2  ( ̅2 
   ,  ̅2 

   ,  2 ) , 

and record the pair of blocks index      as an overhead 

information. In other words, this pair of blocks embeds 

nothing, and  2  1 and  2  are embedded into the next pair of 

blocks. 

5) Obtain the stego-image  ′  * ̈     , , ,  +. 
Note that if ∆  

     , ∆  
     ,  2  1   , and 

 2   , the pair of blocks are also unchanged and they embed 
two bits of 0. This means an unchanged pair of blocks is not 
equivalent to embedding nothing. 

The proposed scheme embeds two bits in a pair of blocks, 
instead of embedding one bit in a block. Our embedding 
strategy is to decrease the modification of an image. According 

to our experiments, for most blocks, ∆  
    or ∆  

    is 

usually less than | ̅2  1
      ̅2  1

   | or | ̅2 
      ̅2 

   |. Namely, 

expanding a smaller difference can make slighter image 
modification than expanding a larger one. 

B. Extraction procedure 

Whenever a decoder would like to extract the embedded 
message from a stego-image and recover it to its original BTC-
compressed image T, the extraction procedure would be 
applied. Details of the procedure are listed as follows: 

1) Block by block scan the stego-image  ′ as the order in 

the embedding procedure. 

2) For each pair of blocks  ̈2  1  ( ̿2  1
   ,  ̿2  1

   ,  2  1) 
and  ̈2  ( ̿2 

   ,  ̿2 
   ,  2 )     , , ,  , if index      is 

not recorded in the overhead information, do step 3, otherwise 

skip blocks  ̈2  1 and  ̈2  since they embed nothing and are 

not needed to be recovered. 

3) Calculate 

∆ ̈ 
    | ̿2  1

     ̿2 
   | 

∆ ̈ 
    | ̿2  1

     ̿2 
   |

∆  
    ⌊∆ ̈ 

     ⌋

∆  
    ⌊∆ ̈ 

     ⌋

and extract 

 2  1  ∆ ̈ 
         

 2  ∆ ̈ 
         

Then calculate 

(
 ̅2  1
   

 ̅2 
   )  

{
 
 

 
 (
 ̿2  1
    ⌊∆  

     ⌋   2  1

 ̿2 
    ⌊(∆  

     )  ⌋   
)      ̿2  1

      ̿2 
   ,

(
 ̿2  1
    ⌊(∆  

     )  ⌋   

 ̿2 
    ⌊∆  

     ⌋   2  1
)           ,           



(
 ̅2  1
   

 ̅2 
   
)  

{
 
 

 
 (
 ̿2  1
    ⌊∆  

     ⌋   2 

 ̿2 
    ⌊(∆  

     )  ⌋
)      ̿2  1

      ̿2 
   ,

(
 ̿2  1
    ⌊(∆  

     )  ⌋

 ̿2 
    ⌊∆  

     ⌋   2   
)           ,         



and recover the pair of blocks to 

 ̂2  1  ( ̅2  1
   ,  ̅2  1

   ,  2  1)and

 ̂2  ( ̅2 
   ,  ̅2 

   ,  2 )

4) Obtain the original BTC-compressed image T. 

C. An example illustrating the proposed scheme 

This section gives an example to illustrate the proposed 
scheme. Figure 1(a) is a BTC-compressed cover image with 8 
blocks. Since  2  1 and  2  are binary arrays and they remain 
unchanged during the embedding procedure, their contents 
would not be shown in the example for simplicity. Let the 
message to be embedded be a character “A” and it’s ASCII 
code is   (  )16  (        )2. 

The encoder calculates ∆ 1
      ̅1

      ̅2
     

           , ∆ 1
    | ̅1

      ̅2
   |            

 , and 

(
 ̿1
   

 ̿2
   )  (

 ̅1
    ⌊∆ 1

     ⌋   1  

 ̅2
    ⌊(∆ 2

     )  ⌋
) 

 (
    ⌊   ⌋       

    ⌊(   )  ⌋
) 

 (
   
   

),  

(
 ̿1
   

 ̿2
   
)  (

 ̅1
    ⌊(∆ 1

     )  ⌋

 ̅2
    ⌊∆ 2

     ⌋   2  
 ) 

 (
    ⌊(   )  ⌋

    ⌊   ⌋      
) 

 (
   
   

).  
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Since    ̿1
   ,  ̿1

   ,  ̿2
   ,  ̿2

       , we have stego-

blocks  ̈1  (   ,    ,  1)  and  ̈2  (   ,    ,  2)  as 
shown in Figure 1(b). Blocks 3 and 4 embed a bit of 1 and 0 in 
the larger and smaller block-mean pixels, respectively. Their 

embedding results would be  ̈3  (   ,    ,  3)  and  ̈4  
(   ,    ,  4) . The embedding results of remaining four 
blocks are shown in Figure 1(b). 

i  ̂2  1  ̂2  
1 (135,130,  1) (134,132,  2) 
2 (136,131,  3) (135,133,  4) 
3 (134,132,  5) (135,131,  6) 
4 (133,130,  7) (135,130,  8) 

(a) Cover image 

i  ̈2  1  ̈2  
1 (135,129,  1) (133,133,  2) 
2 (137,130,  3) (134,134,  4) 
3 (133,132,  5) (135,130,  6) 
4 (132,130,  7) (136,131,  8) 

(b) Stego-image 

Fig. 1. An embedding example 

To extract the embedded message from the stego-image in 
Figure 1(b), the decoder scans the image as the order in the 
embedding procedure and calculates 

∆ ̈1
      ̿1

     ̿2
                 ,  

∆ ̈1
    | ̿1

     ̿2
   |             , 

∆ 1
    ⌊∆ ̈1

     ⌋   , 

∆ 1
    ⌊∆ ̈1

     ⌋    and 

extracts 

 1  ∆ ̈1
                   , 

 2  ∆ ̈1
                   .  

Then calculate 

(
 ̅1
   

 ̅2
   )  (

 ̿1
    ⌊∆ 1

     ⌋   1  

 ̿2
    ⌊(∆ 1

     )  ⌋
)  

 (
    ⌊   ⌋      

    ⌊(   )  ⌋
) 

 (
   
   

), and 

(
 ̅1
   

 ̅2
   
)  (

 ̿1
    ⌊(∆ 1

     )  ⌋

 ̿2
    ⌊∆ 1

     ⌋   2  
) 

 (
    ⌊(   )  ⌋

    ⌊   ⌋     
) 

 (
   
   

). 

Finally, the pair of blocks are recovered to  ̂1  
(   ,    ,  1)  and  ̂2  (   ,    ,  2) . A bit of 1 is 

extracted from  3  ∆ ̈3
            ̿3

     ̿4
           

                  . Similarly, a bit of 0 is extracted 
from  4                   . The process continues 
until the remaining messages are extracted and stego-blocks 
are recovered. Note that, in the example, none of block index is 
recorded in the overhead information. 

IV. EXPERIMENTAL RESULTS 

To show the feasibility and performance of the proposed 
scheme, we implemented the proposed scheme on a personal 
computer with Java. The implementation included compressing 
a grayscale image into a BTC-format image as that in Section 
II. Test images are shown in Figure 2 and their dimension is 
       . The block size of BTC-format image is     
pixels. First, a randomly generated message, a binary bit string, 
was generated and embedded into a test cover image, i.e. the 
BTC-compressed image. Then we extracted the embedded 
message from the stego-image and recovered the stego-image 
to its cover image. The experimental results show that the 
extracted message is exactly the same as the embedded 
message and the cover image can be completely recovered. 
This means our proposed scheme can reversibly embed a 
message into a BTC-compressed image. 

The peak signal noise ratio (PSNR) was used to evaluate 
the performance of the proposed scheme. It was defined as 
follows, 

          1 
255 

   
dB

where MSE is the mean square error. For an image with N 
pixels, MSE is computed as 

    
1

 
∑ (     

′)2 
  1 

where    and   
′ are cover and stego-pixels, respectively. 

A larger PSNR implies that a stego-image is more similar 
to its cover image than a smaller one. It also implies that the 
visual quality of a stego-image with a higher PSNR is better 
than that with a smaller one. Researchers usually would like to 
get an embedding scheme which can obtain a higher PSNR. 

Table II shows the visual quality, in terms of PSNR, of a 
stego-image applying the proposed scheme. When a message is 
embedded into an image, the image may be distorted by the 
modification of pixels. The more the messages are embedded, 
the more the image will be distorted. A good embedding 
scheme may provide enough embedding space and keep image 
quality as high as possible. Table II shows that payload 
capacity is approximately equal to the number of blocks, which 
means most blocks may embed a message. In addition, the 
image quality, i.e. PSNR, is more than 28 dB. This shows that 
a stego-image is similar to its cover image and they may not be 
distinguishable by human vision. 

  
 (a) Lena (b) Baboon 
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 (c) Airplane (d) Boat 

  
 (e) Pepper (f) Gold 

Fig. 2. Test images 

TABLE II.  EMBEDDING PERFORMANCE OF THE PROPOSED SCHEME 

Images PSNR(dB) Payload(bits) 

Lena 28.25 16,272 

Baboon 28.03 16,366 

Airplane 28.38 16,356 

Boat 28.67 16,308 

Pepper 29.42 16,016 

Gold 29.72 16,368 

V. CONCLUSIONS 

A reversible data hiding scheme for BTC-compressed 
image has been proposed. In the proposed scheme, an image is 
divided into non-overlapping blocks and the BTC algorithm is 
applied to compress the image. Then a message with two bits is 
embedded into two blocks by expanding the difference 
between larger block-mean pair and the one between the 
smaller block-mean pair. The original BTC-format image may 

be completely reconstructed after the embedded message is 
extracted. Experimental results show that the proposed scheme 
may obtain a stego-image with high visual quality and a 
payload capacity of one bit per block, approximately. The 
proposed scheme is a good encoder for applications which 
need a reversible embedding scheme for BTC-compressed 
images without complicated computations. 
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