
(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

155 | P a g e

www.ijacsa.thesai.org

Evaluation and Comparison of Binary Trie base IP

Lookup Algorithms with Real Edge Router IP Prefix

Dataset

Alireza Shirmarz

Department of Computer

Engineering and Information,

Amirkabir University of Technology

Tehran, Iran

Masoud Sabaei

Department of Computer

Engineering and Information,

Amirkabir University of Technology

Tehran, Iran

Mojtaba hosseini

Department of Computer

Engineering and Information,

Amirkabir University of Technology

Tehran, Iran

Abstract—Internet network is comprised of routers that

forward packets towards their destinations. IP routing lookup

requires computing the Best-Matching Prefix. The main

Functionality of Router is finding the Appropriate Path for

Packet. There are many Algorithms for IP-Lookup with different

Speed, Complexity and Memory usage. In This Paper Three

Binary Trie algorithms will be considered for Performance

Analysis. These algorithms are Priority-Trie, Disjoint Binary and

Binary Trie. We consider three parameters for comparison, these

parameters are Time, Memory and Complexity of Algorithms.

For performance analysis, we develop and run algorithms with

real Lookup-Tables which were used in an edge router.

Keywords—Binary Trie; IP-Lookup; Running Time; Memory

Usage; Complexity

I. INTRODUCTION

Routers Receive Packets and Analyze them. Routers

Extract Source and Destination IP Address from packets. This

equipment looks for Destination IP Address in a Table with a

lot of IP Prefixes, Output Interfaces and Next-Hops IP

Address, then Forwards Packets to next-Hop through the

output interface. Routers fill Lookup Table With many

Different Routing Protocols that are Standard. IP Lookup is a

bottleneck of Routing [1]. There are two Versions of IP

Address, IPv4 & IPv6. In this Paper concentration is on IPv4

that is universal and popular. IPv4 structure consists of 32 bits

and is shown with 4 decimal digits that are separated by dot

[2]. There is Two Type of IPv4 addressing that are defined in

(a) and (b).

A. Classful IP Addressing

IPv4 Structure divided by two portions. More Valuable bits

portion is network section and the other one is for Hosts.

Network bits are called “Address Prefix”. For showing IP

Address Prefix, bits related to Network are used and for other

bits “*” is used, for example 1000001001010110* is an IP

Address Prefix that consist of 2
16

 IP Address that are started by

this IP Address Prefix. Address Prefix is shown in Decimal like

130.86/16 [1]. Routers should search and Forward Packets with

IP address Prefix.

TABLE I. FORWARDING TABLE EXAMPLE [1]

Some Classes are defined in this addressing structure, for

example IP class A, B & C are shown in fig (1).

Fig. 1. Classful IP Addressing [1]

B. CIDR IP Addressing

This addressing method is proposed for efficient use of

address space in IPv4. In classful addressing, there are limited

classes but in CIDR addressing method, network bits are

variable and specify with Mask. IP address and Net Mask are

operated by XOR and network bits extracted.

Routers must use Longest Prefix Matching for IP Lookup

that is shown in fig (2).

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

156 | P a g e

www.ijacsa.thesai.org

Fig. 2. CIDR Addressing in IPv4 Space [1]

Paper [5] proposed an optimized method for IP Lookup

Table management with considering of memory complexity.

In this Paper, three algorithms which are Binary Trie Base

are developed and run for twelve times, and evaluate

algorithms in a situation with real IP Lookup Table Data. This

IP lookup Table data is collected in 4 period of time and data

variable is considered. Datasets are used for each algorithm. In

section 2, the algorithms are described and in section 3, the

situations of development and simulation are described and in

section 4, the results and Charts are shown then in the last

section there is a conclusion .In the last section there is a

conclusion about the results.

Router processes entry IP Packet and extract IP address. It

uses IP address prefix or IP network section and looks for it in

lookup table then forwards packet to specified output interface.

Totally there are two type IP Lookup algorithms, hardware and

software base. table (II) shows IP lookup algorithms.

TABLE II. TOW TYPE IP LOOKUP ALGORITHMS (HARDWARE AND

SOFTWARE)

Software Base Algorithms Hardware Base Algorithms

Binary-Trie DIR-24-8-BASIC Scheme

Path Compressed Trie
DIR-Based Scheme with Bitmap

Compression

(BC-16-16)

Multi-Bit Trie Ternary CAM for Route Lookup

Level Compression
Algorithms for Reducing TCAM

Entries

Lulea Algorithm
Reducing TCAM Power – Cool

CAMs

Tree Bitmap Algorithm
TCAM-Based Distributed Parallel

Lookup

Tree-Based Pipelined Search

Binary Search on Prefix Range

Nowadays SDN separates Data Plane and control Plane, so

software base algorithms got important contrary to advantage

of Hardware base algorithms. SDN make service providing

agile [3]. NFV try to implement network functions as software

and virtual [4]. Software base network simplify network entity.

Because of software base network importance, three software

base and basic IP Lookup algorithms are developed, Evaluated

and compared in this paper.

Three basic and main software base IP Lookup algorithms

are Binary trie, Disjoint Binary Trie & Priority Trie that other

software base algorithms derived from them.

C. Binary Trie algorithm [2]

First, this algorithm reads IP Address Prefixes from IP

Lookup Table and makes a Binary tree then looks for per entry

packet IP address. The tree structure that this algorithm makes

is shown in fig (3).

Fig. 3. Binary Trie [2]

 Binary Trie Prefix construction Algorithm

IP prefix binary tree construction needs a structure with

three fields.

1) A Pointer to the left

2) A pointer to the right

3) A value with binary type

Preprocessing of IP lookup table to make sure all prefixes

are in binary format. To begin, a software module reads each

prefix from IP lookup file and a pointer creates as a root node

then if current bit is 0 pointer goes to the left branch else if

current bit is 1 pointer goes to the right branch. Pointer reads

next bit and base on value does as mentioned algorithm before

from the current node. In each IP address prefix last bit, pointer

writes the prefix in value variable.

 IP Lookup algorithm base on binary tree

In first step, a pointer reads entry IP address valuable

binary and if pointer sees 0 then points to left branch else if

pointer sees 1 then points right branch. This algorithm goes on

until pointer points a node that doesn’t exist. if the pointer sees

a node with value (not null) this prefix is longest prefix match

for this entry IP address else if pointer sees last node with null

value, it should register last node value as longest prefix

matching that has seen before and has not been null.

 Insert node to the tree

For insertion also navigate the tree like construction and

lookup algorithms and add value null for intermediate node and

insert specified value for the last node of tree.

 Delete node from the tree

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

157 | P a g e

www.ijacsa.thesai.org

For this algorithm like making, lookup and insertion, tree

should be navigated and deleted node and delete intermediate

node until a node with not null value is seen.

Memory complexity depends on number of address prefix

in lookup table and number of prefix bits O(NW). N is number

of prefixes in lookup table and W is shown number of prefix

bits. Memory complexity depends on memory speed and

number of memory access. Algorithm Complexity depends on

number of instructions that are run.

D. Disjoint Binary Trie [2]

This algorithm is similar to Binary Trie with a difference

that there is a full binary tree and all leaves are prefix except

intermediate node which is shown in fig (4).

Fig. 4. Disjoint Binary Tree [2]

In this method pre-order tree navigation is done and if

intermediate node has a not null value, registers and insert s to

subtree. This algorithm use 128 node for tree and memory

complexity increases but tree gets more structural.

E. Priority Trie Algorithm [6]

This algorithm like Binary Trie does but there is a

difference in tree node arrangement that is done as descending

mode in tree. Nodes with null value are deleted. In the binary

tree, there is two problems, first existence of many nodes with

null value and second Long and deep prefix with too delay in

lookup, all these problems are solved in this algorithm.

First prefixes should sorted descending mode with

considering of prefix length. A tree is made like binary tree. In

this algorithm, intermediate node is not needed and where a

prefix is set to each node until decrease tree navigation, fig(5)

shows this concept.

Fig. 5. Priority Trie [6]

In this algorithm a node with more prefix length in

comparison of tree level, is called Priority node and seen as a

white circle in fig(4) and a node with less prefix length in

comparison of tree level, is called Ordinary and is shown with

black circle in fig(5).

II. MATERIALS AND METHODS

In this paper, C++ language is used for IP Lookup

algorithm Implementation. All IP Lookup table data are

collected from an edge router in four different months. IP

Prefixes have saved in a text file.

In this project a node is implemented by a class. This class

consists of two pointers and a variable called value. Pointer is

node class type and Value variable is array of 32 Boolean type

variables.

An instance of class is defined to use in node construction

for binary tree. In priority algorithm, a bit is defined to specify

node type.

For calculating of memory complexity, number of nodes

multiply used memory of per node therefore memory

complexity of Binary tree is equal:

 ()=()
Each Node Complexity (1)

In Priority Trie algorithm 1 is added to the above equality.

in 32 bit OS, a pointer occupies 32 bit and in 64 bit OS, a

pointer occupies 64 bit that should be considered in memory

complexity calculation. We use a 32 bit OS.

For calculating time, we run software and calculate spent

time.

For calculating of algorithm complexity, we use the

number of instruction for each IP lookup algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

158 | P a g e

www.ijacsa.thesai.org

III. RESULTS

We have four IP Lookup Prefixes in text file and we read

and make tree for different IP lookup algorithms.

A. 1th IP Lookup table

This dataset has 519998 prefixes.

TABLE III. FIRST THREE ALGORITHMS COMPARISON

Time

Complexity Memory(Hop*Mem)

Total

Memory(Bit)

Binary 12140.63

59198146 312768 206786368

Disjoint 10250

60916464 403591 201097312

Priority 38812.5

69625952 204613 16521520

Fig. 6. Comparison of three algorithms In Tree making time (ms)

Fig. 7. Comparison of three algorithms Complexity

Fig. 8. Comparison of three algorithms In memory complexity

Fig. 9. Comparison of three algorithms In memory usage (bit)

B. 2th IP Lookup table

This dataset has 520000 prefixes.

TABLE IV. SECOND THREE ALGORITHMS COMPARISON

Time Complexity Memory(Hop*mem)

Total

Memory(Bit)

Binary 11875 57472334 314766 207073184

Disjoint 10109.38 59199886 407819 206869728

Priority 38750 67329984 206206 16588736

Fig. 10. Comparison of three algorithms In Tree making time (MS)

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

159 | P a g e

www.ijacsa.thesai.org

Fig. 11. Comparison of three algorithms Complexity

Fig. 12. Comparison of three algorithms In memory complexity

Fig. 13. Comparison of three algorithms In memory usage (bit)

C. 3th IP Lookup table

 This dataset has 519995 prefixes.

TABLE V. THIRD THREE ALGORITHMS COMPARISON

Time Complexity Memory(Hop*Mem)

Total

Memory(Bit)

Binary 11296.88 58611469 327324 205794016

Disjoint 9750 60407101 429595 204547792

Priority 38046.88 68800571 208218 16820048

Fig. 14. Comparison of three algorithms In Tree making time (MS)

Fig. 15. Comparison of three algorithms Complexity

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

160 | P a g e

www.ijacsa.thesai.org

Fig. 16. Comparison of three algorithms In memory complexity

Fig. 17. Comparison of three algorithms In memory usage (bit)

D. 4th IP Lookup table

 This dataset has 519998 prefixes.

TABLE VI. FOURTH THREE ALGORITHMS COMPARISON

Time Complexity Memory(Hop*mem)

Total Memory

(Bit)

Binary 12140.63 59198146 312768 206786368

Disjoint 10250 60916464 403591 201097312

Priority 38812.5 69625952 204613 16521520

Fig. 18. Comparison of three algorithms In Tree making time (MS)

Fig. 19. Comparison of three algorithms Complexity

Fig. 20. Comparison of three algorithms In memory complexity

Fig. 21. Comparison of three algorithms In memory usage (bit)

IV. DISCUSSION

According to the results, Internet network is comprised of

routers, that forward packets towards their destinations. IP

routing lookup requires computing the Best-Matching Prefix.

The results show that the Priority Trie algorithm performance

is need more time to make tree in compared with other two

algorithms because of sorting. Binary trie and Binary disjoint

trie algorithms need similar time to make tree but if tree goes

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

161 | P a g e

www.ijacsa.thesai.org

toward full binary tree, more similarity was seen and if tree

goes toward light, more different time was seen.

From the point of algorithm complexity, Priority trie

algorithm based on number of instruction is the most complex

algorithm in comparison with the others.

Disjoint binary trie algorithm has the most memory usage

because there are more leaves in comparison with the others.

Priority algorithm has the least memory usage in comparison

because deleted leaves value is null.

Priority trie IP lookup speed is more than the other

algorithms. When there is longer prefix, Priority trie algorithm

search speed is much better than the others.

For the future work, two subjects are proposed:

A. Evaluation of binary trie base algorithms with use of IPv6,

B. Evaluate the other algorithms that are described in this

paper for IPv4.

REFERENCES

[1] M. A. Ruiz-Sanchez, E. W. Biersack and W. Dabbous, "Survey and
taxonomy of IP address lookup algorithms," in IEEE Network, vol. 15,
no. 2, pp. 8-23, Mar/Apr 2001.

[2] doi: 10.1109/65.912716.

[3] H.Jonathan Chao, Bin Liu, “High Performance Switch And Routers,” in
Book 2007.

[4] A. Lara, A. Kolasani, and B. Ramamurthy, "Network innovation using
OpenFlow: a survey", Communications Surveys & Tutorials, vol. 16,
no. 1, pp. 493-512, 2014.

[5] M. K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang and J. Y. Choi,
"Verification for NFV-enabled network services," Information and
Communication Technology Convergence (ICTC), 2015 International
Conference on, Jeju, 2015, pp. 810-815.

[6] doi: 10.1109/ICTC.2015.7354672.

[7] Kun Huang, Gaogang Xie, Yanbiao Li, Dafang Zhang, “Memory-
efficient IP lookup using trie merging for scalable virtual routers” in
Journal of Network and Computer Applications, vol. 51, pp.47-58, May
2015.

[8] H. Lim ; Ewha Womans University, Seoul ; C. Yim ; E. E. Swartzlander
Jr, “Priority Tries for IP Address Lookup” in IEEE Transactions on
Computers, vol. 59, no.6, February 2010.

