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Abstract—This paper deals with the asymptotic stability of
neutral systems with mixed time-varying delays and nonlinear
perturbations. Based on the Lyapunov-Krasovskii functional
including the triple integral terms and free weighting matrices
approach, a novel delay-decomposition stability criterion is
obtained. The main idea of the proposed method is to divide each
delay interval into two equal segments. Then, the Lyapunov-
Krasovskii functional is used to split the bounds of integral terms
of each subinterval. In order to reduce the stability criterion
conservatism, delay-dependent sufficient conditions are
performed in terms of Linear Matrix Inequalities (LMIs)
technique. Finally, numerical simulations are given to show the
effectiveness of the proposed stability approach.
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. INTRODUCTION

Neutral time-delay appears in many fields of sciences and
engineering, including neural networks, industrial, economy,
chemical processes and population models. In fact, the
presence of time-delay causes the instability, the oscillation,
and performances’ degradation of dynamical systems. Neutral
systems are a part of a specific class of infinite dimensions.
Their stability study can be a complex issue. Recently, the
stability problem of neutral systems has been the subject of
considerable research [1-23]. Thus, several approaches of
delay-dependent stability criteria have been developed for this
problem.

The stability criteria of neutral systems with mixed time-
varying delays can be classified into two concepts. Firstly, the
delay-dependent stability which is based on the size of time-
delay and it gives the upper bound of delay in the formulation.
Secondly, the delay-independent stability class doesn’t include
any information about the size of the time-delay. Indeed, the
delay-dependent is often less conservative than the delay-
independent.

In order to reduce the conservatism, many researchers
studied the nonlinear neutral systems stability with mixed

time-varying delays such as in [1] where authors consider the
delay-dependent robust stability of uncertain neutral systems
with mixed time-varying delays. In [2], 1. Amri et al. have
been studied a delay-dependent exponential stability condition
for nonlinear neutral systems with mixed delays. They employ
a delay-decomposition approach and the known free
weighting matrices method.In [3], novel delay-decomposition
condition of neutral systems with time-varying delays is
proposed and new stability results were derived. In [4], the
authors have been presented a new asymptotic stability results
for nonlinear neutral system with mixed delays by using the
delay-dividing approach. In [5], the exponential stability of
neutral delay differential systems with nonlinear uncertainties
is used. The problem of the delay-dependent robust stability
criteria for neutral systems with mixed time-varying delays
and nonlinear perturbations has been studied in [6]. In [7],
new less conservative robust stability criteria of neutral
systems with mixed time-varying delays and nonlinear
perturbations are derived by using the delay method.

In this paper, the problem of asymptotical delay-
decomposition stability for nonlinear neutral systems with
mixed time-varying delays is investigated. By using a new
augmented Lyapunov—Krasovskii functional including the
triple integral terms for interval time-varying delays as well as
the free-weighting matrices technique and Jensen integral
inequality, new sufficient delay-dependent stability conditions
have been proposed and expressed in terms of LMIs. These
stability conditions can be easily solved by various convex
optimization algorithms.

The remainder of this paper is organized as follows. In
Section 2, the stability problem of nonlinear neutral systems is
described. Some related preliminaries are also given. The
main result of this paper is presented in Section 3. Numerical
examples are carried out in Section 4 in order to illustrate the
proposed results. Section 5 concludes this paper.

Il. PROBLEM DESCRIPTION AND PRELIMINARIES

This paper considers the nonlinear neutral systems with
mixed time-varying delays of Equation (1):
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X(t) — A, X(t -7 (1)) = Ax(t) + A x(t —h(t))
+ o (t, (1)
T, x(—h() 1)
+ f, (t, X(t —z(1)))
X(t) = (t), X(t) = 4(t), Vte[-max{z, hy,}.0]
where x(t)e"is the state vector A, A, A ell ™ are
constant matrices with appropriate dimensions. z(t), h(t) are
neutral and discrete time-varying delays satisfying the
following equations:
0<h_ <h@t)<h,,

O<rz, <7(t)<7,,

ht) < u<1, 2
#(t)<n<l 3)

t
The initial  conditions  functions (p(t),¢( ) are
continuously differentiable on ™ {7:M}:01 The functions

fo (tx(1))

f,(t.x(t=h(t))) and £, (t,x(t—z(t)))are unknown nonlinear

uncertainties satisfying fo(t.0)=0, 1(t,0)=0, £,(t.0) =044

ot x@)] < Ao <]
[[ ., (& —h@®))|| < B[ x(t —h@)|, 4)
[ £, %t —z@)))] < B, [xt =)

where %= 0:8.20 5220400 given constants.

Constraint (4) can be rewritten as follows:
fo (L x(®) fo(t.x() < A7 X (0) x(1)
(Xt -ho) Hexe-he) < X @-ho) xe-hey O
f,7 (L X(E =7 () F (6 X(E 2 (1) < B X7 (E-2(1) X(t - 7(1))
For simplicity, note that:
fo =Tt x(V), f=fit, xE-h®). f,:=1, x(t-7())
Moreover, for dividing the each interval time-varying
delay into two equal subintervals [h ,ah, ] or[eshy,hy,] and
[tmry] OF[@,7y.7, ], two different cases for time-varying
delays have been presented.

Case I: h(t), z(t) are differentiable functions, satisfying for
all t>0 :

h,<ht)<h, and ht)<u<1,
r, <z(t)<z, and #(t)<ny<l. (6)
Case Il: n(t) is not differentiable or the upper bound of the
derivative of h()and«(t)is a differentiable function, and
h(t), z(t) satisfying:
h, <h(t)<h, ,
,<z(t) <7y, 7(t)<n<l.

h,. Ny, 7,7y, d

)

where and # are positive scalars.

Vol. 7, No. 5, 2016

This paper is devoted to investigate the delay-dependent
stability analysis of time-varying delays system (1) satisfying
(2) and (3) equations and under nonlinear perturbations
inequalities (4) and (5). It aims to formulate a less
conservative stability technique to estimate the upper bound
for the delay interval. Before deriving the proposed stability
criteria, the following lemmas are needed.

Lemma 1. [8]

For any constant matrix Rel ™", R=R">0, a scalar
functionh:=h(t)>0,and a vector valued function
x:[~h,0] > "such that the following integrations are well
defined, then:

b A S RME)ds <] (t){‘RR _RR} i)

t-h

_h? j j XT(S)RX(s)dsdegwg(t){_RR _RR} w,(t)

-ht+0

where [ (1) =[x"(t) X" (t—h)]and y7; (t) = {h X' (t) J X" (s) ds}.
t-h

Lemma 2. [9]: The following matrix inequality

Q) S())._
[sw) R(xJ >
Q(x)=Q"(x)

_pT
where , R(X)_R(X)and S(X)depend on

affine on x, is equivalent to R(X)<O, Q(x)<0 and

Q(x)—-S(x)R™*(x)S™(x)<0.
Lemma 3. [10]: For any scalar z(t)>0 and any constant
matrix Re ™ ,R=R" >0, the following inequality holds:

t-h(t)
— I X" (S)Rx(s)ds < (eghy, —h(®) ET (1) FRTFTE()

t—ayhy

+2&T () F[x(t—h(t)) —x(t —a;hy)],
where

X () x"(t=h,) X (t-ht) X" t-eshy,) X (t-7,) X" t-7(t)) X' (t-a,7,,)

T(t) = t T t-hy, T t-7, y
=0 X (1) )'(T(t—f(t))[ j x(s)ds][ j x(s)ds] [ j x(s)ds] ARARA
t-ayry t-oghy t-ary
and Fis free-weighting matrix with appropriate
dimensions.

1l. MAIN RESULTS

In order to obtain some less conservative conditions, new
delay-decomposition method for nonlinear neutral system (1)

is developed. The first delay-interval [h,,h,]is divided into
two segments [h,,a;h, Jand [4hy, . hy, |. The second delay-
subintervals

interval [z,,,7,, ]is decomposed into two

[tmary]| and [a,7y.7,] The following theorem presents
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new stability criteria for interval time-varying delay system
).
Theoreml. In Case I, if h,<h{t)<ah, (0<a <1)
and 7, <z(t)<ea,7, (0<a,<1), for given positive
scalars h,,,hy,z..7u,77: 26 By, B, and g, , the system (1)
with uncertainty (5) and mixed time-varying delays
satisfying(2) and (3) is asymptotically stable if there exist
symmetric positive definite nx n matrices
P.Q(i=1..7),R/(j=1.,7), for any free matrix variables

T.,Y,,W,,N_, X_,F, (a=1,2) and scalars

£ =0 (i=0,1, 2)such that the following symmetric
LMI holds:
o ah, -h, T Jah,Y \/ath -h, W \/azz'M -, N a1, X|
*  —(R+R) 0 0 0 0
* * _
R 0 0 0 1
* * R, 0 0
* * * * —R3 0
* * * * * _R3
@)
Q=(Q
where ( "J)lsxls and:

L, =Q+Q,+Q+Q, +Q+Q, +Y, +Y, + X, + X[

—2R, —2R, —2R, + FA+ATF +¢, A1
Q,=-Y,+Y, +FA
Qo =-X + XzT
Qg=P-F+ AT FzT
Ql,g = FIAZ

2
Ql,lO = R5
ATy
2
Q. =———R
1,11 (ath + hm) 6
2
Q. =—R
12 (aer +rm) !

Q== =F,
Q,, =—Qy +W, +W,
Q,, =-W, +WT

Q5= (1 ,u)QZ +T, +'|'T =Y, YT -W, WT +(£‘1ﬁ1
Q,, =-T,+T,

Q. =AF,

Q,,=-Q-T, —T2T

Qs =-R,—-Q;

Q.. =R,

EN
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o6 =—(1=7)Q + N+ N =X, = X;
Q7,7 =-R,-Q;—N, - NzT

Qs,13 = Qs,m = QB,lS =F,

Qg4 = _(1_ 77)Q5 + gzﬁzzl
2
Q R
10,10 227|\2/| 5
2
Q
11,11 (alzh'\zﬂ hz ) 6
2
Q R
12,12 ( T’a _z_;) 7
Q13,13 =—¢&l
Q14,14 =-¢l
Q505 =61

M =Q, +o¢h, R + (e,
(e'hy — hi)

—h, )R, +a,7, R, + (2,7,

(aZTM Tlf]) R

—rm)2 R,

+

azz 7“2" R, +
2
Proof. Choose a new augmented Lyapunov—-Krasovskii
functional as:
V(1) =Vi (1) +V, (1) +V; (1) +V, (1) 9)
where

Vi () =x" (1) Px(t),

0t -yt
V,(t) = j ij(s)R1>'<(s)dsd9+j JXT(S)RZX(s)dsdH
—oghy t+6 —oghy t+6
0 t Tyt
+ [ [XE)R XS0+ (e, —7,) [ [ X (5)R,X(s)dsdo),
—aymy t+0 —aymy t+0

0 0t -

V)= [ [[X R x(s)dsdado+ | HxT

~ayry Ot+h R TASY)

s)ydsdAde

Ty 0t

SHEC

—apy O t+1

with

R, X(s)dsdAdé.
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X(t) K (t-h) x"(t=-he) X t-ah,) X t-7,) X (t-7() X (t-a,z,)

K (t) XT(t—r(t))[ j x(s)dsj [Ij x(s)ds] [ J[ x(s)ds] IARARA

&)=

-ty t-oyhy -ty

Then, the time derivative of V(t)along the trajectory of
system (1) is given by:

V() =V, () +V, () +V, (1) +V, () (10)
where
V, (t) = X" (t) Px(t) + x" (t) Px(t),
V, () =x"(0)(Q +Q, + Qs +Q, + Qs +Q, ) (1)
—X' (t-ayhy, ) Q X(t -5y, ) - (L-h() X" (t-h(t) Q, x(t -h(t))
=X (t=h,)Qx(t=h,) - L= 7() X" (t-7(t))Q, x(t - (1))
~(=2O) X (t-2 (1) Q X(t =7 (1)) + X (1) QsX(1)
-x' (t-a,7,)Q; X(t—a,7,, )=X' (t-7,)Q, x(t-7,)
V, (£) = X" (1) ((eshyy )R+ (eshy =N, IR, + (a7 )R,

+ (@t —7,)" ROX(M) ~ j X' ()R, X(s)ds

t—ajhy
t-hy, t
- j X" (S)R, X(s) ds — j X" (S)R, X(s) ds
t-ayhy t-ayry

t-7r,

~(a,7y —7,) [ X ()R, X(s)ds,

t—a,ry

and:

22 22 2
V()= (@2, )

2 2
2.2 2 0t
+WR7)X(0— [ [ ()R x(s)dsdo
—ayTy t+6
“hn ot Tyt
- j ij(s)RSX(s)dsda— j ij(s)R7>'<(s)dsd9.
—aghy t+6 —ayTy t+6

The upper bound of the integral terms in inequality V3(t) is
estimated as:

- j X" ()R, x(s)ds — :[m X' ()R, x(s)ds — j. X" ()R, X(s)ds
t-azhy t-aghy t-a,ry
(a7 —7) Tm X" (s)R, X(s)ds
t-h(t) . t t=h(t)
== [ XERXE)s— [ XERX(E)ds— [ X (5)R,X(s)ds
t h(t) t-aghy
t-h,, t-z(t) t
- [ MR X - [ K (GRX(E)ds— [ X(ERX(S)d (1)

t-h(t) t-ayry t-r(t)

—aghy t-

t-r,

~(@ry—7) [ X (S)RX(s)ds

t-a,my

Using Jensen’s inequality, such that:

Vol. 7, No. 5, 2016

t=ty o ! X(t— m) i _R4 R4
—(ary — 1) J. X (S)R“X(s)dsg{x(t—;m)} {RA —RJ

X(t-z,)
{x(t _ay, )}
(12)

0 1 5 a,Ty X(1) ) R R a,TyX(t)
BRI s i O {R: R} | x5

t-ayny

t-a,ry

t-ayry

(13)
7 (e ~ ) x®T
- } j ()R, X(s)dsdO < —— 2> o R R
i @, -1)| [ xe)ds || R R,
t-ahy
(euhy, =) x(t)
t-h,
f X(s)ds
t-ayhy
(14)
Tyt _(asz 7Tm)X(t)_T

2 t-p, _R7 R7
(cfry 22| [ x()ds R, -R,

t-a,ry

- [ [X )R xs)dsdo<
—a,Ty t+60

_(aZTM —T,) X(t) ]
:fm X(s)ds

t-ayry

(15)
By using Lemma 3, an upper bound of integral term of
V (t) can be obtained as:

t-h(t)
- f X' () (R +R,) X(s)ds < (ahy, —h(®) &7 ()T (R, +R,) " TT&(t)

t-ayhy

+2ET @O T[x(t-h(t) - xt-ashy)].

(16)
- Jt' X' ()R, X(s)ds < h(t) &" (1)Y RTTYT&(t)
t—h(t)
+2&T ()Y [x(t) —x(t—h(t)],
17
t=hy
- I X" (S)R, X(s)ds < (h(t) —h, ) &" ()W R, WT&(1)
t=h(t)
+2&ET (W [x(t—h,)—x(t—h(t))]
(18)
t—z(t)
= [ X (R X(8)ds < (a7, —7(1)) €T ONRNTE)
+2&ET ()N [X(t—7(t)) — x(t—arp7,) ]
(19)
- j X" ()R, X(s)ds < (1) £T (1) X R, X T&(t)

t—z(t)
+2&T (1) X [x(t) —x(t—z(t))]
(20)
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For any matrices F,F, with appropriate dimensions, the
following equation, from the system (1), verifies:

X ()R +X (@)F, [[Ax)+ AX(E-h(0) + A Xt - 0) =X(O) + T, + ,+ 1,] =0

(21)
Therefore, combining Equations (10) and (21) yields:
V() =& MQ &) (22)
with

X'(t) X' (t=hy) X" (t=h() X' (t=ahy ) X' (E=7,) X' (t-2(0) X' (t-a7,)

t T( th, WSS T
K (1) x'T(t—r(t))[ j x(s)ds][ j x(s)ds] [ j x(s)ds} ANARA

and Q is given in Equation (8).

&)=

By using the Schur Complement, it is clear to see that the
results V(t)<Oholds ifa<o, h <ht)<agh, and
7, <z(t) <a,r, .-Thus, the system (1) is asymptotically stable
according to the Lyapunov-Krasovskii theory.

Remark 1: Inspired by the previous works [2-10], some
Lyapunov-Krasovskii - functional including triple integral
terms involving lower and upper bounds of each interval time
varying delays have been improved an important role in
reduction of conservatism to estimate the maximum allowable
delay bound.

ah, <h(t)<h

Theorem 2. In Case I, if M (0<ey <1)

and %tm =7(0) =7y (0<a, <1), for given positive

scalars M Mo TwZus 112050 Biang Po the system (1) with
uncertainty (5) and mixed time-varying delays satisfying
Equations (2) and (3) is asymptotically stable if there exist
symmetric positive definite nxn matrices P, Q, (i =1,..,7),

R;(j=1..,7),for any free matrix variables T,,Y,,W,, X,

F, (a=12)and scalars &, >0 (i =0, 1, 2) such that the
following symmetric LMI holds:

n JTma)h, T (R Y Jl-a)h, W o, X]

* R, 0 0 0

* * -R, 0 0 |<0,
* * * _Rz 0

* * * * —R3

(23)
where = (Hivi )15><15
with

Vol. 7, No. 5, 2016

I, =Q,+Q, +Q, +Q, + Qs +Q, +Y, +Y,” + X, + X/

—2R,— 2R, — 2R, + F,A+ ATF + 5,421

IL,=-Y,+Y, +FA

g =—X,+X,
Hl,s =P-F + AT FZT
Hl,g = F1A2
2
l—11,10 :_Rs
M
2
I,,=—R
. (1+a)hy ®
N 2

112 = m 7

Hl,la = Q1,14 = Ql,lS =k

,, =-Q +W, +W,

I, , =-W, +W,

I;, = —(1—,u)Q2 +T, -i-TlT -Y, —Y2T -W, —W2T + Elﬂlzl
[, =-T,+T,

M, =A'F,

n,, =-Q,-T, —TZT

I =-R, - Q;

Iy, =R,

I = —(1—77)Q4 -X,- XzT
I,, =-R,-Q,

M, =Z—-F,—F

Iy = FRA,

g3 =g, =Qys =F,

Iy, = _(1_ 77) Q, + gzﬂzzl
2
Hlo,lo = _T_Z R
M
2
= 6
’ (1— ol ) hZ
2
M, =—7—F5R
’ (1— al )z',\z,l
l_[13,13 =—¢gl
Iy, =—&l
I 5 = —6,l

www.ijacsa.thesai.org
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Z=Q,+ahyR +(1-a)h,R, +a,7, R, +(1-a,)’ /R
(1- )h

2 2y 2
+AR+ R, + L7 %)u g

Proof. Choose a new augmented Lyapunov—Krasovskii
functional as:

V(1) =V, (1) +V, (1) +V, (1) +V, (1)

where

V, (1) =x" () Px(1),

t t t

(24)

V,(t) = f X" (5)Q, X(s) ds + j X" (5)Q, X(s)ds + j X" (5)Q, X(s)ds
t-aghy t-h(t) t-hy
+ jf X' (s)Q, X(s)ds + jf X" (s)Q, X(s)ds + j X" (s)Q, x(s)ds
t-r(t) t-r() t-aymy
+ j X" (8)Q, x(s)ds,
V,(t) = j .If X" (s)R, X(5) dsd9+_a]'hM j X" (s)R, x(s)dsd &
—ahy t+0 —hy t+0

0 t ~&tm

s [ [XORXE)dsdo+0-a)n, | jx (IR A0, V() =4 () (2 it R+ (s

~ayty 1+ -1y t+6
0 0t -y 0t
ijT s)dsdAdo+ j H)’(T(S)RGX(S)dsdﬂde
-1y O t+4 —hy Ot+
Ty 0t
+ [ [[X )R x(s)dsdAdo.
-1y Ot+d
with
X)X (t-afy) X (E=h) K (E=hy) X (t-agz,) X' (t=2(0) X' (t-17,)
o= .

B X () )'(T(t—r(t))[ j x(s)ds] [ITMx(s)ds] [tTM x(s)ds] f o f]

Then, the time derivative of V(t)along the trajectory of
system (1) is given by:
V (t) =V, (t) +V, (t) +V, (1) +V, (t)
where
V,(t) = X" (t) P x(t) + X" (t) Px(t),
Vo(t)=x"(O)(Q+Q; +Qs +Q, +Q; +Q, ) x(t)
~X" (t-ah, )Q X(t—ashy, ) —(A-h(t) X" (t=h(t))
Q, X(t=h(®) = x" (t=hy ) Qs x(t~hy )~ L~ 7(V) X" (t - 2(t))
Q, X(t=7(1) - (L~ (O) X" (t=7(1)) Qs X(t ~ (1)) + X (1) QuX(t)
X' (t-ay7, ) Q X(t-ay7, ) - X (t-7,,)Q, X(t-17,,)

(25)

Vol. 7, No. 5, 2016

\/3 )= X' () (e )R+ (hy —anhy )R, + (a7 )R,

+(7y — a7 ) R)X() - j X" ($)R, X(s)ds
- TMX (S)R, X(s)ds— I X" (S)R, X(s)ds
-1-a,)1y, I_Tw X" (s)R, X(s)ds,

t-1y

va (t) < X" () (( ahy )R+ (hy —ahy )R, + (2,7 )R,

+(ty —a,7y )P R)X() — j X ()R, X(s) ds
t—h(t)

- 7? " X" (s)R, x(s)ds — j X" ()R, x(s) ds
t—hy t=z(t)

t-a,ry

~(1-a,)7, j X" ()R, X(s) ds

t-ry

and

2
(7w

—a’h?
L "")R6+
2

— %l .
27 g )x()
2
—ahy t
- j ij(s)RSX(s)dsda— j ij(s)R6 x(s)dsd@
~Ty t+0 ~hy t+0

- j jx (s)R, x(s)dsdé.

-1y t+6

The upper bound of the integral terms in inequality V,(t) is
estimated as:

t t-aghy t
- j X" (S)R X(s)ds — j X" (5)R, X(s)ds — j X" ()R, X(s) ds
t=h(t) t—hy t—z(t)
t-a,ty
~(1-a,)7y j X" (s)R, X(s)ds
t-1y
t t-h(t) t-aghy
=— j X" ()R, X(s)ds — j X ()R, X(s)ds — j X" (5)R, X(s) ds
t-h(t) t—hy t=h(t)
t-a,ry
- J' X" ()R, X(s)ds —(1-a, )7, I X" (S)R, X(s)ds
t—z(t) t-7y
(26)
Using Jensen’s inequality, such that

~(1-ay) tj K ()R, X(s)dsg{x(l_asz)} {‘RA R, Mx(t‘“zfm)} @7)

Ca X(t-17,) R, R, || x(t-7,)

[ ix 5)dsdf <2 o R R TTX(t) (28)
_JM‘LX() Ks)asa rfA IX(S)ds {Rs —RJ jx(s)ds

t-1y
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- RORT (L), x(t)
vt T , 2 t-ayhy - 6 || t-aify
- [ [ X )R x(s)dsdo< W —aig)| | x(s)ds {Re R | He)ds

2
~hy t+0 (M_ 1

(29)
a4 _(l_az)TM X(t)_ _(l_az)TM X(t)
- I M J (SR >‘<(s)dsd(9<72 e R B
LA T -a)| | ue)ds || RO-R [ x(s)ds
t-ty t-ty
(30)

By using Lemma 3, an upper bound of integral term of
V (t) can be obtained as:

t-h(t)

_F{M £ (5)R, %(s)ds < (h, —h(©) <" OT R,TT £(t) o

+2 T (T [x(t—h()—xt—h,)]

~ [ ¥ ()R X(s)ds <h(t) T OYRIYT (1)
t—h(t) (32)

+2 ST (O)Y [x(t) —x(t—h(t))]

= [ TORxE (0 -ah,) CTOWRIWTCO) (33

t=h(t)
+2 {TOW[x(t—ayhy ) —x(t—h())]
— [ X ()Rx(s)ds<z(t) T (O X R XT £ (1)
t—z(t) (34)
+2 &7 () X [x(t) - x(t —z(t))]
From Equation (5), the following inequalities hold:
2xT (1) x(t)— f," f, >0
X (t—7, () Xt -7 ) - £, f, 20 (35)
22).(T (t—7z, (1) x(t—7, (1)) — sz f, =0
Further, for any scalars &; > 0 (/= 0, 1, 2), it follows from
Equation (35), that
s [Bex" (©) x(®) — f' f,120,
& [ﬂl2 XT (t -0 (t)) X(t -0 (t)) - flT fl] = 0! (36)
&BX (t—7,(0) X(t-7,(t) - f,' f,]>0,
Therefore, combining Equations (25) and (36) yields:
V(@) =TI (M), (37)
with

[X(t) X" (t—ahy) X (t—h(t)) x" (t—hy,)
X' (t—ayry) X (t—7(t) X" (t—7y)

t—aghy

ST =| X @ )'(T(t—r(t))( j x(s)dsJ( j x(s)dsJ

t-7, t—hy

t-a,ty T
( | x(s)ds} £ f)

t-y
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andITis given in Equation (23). By using the Schur
Complement, it is clear to see that the results Vv (t) <o holds if

<0, ah, <h(t)<h,, and a,r, <)<z, .

Thus, the system (1) is asymptotically stable according to
the Lyapunov-Krasovskii method.

Theorem 3. In Case I, for given positive scalars h_,h,,,

T Tu i By, prand B, the  system (1)  with
uncertainty (5) and mixed time-varying delays satisfying
Equations (2) and (3) is asymptotically stable if there exist
symmetric positive definite nx n matrices
P,Q(i=13.7),R;(j=1..,7), for any free matrix variables
T..Y,,W,,N_,X_,F,(a=12)and scalarsg >0 (i=0,1,2) such
that the following symmetric LMI holds:

= Jaf, 0T Jah, Y Jah, AW Jag, N o, X
* _R+R) 0 0 0 0
* * _
R 0 0 0 o (38)
*w * R, 0 0
* * * * —R3 0
* * * * * _R3
where Z:(Zixj)wﬂs
with

T,=Q+Q+Q, +Q +Q, +Y, +Y, + X, + X/
~2R. 2R, 2R, + FEA+ATF +¢,421
=Y, +Y, +FA

e =—X +X,
Yig = P-F+ AT FzT
z"1,9 = FlAZ
2
21,10 =——~R;
)Ty
2
>,,=——R
" (eghy +hy)
2
Z1,12 =7 R?
(a7 +7,,)

21,13 = Ql,l4 = Q1,15 = I:1
2,, =—Q +W, +W/

2,5 =-W, +W,

2, =T, —i-'l'lT -Y, —YzT -W, —W2T + glﬂfl
S, =-T,+T,

s =AF

2,,="Q-T, —TzT

2 =—R,-Q;

397|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Z5,7 = R4
Ze,e = —(1—77)Q4 +N, + NlT -X,- XZT
z:7,7 =-R,-Q;—N, - NzT

Zes =M -F, - F

g0 = R A,

Yg1s =gy = Q05 = F
Teo =—(1-7)Qs +&,B:1

™M

2
z"10,10 =——5Rs
2T
2
z =——R
11,11 (alzhl\zll _hnzq) 6
2
z =R
12,12 (O,/ZZT’%A —Tnz1) 7
z:13,13 ==&l
214,14 =-¢l
Zis1s =—6,1

X () X" (t=h ) X" t=h(t) X (t-ash,) X" (t~7,) X" (t-7(t)) X' (t-at,7,,)

X (t) X (t—r(t)){ j[ x(s)ds] [[J. x(s)dsj [[J' x(s)ds] IARAR A

t-ayry t-aghy t-ayry

&)=

In Case Il, a Lyapunov-Krasovskii functional can be
chosen as (8) with Q, =0. Similar to the above analysis, one

can get that the results Vv(t)<oholds if =<0,
h, <h{) <ah,, and 7, <z(t) <a,7, .Thus, the proof is
completed.

Remark 2: By introducing a new class of augmented
Lyapunov-Krasovskii ~ functional approach, new delay-
decomposition stability criteria for nonlinear neutral systems
with mixed time-varying delays are obtained in Theorems 1-3.
The proposed augmented Lyapunov functional using the novel
triple integral inequality is more robust than existing results in
literature. It gives the upper bounds of time-varying delays
h(t), z(t) for the asymptotic stability of system (1) which can
be provided larger stability domain. In addition, by applying
free-weighting matrices and Jensen integral inequality, our
decomposition approach, developed in Theorems 1-3, yields a
much less conservative delay bounds and extends the feasible
region of stability method for system (1).

Remark 3: In order to derive a fewer restrictive stability
criteria for system (1), many free-weighting matrix variables
are employed in Theorems 1-3. In fact, this technique of
decision variables reduces the computational complexity of
the obtained stability approach which is less than the previous
methods.

Remark 4: In this work and from the practical point of
view, several problems related to this studied field are still
open such as singular descriptor systems with multiple mixed

Vol. 7, No. 5, 2016

time-varying delays, chaotic systems with varying delays and
neural networks systems.

V. ILLUSTRATIVE EXAMPLES

In this section, two examples are presented in order to
show the less conservatism of the elaborated stability
condition and to demonstrate the effectiveness of the proposed
approach.

Example 1.

Consider the following nonlinear neutral system with
mixed time-varying delays, as given in [10]:

12 01 06 07 ¢ 0
A A= A=l @9
where 0 <|c| <1, /b 20:420,50q £, 20

ﬂ1=0.l, TM :lx ,UZO.S, 7720,

Case |I. For c¢=0.1,

a, =02 and different values of P the maximal allowable

delay of LY estimated by Theorems 1 and 2 are illustrated in
Table 1. This table shows the numerical results for different
values of P22 Po =0 ang Bo =01 as B2 jncreases, hy
decreases. In addition, the proposed stability technique gives
a much less conservative result than other recent ones.

Case ll. For 3,=01, 5 =02 5,=01 ,=02, =1
and different values of ¢, the maximum admissible upper
bound on the allowable time delay of h,, =7, obtained from
Theorem 1 are listed in Table 2. As c increases, h,, decreases.

It is clear that the proposed stability method in this paper
provides larger upper bounds of delay system than the
previous results for different values of c.

Case II. For ¢ = 0.1, % =02 £=015,=0, /=0

and % =01 and different values of #="the maximum

upper bounds on the allowable delay of hy =1y obtained from

Theorems 1 and 2 are illustrated in Table 3. As* increases,

o decreases. The presented stability criterion is less
conservative than existing results.

TABLE I. MAXIMUM ALLOWABLE DELAY BOUND OF hM WITH

#=05n=0 AND DIFFERENT VALUES OF ’32

B=0

yiA 0 0.1 0.2 0.3

Rakkiyappan et al.[18] 1.4886 1.2437 0.9921 0.7367
Lakshmanan etal.[13] 1.6325 1.3386 1.0816 0.8563

Cheng et al. [23] 1.6865 1.3721 1.0923 0.8613
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Qiuand Zhang [21] 22937 1.8505 14565 1.1105
Theoreml(a, =0.25) 6.0782 5.1772 3.4872 1.9325
Theorem2 (o, =0.1)  4.7856 4.0752 27424 15156
B, =01

B, 0 01 02 03

Rakkiyappan et al.[18] 1.3244 1.0901 08475 0.6300
Lakshmanan etal.[13] 1.4440 1.1950 0.9734 0.7760
Cheng et al. [23] 14721 12466 0.9996 0.7804
Qiuand Zhang [21] ~ 2.0417 1.6541 1.3062 0.9982

5.6888 4.9444 3.4125 19128
4.4785 3.8915 2.6834 1.5000

Theorem1( o, =0.25)
Theorem2 (o, =0.1)

TABLE II. MAXIMUM UPPER BOUND OF hM = T\, WITH DIFFERENT
VALUES OF C

c 0.1 0.2 0.3
Zhang and Yu [17] 0.4911 04125 0.3382
Qiu et al. [15] 1.8567 1.6242  1.3917
Qiu and Zhang [21] 21916 1.6632 1.4743
Theorem1( e, =0.1) 6.4209 55817 4.7240
c 0.4 0.5 0.6
Zhang and Yu [17] 0.2671 0.1975 0.1294
Qiu et al. [15] 1.1592 0.9270 0.6945
Qiu and Zhang [21] 12396 09288 0.7446
Theorem1( e, =0.1) 3.8303 2.8351 1.5622

TABLE Il1l.  MAXiMuM UPPER BOUND OF hM = T\, WITH DIFFERENT
VALUESOF u=mn
p£,=0 p =01 py=01 p =01
u=n 0 0.5 0 0.5
Chen et al. [23] 2.7423 1.1425 1.8753  1.0097
Liu [22] 2.7429 1.4462 1.8895  1.1485
Qiu and Zhang [21] 3.8066 1.6402 2.6039 1.4534
Theorem1( o, =0.6) 8.1497 2.3438 5.6008 2.1964
Theorem2 (¢, =0.7) 5.8444 16738 40165 1.5683

Example 2.

Consider the mixed time-varying delay systems as
depicted in Equation (40):

a2 05] , _[1 04]  _[02 1 10
_[o —J’Ai{m —1}’%_[0 0.2}‘ (40)
with

fo (6 x(®) fot, x(t) < 87 X" (t) x(t) and
f.7(t, x(t—h(t))) f,(t, x(t —h(t)) < B2 X (t-h(t)) x(E-h(t)).

Vol. 7, No. 5, 2016

While using the parameters %~ 01a,=02 n=p=0

B, =0.2, 5, =0.1and B, =0, the upper bound of Time Delay

hy =17, obtained from Theorem 3 is feasible for any delay
0<h, <3.8561.

It is remarkable that this proposed criterion is much less
conservative than the results shown in [14, 16].

V. CONCLUSION

This paper studied the problem of asymptotic stability for
nonlinear neutral mixed time-varying delays systems. By
using the Lyapunov—Krasovskii functional with triple integral
terms and free weighting matrices approach, new delay-
dependent stability criteria are derived by developing a delay
decomposition technique. The elaborated approach is then
expressed in terms of LMIs. Finally, numerical simulations
have been investigated in order to show the robustness and the
flexibility of the proposed stability method.
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