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Abstract—This paper is concerned with the discretization of 

nonlinear continuous time delay systems. Our approach is based 

on Taylor-Lie series.  The main idea aims to minimize the effect 

of the delay and neglects the importance of nonlinear parameter 

by the linearization of the system study in an attempt to make its 

handling and easier programming as possible. We investigate a 

new method based on the development of new theoretical 

methods for the time discretization of nonlinear systems with 

time delay .The performance of these proposed discretization 

methods was validated by doing the numerical simulation using a 

nonlinear system with state delay. Some illustrative examples are 

given to show the effectiveness of the obtained results. 
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I. INTRODUCTION 

Research on discrete time delay systems has not attracted as 
much attention as that of continuous time delay systems. Many 
engineering applications need a compact and accurate 
description of the dynamic behavior of the considered system. 
This is especially true of automatic control applications. 
Dynamic models describing the system of interest can be 
constructed using the first principles of physics, chemistry, 
biology and so forth. 

Time delay systems often appear in industrial systems and 
information networks. Thus, it is important to analyze time 
delay systems and design appropriate controllers. Control 
systems with time delays exhibit complex behaviors because of 

their infinite dimensionality. Even in the case of linear 
time-invariant systems that have constant time delays in their 
inputs or states have infinite dimensionality if expressed in the 
continuous time domain. It is therefore difficult to apply the 
controller design techniques that have been developed during 
the last several decades for finite dimensional systems to 
systems with any time delays in the variables. Thus, new 
control system design methods that can solve a system with 
time delays are necessary. 

As a result, controller design techniques developed for 
finite dimensional systems are difficult to apply to time delay 
systems with some effectiveness, time delay is often 
encountered in various engineering systems and its existence is 
frequently a source of instability. Many of these models are 
also significantly nonlinear which motivates research in the 
control of nonlinear systems with time delay. For this reasons, 
it’s difficult to analyze and design the control algorithm for the 

nonlinear time delay system in the continuous time domain. It 
is necessary to develop a method to solve the time delay 
problem. Most of the proposed approaches deal with linear 
time-delay control systems and, in particular, with the stability 
analysis and behavior of such systems with constant and/or 
uncertain time delays [19,21,11]. Quite recently and on the 
nonlinear front, nonlinear controllers were systematically 
synthesized for multivariable nonlinear systems in the presence 
of sensor and actuator dead time [9,5]. 

In practice, most of industrial controllers are currently 
implemented digitally. In the design of model based digital 
control systems two general approaches can be identified. First, 
a continuous time controller is designed based on a continuous-
time system model, followed by a digital redesign of the 
controller in the discrete time domain to approximate the 
performance of the original continuous time controller. Second, 
a direct digital design approach can be followed based on a 
discrete time model of the system, where the controller is now 
directly designed in the discrete time domain. It is apparent that 
this alternative approach has the attractive feature of dealing 
directly with the issue of sampling. We can emphasize, that in 
both design approaches time discretization of either the 
controller or the system model is necessary. Furthermore, note 
that in controller design for time delay systems the first 
approach is troublesome because of the infinite dimensional 
nature of the underlying system dynamics. As a result, the 
second approach becomes more desirable and will be pursued 
in the present study. 

In particular, the well known procedure of time 
discretization of linear time delay systems [7,12,4] is extended 
to nonlinear input driven systems with constant time delay. All 
these approaches require a small time step in order to be 
deemed accurate, and this may not be the case in control 
applications where large sampling periods are inevitably 
introduced due to physical and technical limitations [13, 8].  
Due to the physical and technical limitations, slow sampling 
has become inevitable. A time discretization method that 
expands the well known time discretization of linear time delay 
systems [1,6,2,3] to nonlinear continuous time control systems 
with time delays [10,17] can solve this problem. The effect of 
this approach on system theoretic properties of nonlinear 
systems, such as equilibrium properties, relative order, 
stability, zero dynamics, and minimum phase characteristics 
has also been studied [20,16] and reveals the natural and 
transparent manner in which Taylor methods permeate the 
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relevant theoretical aspects. A certainly not exhaustive sample 
of other approaches of notable significance, yet with certain 
associated practical limitations, are reported in [18], and solid 
theoretical results on the direct use of discrete time 
approximations in the control of sampled-data nonlinear 
systems can be found in [14,22]. 

In particular, the present study aims at the development of 
new methods for the time discretization of nonlinear input 
driven dynamic systems with time delay based on Taylor 
series. In particular, the paper is organized as follows: the next 
section contains some mathematical preliminaries; Section 3 
discusses the discretization of system with internal point delay; 
Section 4 discusses the discretization of system with external 
point delay; Section 5 discusses the discretization of system 
with internal and external point delays; Section 6 discusses the 
linearization of nonlinear state space equation and a numerical 
example is given in section 7 to illustrate the proposed 
theoretical results and a concluding remark. 

II. PRELIMINARIES 

In the present study, single-input nonlinear continuous time 
control systems with input output time delays is considered 
using a state space representation of the form: 

1 2 0 1 2 0 1

.
( ) ( ( )) ( ( )) g ( ( )) ( ) g ( ( )) ( )t f x t f x t x t u t x t u tx         

    
(1) 

where,
0

 and 
1
 are the time delay and ( )u t is the control 

input. 

and
0 1

( ) ( )
.

( , )x f x t u t   
                                           

 (2) 

where
nx R is the vector of the states representing an 

open and connected set, u R  is the input variable, m  and 

n  are an integer which indicates the order of the input. 
0

 and

1
 are the system constant time delay, that directly affects the 

input and the state. It is assumed that: 

:
i

n nf R R and : n n
i
g R R , i = 1; 2; ….  

m and : n nf R R R  are smooth mappings. 

An equidistant grid on the time axis with mesh 

1
0

k k
T t t


   is considered where sampling interval is 

1
[ , ] [ ,( 1) ]

kk
t t kT k T


  and T  is the sampling period. 

Furthermore, we suppose the time-delay 
0

 and 
1
  mesh T  are 

related as follows 

0 0
q T     , (

0
1q  , is an integer)                                         (3) 

1 1
q T     , (

1
1q  , is an integer)                                         (4) 

where  0 1
, 0,1,.....,q q m . That is, the time-delay 

0
 and 

1
   are customarily represented as an integer multiple of the 

sampling period adding a fractional part of T  [22]. 

It is assumed that system (1) is driven by an input that is 
piecewise constant over the sampling interval, i.e. the zero-
order hold (ZOH) assumption holds true: 

( ) ( ) ( )u t u kT u k  =constant, for ( 1)kT t k T  
       

(5) 

III. DISCRETIZATION OF NONLINEAR SYSTEMS WITH 

INTERNAL POINT DELAY 

The nonlinear continuous time control systems with input 
time delay are considered using a state space representation 
form: 

1 1 1

.
( ) ( ( )) g ( ( )) ( )t f x t x t u tx   

                                   
(6) 

Based on the zero-order hold assumption and the above 
notation one can deduce that the delayed input variable attains 
the following two distinct values within the sampling interval: 

1 1 1
( ) ( ) ( )u t u kT q T u k q     ,for ( 1)kT t k T  

       
(7) 

the nonlinear system (6) can be discretized using Taylor 

series expansions over the subinterval ( 1)kT t k T   and 

taking into account (7), one can obtain the state vector 

evaluated at ( 1)k T as a function of ( )x k and 
1

( )u k q . 

around the point
0

( )x t , the state ( )x t can be expanded to 

Taylor series as: 

0 0
0 0 0 0 0

2 3''( ) '''( )
( ) ( ) '( )( ) ( ) ( ) ...

2! 3!

x t x t
x t x t x t t t t t t t       

    
(8) 

in the time interval
1

[ , ] [ ,( 1) ]
kk

t t kT k T

  , equation (8) 

can be rewritten using equation (9): 

2 3''( ) '''( )
(( 1) ) ( ) '( ) ...

2! 3!

x kT x kT
x k T x kT x kT T T T               (9) 

for simplicity and without misunderstanding, equation (9) 
can be rewritten as: 

2 3''( ) '''( )
( 1) ( ) '( ) ...

2! 3!

x k x k
x k x k x k T T T     

                  
(10) 

from equation (6), we can get the differential coefficient of 

the state ( )x t : 

 1 1 1

.
( ) ( ( )) g ( ( )) ( )t f x t x t u tx   

                                
(11) 

then in the time interval
1

[ , ] [ ,( 1) ]
kk

t t kT k T

  , equation 

(11) can be rewritten using equation (12): 

1 1 1

.
( ) ( ( )) g ( ( )) ( )k f x k x k u k qx   

                              
(12) 

similarly, based on equation (6) we can calculate the 

second derivative of the state ( )x t , shown in equation (13): 

1 1 1

1 1 1

1 1

1 1 1

1 1

( ( ( )) ( ( ) ( )))( '( ))
''( )

( ( )) ( ( )) ( )
( ) ( ( ))

( ( )) ( ( )) ( )
( ) ( ( ))

dxdx

dx d

d f x t g x t u td x t
x t

dt dt
df x t dg x t du t

u t g x t
dt dt

df x t dg x t du t
u

x d

t g x t
dx dx dt d

t

dx

t









 
 


   

  
    
       

(13) 

for the zero order hold assumption, in each sampling 
interval 
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Equation (13) is correct: 

1
( )( )

0 0
du tdu t

dx dx


  

                                          
(14) 

then in each sampling interval, equation (13) can be 
expressed using equation (15): 

 

1 1 1

1 1

1 1 1

1 1

1 1 1

( ( )) ( ( )) ( )( '( ))
''( ) ( ) ( ( ))

( ( )) ( ( )) ( )
( ) ( ( ))

( ( )) ( ) ( ( ))

df x t dg x t du td x t
x t u t g x t

dt dx dx dt dt

df x t dg x t du t dx
u t g x t

dx dx dx dt

f x t u t g x t dx

x

dx

dt









  
     

 

 
    
 

  


     

(15) 

or
1 1 1

.

( ) ( ( )) g ( ( )) ( )t
dx

f x t x t u t
dt

x    , 

then equation (15) can be rewritten as: 

 

 
 

1 1 1

1 1 1

1 1 1

(16)
( ( )) ( ) ( ( ))( '( ))

''( )

( ( )) ( ) ( ( ))
( ( )) ( )g ( ( ))

f x t u t g x td x t dx
x t

dt x dt

f x t u t g x t

x
f x t u t x t






  
 



  


 

 

in the time interval
1

[ , ] [ ,( 1) ]
kk

t t kT k T

  , equation (16) 

can be rewritten using equation (17): 

 
 1 1 1

1 1 1

( ( )) ( ) ( ( ))
''( ) ( ( )) ( )g ( ( ))

f x k u k q g x k
x k

x
f x k u k q x k

  



 

    
(17) 

assume that: 

 

 

1

1

1 1 1

1 1 1

1 1 1

1

2

1

( , )

( , )

( , )

( , )

( , )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

1,2,3,...

l

A x u

x

A x u

x

l

A x u

A x u

A x u

f x k x k u k q

f x k x k u k q

f x k x k u k q

 
 

 
 

 
 














 

 

 


       

(18) 

then equation (17) can be written as: 

 
 

1

1 1 1

2

1 1 1

( ( )) ( ) ( ( ))
''( )

( ( ), ( ))

( ( )) ( )g ( ( ))
f x k u k q g x k

x k
x

A x k u k q

f x k u k q x k

 
 

  




 

 

  

(19) 

in the same way, we have: 

3

1
''' ( ( ), ( ))x A x k u k q

     (20) 

then equation (10) can be written as: 

 1

1

1

( ), ( )
!

!
( 1) ( )

( )
N l

l

l l

l

l

l

N

tk

T
A x k u k q

l

T d x

l dt
x k x k

x k
 
 
 





 

  





             

(21) 

here ( )x k  is the value of the state ( )x t  at the time t kT , 

 1
( ), ( )

l
A x k u k q

 
    can be calculated using equation (18). 

The Taylor series expansion of equation (21) can offer 
either an exact sampled data representation of equation (6) by 
remaining the full infinite series representation of the state 
vector. It can also provide an approximate sampled data 
representation of equation (6) resulting from a truncation of the 
Taylor series order: 

 

 

1

1

1

( ), ( )
!

( 1) ( ), ( )

( )
l

l

N

T

N l T
A x k u k q

l

x k x k u k q

x k
 
  



 

  


           

(22) 

where, the subscript of  denotes the dependence of the 
sampling period and the superscript N denotes the finite series 
truncation order of the equation (22). 

IV. DISCRETIZATION OF NONLINEAR SYSTEMS WITH 

EXTERNAL POINT DELAY 

The nonlinear continuous time control systems with state 
delay can be represented by the following state space form: 

1 0 1 0

.
( ) ( ( )) ( ( )) g( ( )) ( ) g ( ( )) ( )t f x t f x t x t u t x t u tx       

    
(23) 

where, 0


is the time delay and 
( )u t

is the control input. 

assume that in the time interval
1

[ , ] [ ,( 1) ]
kk

t t kT k T

 

0 0
q T  ,(

0
1q  , is an integer) 

 In the time interval [ ,( 1) ]t kT k T  , 0,1,..., 1k n  , 

1 0
( ( )) 0f x t   and

1 0
g ( ( )) ( ) 0x t u t  . Under the 

zero-order holds assumption and within the sampling interval, 

the solution described in equation (23) is expanded in a 

uniformly convergent Taylor series and the resulting 

coefficients can be easily competed by taking successive partial 

derivatives of the right hand side of equation (23). 
An approximate sampled data representation: 

 0

1

( ), ( )
!

( 1) ( )
l

l

N l T
A x k q u k

l
x k x k

 
  



  
      

 (24) 

where, ( , )
l

A x u
   can be calculate using equation (23) 

 

 

1

1

1 0 1 0

1 0 1 0

1 0 1 0

1

2

1

( , )

( , )

( , )

( , )

( , )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

1,2,3,...

l

A x u
q q

x

A x u
q q

x

l

A x u

A x u

A x u

f x k q x k q u k

f x k x k u k

f x k x k u k

 
 

 
 

 
 





  




  



  






    

(25) 

in the time interval [ ,( 1) ]t kT k T    , 0,1,..., 1k n  , 

equation (24) provides the approximates sampled data 
representation of equation (23): 

   
1

0 !
( ), ( ) ( ), ( )

!
( 1) ( )

l

l lN l l T

l

T
A x k u k B x k q u k

l
x k x k

   
   
   



 
 
 

   
    

(26) 
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where,  ( ), ( )
l

A x k u k
 
   can be calculated using 

equation(23), and  0
( ), ( )

l
B x k q u k

 
    can be calculate using 

equation (25): 

 

 

1

1

1

1 0 1 0

2

1 0 1 0

1

1 0 1 0

( , )

( , )
( , )

( , )
( , )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

1,2,3,...

l

B x u

B x u
B x u q q

x

B x u
B x u q q

x

l

f x k q x k q u k

f x k x k u k

f x k x k u k

  

  

   




  




  



  






   

(27) 

The discrete time form of the nonlinear continuous system 
with state delay, shown in equation (23) can be gotten by 
combining equation (22) and (24). 

V. DISCRETIZATION OF NONLINEAR SYSTEMS WITH 

INTERNAL AND EXTERNAL POINT DELAYS 

The nonlinear continuous time control systems with input 
output time delays are considered using a state space 
representation form: 

1 0 1 0 1

.
( ) ( ( )) ( ( )) g( ( )) ( ) g ( ( )) ( )t f x t f x t x t u t x t u tx         

   
(28) 

where, 0


and 1


are the time delays and 
( )u t

is the 
control input. 

assume that in the time interval
1

[ , ] [ ,( 1) ]
kk

t t kT k T

   

0 0
q T  ,      (

0
1q  , is an integer) 

1 1
q T  ,      (

1
1q  , is an integer) 

based on the zero order hold assumption and the above 
notation one can deduce that the delayed input variable attains 
the following two distinct values within the sampling interval: 

1 1 1
( ) ( ) ( )u t u kT q T u k q     ,for ( 1)kT t k T  

   
(29) 

the nonlinear system (26) can  be discretized using Taylor 
series expansions over the subinterval ( 1)kT t k T   and 

taking into account (27), one can obtain the state vector 

evaluated at ( 1)k T as a function of 
0

( )x k q and 

1
( )u k q . 

in the time interval [ ,( 1) ]t kT k T  , 0,1,..., 1k n  , 

equation (24) provides the approximates sampled data 
representation of equation (23): 

0 1( 1) ( ) ( ), ( ) ( ), ( )
! !1

l lN l lT Tx k x k A x k u k B x k q u k q
l ll

 
 

       
    
    

    
 
 

      
     


      

(30) 

where,  ( ), ( )
l

A x k u k
 
   can be calculated using 

equation(31), and  0 1
( ), ( )

l
B x k q u k q

 
     can be calculate using 

equation (32): 

 

 

1

1

1

1 1

2

1 1

1

1 1

( , )

( , )
( , )

( , )
( , )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

1,2,3,...

l

A x u

A x u
A x u

x

A x u
A x u

x

l

f x k x k u k

f x k x k u k

f x k x k u k

  

  

   




















    

(31) 

and: 

 

 

1

1

1

1 0 1 0 1

2

1 0 1 0 1

1

1 0 1 0 1

( , )

( , )
( , )

( , )
( , )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

( ( )) g ( ( )) ( )

1,2,3,...

l

B x u

B x u
B x u q q

x

B x u
B x u q q

x

l

f x k q x k q u k q

f x k x k u k q

f x k x k u k q

  

  

   




   




   



   






    

(32) 

The discrete time form of the nonlinear continuous system 
with input output time delays, shown in equation (28) can be 
gotten by combining equation (22) and (24). 

VI. LINEARIZATION OF NONLINEARSTATE EQUATION 

The technique of linearization involves approximating a 
complicated system of equations with a simpler linear system. 
We hope to gain insight into the behavior of the nonlinear 
system through an analysis of the behavior of its linearization. 
We hope that the nonlinear system will behave locally like its 
linearization, at least in a qualitative sense. 

In general, the linearization of a system of equations about 
an equilibrium point can be achieved by changing variables so 
that the equilibrium point is transformed to the origin. Points in 
the original system close to the equilibrium point will 
correspond to points close to the origin in the new system. 
Thus we are only concerned with values of the new variables 
close to zero and under certain conditions the nonlinear terms 
can be neglected. The equations that result are linear and are 
the linearization of the original system. 

In order to linearize general nonlinear systems, we will use 
the Taylor Series expansion of functions. 

Consider the nonlinear system: 

( , )

( , )

x f x u

y g x u

 



                                                                   (33) 

with the equilibrium point is ( , )p q . Any function which is 

differentiable can be written as a Taylor series expansion for 

( , )f x u with neglect the terms of high order: 

( , ) ( , )

.
( , ) ( , ) ( ) ( ) ( , )

p q p q

f f
f x u f p q x p u q F x u

x u
x

 
      

 
    

(34) 

where ( , )F x u consists of  nonlinear polynomial terms in 

( )x p and ( )u q . 
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since ( , )p q is an equilibrium ( , ) 0f p q   and neglect high 

order terms, then the state space representation form (33) can 
be rewritten as: 

( , ) ( , )

.
( , ) ( ) ( ) ( , )

p q p q

f f
f x u x p u q F x u

x u
x

 
     

 
    

(35) 

for points near to the equilibrium point  ( )x p and 

( )u q are small and the non linear terms ( , )F p q can be 

neglected. 

We can write the state space model as: 

( , ) ( , )

.
( , ) ( ) ( )

p q p q

f f
f x u x p u q

x u
x

 
    

 
                    

(36) 

where the elements of linearization matrices are: 

1 1

1 2( , ) ( , )

2 2( , )

1 2( , ) ( , )

p q p qi

i

j p q

p q p q

j

f f

x xf
A

x f f

x x

  
 
  

   
   

  
 

,

1

( , )

2( , )

( , )

p qi

i

j p q

p q

j

f

uf
B

u f

u

 
 
  

    
 
 
 

 

( , )

i

i

j p q

j

g
C

x





and

( , )

i

i

j p q

j

g
D

u





 

where
ij
A is called the Jacobian matrix. 

VII. RESULT OF SIMULATIONS 

The performance of the proposed methods of discretization 
for nonlinear systems with time delays is evaluated by applying 
it to a nonlinear continuous system with time delays. The 
partial derivative terms involved in the Taylor series expansion 
are determined recursively. The system considered in this 
paper is assumed to be a nonlinear control system, as it 
considers the pendulum equation with friction: 

2

1 2

.

1

.

2

( , )
( )

x
f x u g k

sinx x u t
l m

x

x 

 


 
    

                     

(37) 

The vector ( )u t , called the input history or control input, is 

chosen to influence the dynamics in some desired way. The 

vector of functions f describes the system’s dynamics and the 

vector of functions h  provides a set of output measurements. 

We call any pair ( ( ), ( ))x t u t satisfying over some time interval 

including 
0

( )t t a solution or trajectory. 

Note that any system of higher order differential equations 
can be written in the first order form. For example, the motion 
of a simple pendulum with an input torque is described by the 
second order nonlinear equation: 

0.2T s , 0.2s  ,  1
g

l
    and     0,5

k

m
  

2

1 2

1

1 2

( , )
0.5 ( 0.2)

0 1 0
( 0.2)

0.5 1

x
f x u

sinx x u t

x
u t

sinx x

 
  

    

    
      

     

              (38) 

with: 

1

2

x
x

x

 
  
  1

0 1

0.5
A

sinx

 
  

  

0

1
B

 
  
 

 

the Jacobian matrix of the function ( , )f x u of the 

pendulum equation is given by: 

1 1

1 2

2 2 1

1 2

0 1

cos( ) 0.5

f f

x xf

f f xx

x x

  
 

             
                                   

(39) 

1

2

0

1

f
f u

fu

u

 
        
    

 
 

                                                                   (40) 

evaluating the Jacobian matrix at the equilibrium points 

(0, 0) and ( , 0) yields, respectively, the two matrices 

1

0 1

1 0.5
A

 
  

 
and

2

0 1

1 0.5
A

 
  

  
 

The Taylor series expansion of equation (21) can offer 
either an exact sampled data representation of the equation (6) 
by remaining the full infinite series representation of the state 
vector. It can also provide an approximate sampled data 
representation of equation (6) resulting from a truncation of the 
Taylor series order: 

    ( ), ( 1)( 1) ( ) A x k u k Tx k x k
                          

(41) 

the simulation results is depicted in the figure 1 
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Fig. 1. Step response of nonlinear continuous and discret system with 

control time delay 

In the second case, the nonlinear continuous time control 
systems with state delay can be represented by the following 
state space form: 

    ( 1), ( )( 1) ( ) A x k u k Tx k x k
                     

(42) 

the simulation results is depicted in the figure 2 

 
Fig. 2. Step response of nonlinear continuous and discret system with state 

time delay 

In the third case, the nonlinear continuous time control 
systems with input output time delays are considered using a 
state space representation form: 

         
0 1

( 1) ( ) ( ), ( ) ( ), ( )x k x k A x k u k T A x k q u k q T
      

(43) 

the simulation results is depicted in the figure 3 

 

Fig. 3. Step response of nonlinear continuous and discret system with input 

output time delay 

Eventually, the simulation using a nonlinear system with 
time delay is conducted to validate the proposed time 
discretization method. 

VIII. CONCLUSION 

This paper proposed a time discretization method for 
nonlinear continuous systems with internal and external point 
delays. This proposed discretization method is based on Taylor 
series. The performance of the proposed time discretization 
method is evaluated using a nonlinear system with time 
delayed. The derived time discretization method provides a 
finite dimensional representation for nonlinear control systems 
with time delay, thereby enabling the application of existing 
nonlinear controller design techniques to such systems. 

Finally, the simulation results show that the proposed 
discretization method does not change the original system 
stability nor increase much computational burden. 
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