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Abstract—In this paper, a hybrid genetic algorithm is 

proposed to solve a Capacitated Location-Routing Problem. The 

objective is to minimize the total cost of the distribution in a 

network composed of depots and customers, both depots and 

vehicles have limited capacities, each depot has a homogenous 

vehicle fleet and customers’ demands are known and must be 

satisfied. Solving this problem involves making strategic 

decisions such as the location of depots, as well as tactical and 

operational decisions which include assigning customers to the 

opened depots and organization of the vehicle routing. To 

evaluate the performance of the proposed algorithm, its results 

are compared to those obtained by a greedy randomized adaptive 

search procedure, computational results shows that the 

algorithm gave good quality solutions. 

Keywords—hybrid genetic algorithm; capacitated location-

routing problem; location; assigning; vehicle routing 

I. INTRODUCTION 

Managing distribution is one of the most challenging 
problems for companies that aim to minimize the costs of their 
activities and meet the customers’ needs in an environment 
where the competitiveness continues to increase.  

Location problems and routing problems have long been 
treated separately, combining these two problems is the 
location and routing problem (LRP) whose objective is to 
optimize the costs of the distribution in a logistic network in 
taking strategic decisions that relate to the location of facilities, 
and allocation and organization of vehicle routing which are  
solved at the tactical and operational levels. 

Salhi and Rand highlight the importance of tackling both 
problems simultaneously and the effect of ignoring routes 
when locating depots [1]. There are different formulations of 
the LRP, some consider depots and vehicles with limited 
capacities [2], while others, such as List and Mirchandani [3], 
offer formulations without capacity constraints. Wu et al. [4] 
have considered constraints on the vehicles and formulated a 
model for LRP with limited heterogeneous fleet, and Liu and 
Lee included inventory costs in LRP [5]. The reader is referred 
to the survey by Nagy and Salhi [6] for more LRP variants. 

Exact methods have been proposed to solve the Capacitated 
Location-Routing Problem (CLRP), Laporte et al. [7] solved 
the problem through a branching method based on the 
relaxation of subtour elimination and the chain baring 

constraints, Baldacci et al. [8] and Contardo et al. [9] found 
good quality solutions to the LRP using exact methods ; 
Baldacci Proposed a branch and price algorithm and Contardo 
developed an algorithm based on cut-and-column generation 
for the CLRP. Prins et al. [10] solved the CLRP with a Greedy 
Randomised Adaptive Search Procedure (GRASP) followed by 
a path relinking algorithm and Duhamel et al. [11] proposed a 
GRASP hybridized with Evolutionary local search (GRASP X 
ELS) while Ting et al. [12] proposed a multiple ant colony 
optimization algorithm. Prodhon [13] presented a survey on the 
CLRP methods of resolution and other variants of the LRP. 
Our point of focus in this paper is on the evolutionary 
algorithms that are presented in the sequel. 

Genetic algorithms have been proposed for the first time by 
J. Holland (1962), and then developed by D. Goldberg (1989), 
they are inspired by the natural evolution in genetics, where a 
population of individuals represents a set of solutions, an 
individual is represented by a chromosome and each 
chromosome contains genes. 

Genetic algorithms have been successfully applied to the 
resolution of combinatorial optimization problems, several 
algorithms have been developed;  Potvin [14] have presented a 
genetic algorithm for the Traveling Salesman Problem (TSP),  
Zhao [15] proposed a hybrid genetic algorithm to solve a TSP 
with pickup and delivery, while Prins [16] have presented an 
efficient genetic algorithm to solve the vehicle routing problem 
(VRP), Vidal et al. [17] have also used genetic algorithm to 
solve a multi-depot and periodic vehicle routing problem. For 
an overview of genetic algorithms, Reeves’ book [18] is a good 
reference. 

The first step of a genetic algorithm is to initialize the 
population and represent it in the form of chromosomes. The 
first generation is often randomly generated. The second step is 
to assess the individuals of a population in order to measure the 
goodness of each solution and select them according to their 
fitness in order to enable the best chromosomes to survive, then 
comes the stage of the crossover which involves crossing two 
chromosomes parents in order to obtain one or two new 
children called offspring. An offspring is better than the parents 
if it takes the better part of each. After the crossover, a 
mutation can be applied to the obtained children in order to 
prevent a premature convergence of the algorithm. In the 
incremental mode, only two parents breed and their children 
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are integrated in the current population, while in the 
generational mode, each iteration reproduces all the children 
who will be the next generation. 

Genetic algorithms provide results of good qualities but 
hybridized with a local search, the results are better, the two 
methods complement each other; the first explores the different 
regions of the search space while the other exploits it 
intensively [19]. Local research is a powerful means to obtain 
quality solutions for optimization problems, it allows 
improving a solution by exploring its neighborhood, the latter 
is obtained by applying transformations to the solution, the best 
solution of this neighborhood is called a local minimum. 

Genetic Algorithms hybridised to a local search are called 
Memetic algorithms. they have been introduced by Moscato in 
1989 [19], they have led to  excellent results for different 
problems, Krasnogor and Smith [20] have reviewed some 
applications of memetic algorithms to well known 
combinatorial optimization problems and Neri and Cotta have 
presented a literature review of these algorithms [21]. Various 
memetic algorithms have been developed for routing problems; 
Freizleben and Mertz [22] used it to solve the TSP, Cattaruzza 
et al. [23] for the multi-trip vehicle routing, Mendoza et al. [24] 
for the multi-compartment vehicle routing problem with 
stochastic demands, Prins [25] and Lima et al. [26] have 
proposed memetic algorithms to solve heterogenous fleet 
vehicle routing problem. The most recent method has been 
proposed by Sörensen and Sevaux [27], it is a memetic 
algorithm with population management (MA/PM) that defines 
a measure of distance in order to diversify the chromosomes 
parents of the algorithm. 

This paper aims to solve a capacitated location routing 
problem while minimizing the total cost which includes the 
depots opening cost, the vehicles cost of use and the routing 
cost using a memetic algorithm. The paper is organized as 
follows: Section II describes the problem, the algorithm and its 
components are presented in Section III, Section IV provides 
the parameters used and computational experiments and some 
concluding remarks are presented in Section V.  

II. PROBLEM DESCRIPTION 

In this paper a capacitated location routing problem is 

treated.  Let ( , , )G V E C be a weighted complete graph  

where V Dep Nsc , Dep  is the set of potential depots to 

open and Nsc is the set of customers  to serve, 

  ; : , ,E i j i V j V i j    is the set of arcs linking the 

different nodes in the graph and  / ,
ij

C c i V j V    where 

ijc  is the cost of the trip via the arc  ,i j  . Each depot i  has a 

limited capacity i
Cap , a fixed cost of opening i

O  and a 

homogeneous fleet i
F  of vehicles im

v  of a capacity im
cpv  and a 

cost of use im
vc . There is no limit on the number of vehicles. 

Each customer j  has a demand 
jd  which must be satisfied. 

A vehicle can serve multiple customers during his tour but a 
customer is served by only one vehicle. Each vehicle returns to 

its depot of departure after the last visited customer. We 
assume that the overall capacity of the depots satisfies the 
demand of all customers and that the request of a customer 
does not exceed the capacity of a vehicle. The objective is to 
minimize the total cost which is the sum of the depots opening 
costs and the routing costs while responding to all the 
customers’ requests. 

III. A MEMETICALGORITHM FOR THE CLRP 

In order to solve this problem, a memetic algorithm is 
proposed, this section includes the details of its different 
components. 

A. Initial population 

The initial population is obtained using a constructive 
algorithm based on the principle of the Nearest Neighbor 
Search (NNS), depots to be opened are randomly selected, 
which allows the exploration of the solutions space. In the 

sequel, Ct  represents the solution cost, the variables ix  and 

ijmy  take respectively the value 1 if the depot i  is open and if 

the customer j  is served by the depot i  via the vehicle im
v , 0 

otherwise. 

Fig. 1. presents the steps of the proposed algorithm, it starts 
by opening a depot selected in a random way, as long as its 
capacity allows, the closest customer to the last visited node 
which is not yet served is assigned to it, once the depot 
capacity no longer allows to provide customers, the approach is 
reiterated and another depot is opened until all customers are 
affected. 

Note: During the initialization of the population, it is 
necessary to check that there are no clones, in case two 
chromosomes have equal costs, one of them is deleted and 
replaced by another one selected randomly.  

B. Solution encoding 

Solutions encoding is an important step that can influence 
the performance of genetic algorithms, in the proposed 
algorithm, the encoding method proposed by Prins [28] is 
adopted, each 

Procedure: GenInitialSol 

Input :        Problem’ data values                

Output :     Initial solution  
0Ct   

 repeat     

    Select randomly an available depot  p   

    1xp   

     Dep Dep p   

    1m   

    
p pm

Ct Ct O vc      

    j p  

       repeat  

           arg min /
k Nsc jk p k k mp

l c cap d andd cpv


    
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1plmy 

 
          

p p l
Cap Cap d   

           Nsc Nsc l   

           
pm pm l

cpv cpv d   

           
pl

Ct Ct c   

          j l  

           if ( ,
k mp

k Nsc d cpv   ) then 

                  1m m   

              
jp pm

Ct Ct c vc                  

           end if 

     until (
p l

Cap d ) 

until ( Nsc ∅) 

return the initial solution         

Fig. 1. The procedure to generate an initial solution 

solution is represented as a chromosome, the latter indicates the 
status of the depots as well as the allocation of customers to 
opened depots. Each chromosome consists of two sequences, 
the first relates to the depots and the other to the customers, 
there is no trip delimiter. If a gene of the depots sequence is 
zero, this means that the depot is closed, otherwise it contains 
the index of the first customer assigned to it. The customers 
sequence is a concatenation of trips. 

    For each chromosome S, vectors ds  and cs represent 

respectively the depots and the customers sequences. Fig. 2. 
represents an example of a chromosome, the depot 2 is closed 
because (2) 0ds  , the depot 1 is open, the set of customers 

affected to it is 
1 {1,2,3,4}C   , this sequence begins with 

the first customer assigned to the depot and ends by the one 
just before the first customer assigned to another opened depot, 
depot 3 is also open and the  set of customers affected to it  is 

3 {5,6,7,8,9,10}C  .  

 

Fig. 2. Example of a chromosome 

C. Selection and crossover 

The first parent is selected using the binary tournament 
method on half of the best individuals of the population, the 
second also is chosen with this method but this time on the 
whole population except the first chosen parent. A single child 
is kept randomly, it gives better results than keeping the best 
one or both.  

Crossover for the depots sequence acts as on a sequence of 
binary (one crossover point), a cut-off point is randomly 

chosen between 1 and 1
d

l    where 
d

l  is the length of the 

depot sequence. The depot part of the child consists of the left 
part before the cut point of the first parent and the right part 

after the cut point of the second parent. The classical order 
crossover (OX) is used to obtain the customers sequence, two 
cut points p  and q are chosen randomly, such as

1 1
c

p q l  , where 
c

l is length of the customers 

sequence. The part between the two cut points of the first 
parent is copied in the same order and in the same position in 
the child chromosome, then the latter is supplemented by 
scanning the genes of the second parent from the position 

1q   up to 
c

l , then from the position 1 up to q  and copying 

each element not yet in the child. 

 

Fig. 3. Example of chromosomes crossover 

D. Chromosome repair 

After the crossover, it is necessary to check that the 
chromosome obtained is valid, we begin by verifying that all 
customers have been assigned, it is sufficient to check the 
existence of 1 in the depots sequence, it is also necessary to 
verify that the depots capacities have been respected, if this is 
not the case, customers should be removed one by one from 
such a the depot and assigned to the nearest one whose 
capacity allows, until all depots capacities are respected. If 
none of the opened depots allows it, a closed depot is opened. 

Fig. 4. describes the repair procedure steps. Variables 
i

C  and 

i
Sd  represent respectively the set of customers assigned to a 

depot i  and the sum of customers assigned to this depot 

demands. The function ( , )Close j E  returns the index of the 

nearest node to j  in a set of nodes E . 

Procedure:  ChromRepair 

Input :         A chromosome S 

Output :      Repaired chromosome 

Find i / ( ) 1ds i  , if it fails, find the first closed depots 'i  

and ( ') 1ds i    

for each i Dep do  

  if ( ( ) 0ds i  ) then  

       for each 
i

j C do  

            if (
i iSd Cap  ) then 

            repeat 

          'j  last customer affected to i  
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           'i  ( , ) / 1
i

Close i Dep x   and 
' ' '

Cap Sd d
i i j
    

           { '}
i i

C C j   

           ' '
{ '}

i i
C C j   

            if ( 'i   ) then 

                Find ''i /  ( ") 0ds i   

               
( ") 1ds i 

  

               { '}
i i

C C j   

               '' ''
{ '}

i i
C C j   

            end if 

         Until  ( Sd Capi i )  

       end if 

     end for 

  end if 

end for 

return the repaired chromosome  

Fig. 4. Chromosome repairing procedure 

E. Solution cost  

In order to obtain a solution cost, the procedure presented 
in Fig. 5. is proposed, it also allows deducing the vehicle 
routing organization; For each depot, as long as the capacity of 
the vehicle allows, the closest customer to the last one of the 
tour is added, once no more customers can be added, the 
vehicle returns to the depot, and another tour begins via 
another vehicle of the same depot fleet, it begins from the 
nearest customer of the depot which is not yet visited. 

This procedure allows to obtain and to optimize the depots 

opening costs and the routing costs.  

The function  ,imAdd T j  adds the node j  at the end of the 

tour 
imT via the vehicle 

imv  . 

 

Procedure:  SolCost 

Input :         A solution S 

Output :      Solution S cost  
0Ct     

for each i Dep do 

      if ( ( ) 0ds i  ) then 

           i
Ct O  

           j  index of first customer affected to  i  

           1m   

            repeat 

                  ,Add T jim
 

                  im
Ct Ct vc   

                  im im j
cpv cpv d    

                  { }
i i

C C j   

                  ' { }
i i

C C j     

                  ij
Ct Ct c   

                   repeat 

                        ' ( , ')
i

j Close j C   

                         if '
( )

j im
d cpv  then 

                               , '
im

Add T j  

                               'im im j
cpv cpv d   

                               'jj
Ct Ct c   

                               { '}
i i

C C j   

                               ' ' { '}
i i

C C j   

                        else 

                               ' ' { '}
i i

C C j   

                        end if   

                   until ( ' 0)
i

C   

                   'j i
Ct Ct c   

                   ( , )
i

j Close i C  

                  1m m   

            until ( 0)
i

C   

      end if 

end for 

Return the total cost of the solution, Ct  

Fig. 5. The procedure to  obtain a solution cost 

F. Local search  

The Local Search allows improving a solution by exploring 
its neighborhood, for this, four movements are used and 
presented in the sequel, each is illustrated by an example. The 
movements are applied to customers that can belong to the 
same tour or from different tours. Tours can belong to the same 
depot or to different ones, for each case the constraints are 
presented. Fig. 10. describes the steps of the procedure, the 
neighborhood of a solution is explored and the procedure 
returns the best solution and its cost. 

In the sequel, S  is a solution, i
Sd  is the sum of demands 

that provides the depot i  and im
Qt

 
 is the amount transported 

during a tour via the vehicle 
imv   

RouteTrans ( , , ', )S i i m : a random tour 
imT  is transferred 

from its current depot i  to the best opened one 'i . Constraint 

(1) ensures that the capacity of the depot to which a tour is 
transferred is respected. 

'
Cap

i
 'i im

Sd Qt  (1) 
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Fig. 6. Example of a RouteTrans operator 

CustTrans ( , , ', , ', , ')S i i m m j j : a customer j , 

randomly selected, is transferred from its current position in a 

tour m  to another position after a node 'j in a tour 'm that 

may be in the same route ( 'i i and ')m m  in another one 

from the same depot ( 'i i and ')m m or from another 

route from another depot ( 'i i and ')m m . Constraints 

(2) and (3) ensure that both capacities of the vehicle and the 
depot, to which a customer is transferred, are respected. 

' ' ' 'm i i m j
cpv Qt d    (2) 

' 'i i j
Cap Sd d      (3) 



Fig. 7. Example of a CustTrans operator 

CustSwap ( , , ', , ', , ')S i i m m j j : two customers 

randomly selected j  and 'j are exchanged, they may be in 

the same route ( ')m m  or in different routes ( ')m m   

from the same depot ( ')i i or different depots ( ')i i . 
Constraints (4)-(7) ensure that both capacities of the vehicles 
and the depots, to which customers are transferred are 
respected. 

' ' ' ' 'i m i m j j
cpv Qt d d   (4) 

'im im j j
cpv Qt d d   (5) 

' ' 'i i j j
Cap Sd d d    (6) 

'i i j j
Cap Sd d d    (7) 

 

 

Fig. 8. Example of a  CustSwapoperator 

Opt ( , , , ', , ')S i m m j j : the edges incoming to nodes j  

and 'j  are deleted and two new edges are created, tours begin 

from the same depot i and edges may be in the same tour

( ')m m or in different tours ( ')m m . Constraints (8)-

(11) ensure that both capacities of the new tours’ vehicles and 
their departure depots are respected. 

 

'im im j j
cpv Qt d d   (8) 

' ' ' ' 'i m i m j j
cpv Qt d d   (9) 

'i i j j
Cap Sd d d    (10) 

' ' 'i i j j
Cap Sd d d    (11) 



Fig. 9. Example of an Opt operator 
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Procedure:  Localsearch 

Input :         A solution S  

Output :      best
S  

best
S S  ; min

S S  

RT
N   ; CT

N   ; CS
N   ; OPT

N   

RT
N S  neighborhood generated using RouteTrans operator 

CT
N S neighborhood generated using CustTrans operator 

CS
N S neighborhood generated using CustSwap operator 

OPT
N S neighborhood generated using Opt operator 

 min
arg min ( ) /  

RT CT CS OPT
S SolCost S S N N N N       

Repair min
S using ChromRepair procedure 

if min
( ) ( )

best
SolCost S SolCost S then 

     minbest
S S  

end if 

Return bestS  and ( )
best

SolCost S  

Fig. 10. The local search procedure 

G. The memetic algorithm 

The memetic algorithm is obtained by gathering the 
components  previously presented, it starts with generating an 
initial population using GenInitialSol procedure, a maximum 
number of generations max gen  is fixed , as long as the latter 

is not reached the selection and the crossover are repeated, 
each child obtained is repaired with ChromRepair procedure, if 
it does not already belong to the population it is improved 

using LocalSearch procedure with a probability ls
p  and 

replaces the worst element of the population, once max gen  

is reached, the procedure returns the best solution of the last 
obtained population. The Local Search is applied only once to 
each offspring, which allows exploring its neighborhood, 
applying it several times would take a lot of time and would 
lead to the local optimum. 

Procedure:  MemeticAlgorithm 

Input :         Problem data 

Output :      Best solution best
P  

0t   

 Initialize population ( )P t  using GenInitialSol procedure 

 while ( maxt gen ) do 

   Select parents 
1

p and 
2

p  using binary tournament 

   Cross 
1

p  and 
2

p to obtain child c  

   Repair c  using ChromRepair procedure 

   If ( )c P t  then 

      Repeat selection and crossover 

   else 

      Apply  LocalSearch procedure to c with a probability ls
p      

      to obtain 'c  

      if ' ( )c P t then 

        remove worst solution from ( )P t  and add 'c  to ( )P t  

      end if 

     1t t   

end while 

Return best
P  

Fig. 11. General structure of the memetic algorithm 

IV. COMPUTATIONAL EXPERIMENTS 

In order to investigate the performance of the algorithm, 
test instances presented by Prodhon [28] for the CLRP are 
used, which consists of capacitated depots and routes, the 

number of potential depots is  5,10
d

N  , the number of 

customers to serve is  20,50,100, 200
c

N  , and vehicle 

capacity is in  70,150 . The depots opening costs vary from 

one depot to another, yet, the cost of use of a vehicle remains 

the same for all. After preliminary testing, ls
p is fixed to 0.6, 

max gen  to   20
d c

N N   and the population size is

d c
N N . Procedures are implemented in C language on an 

Acer Aspire ONE D255 1.00 GHz machine, running Windows 
7 Starter Edition. 

Table. 1. Provides a comparison between the results 
obtained by the proposed memetic algorithm and those 
obtained by the GRASP proposed by Prodhon, Podhon’s set 
consists of 30 instances, results are given on average by 
instances size. For each case, the number of depots to open, the 
number of tours and the solution cost are presented. The gap 
between the two algorithms is obtained by calculating [(MA 
cost - GRASP cost)/ GRASP cost]*100. As shown in the table, 
good quality solutions are obtained by MA, it presents a gain in 
term of cost which is in average of 1.08%. The best 
improvements have been obtained for the large sizes where the 
gain reaches 2.73%. Both MA and GRASP returns the same 
number of depots to be opened, MA uses one less  vehicle on 
certain instances from 100 customers, costs are reduced thanks 
to the opened depots location and not to their number, MA 
provides access to diverse solutions of good quality, which 
allows obtaining lower cost solutions. 
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TABLE I.  COMPUTATIONAL RESULTS OF THE MEMETIC ALGORITHM 

Number of 

potential 

depots 

Number of 

customers 

GRASP MA 
Gap 

Number of 

opened 

depots 

Number of 

tours 

cost Number of 

opened 

depots 

Number of 

tours 

cost 

5 20 
2.5 4 45144 2.5 4 45301 0.35 

5 50 
2.62 9 74701 2.62 9 74685 0.02 

5 100 
2.33 16 202210 2.33 15.83 201303 0.45 

10 100 
3.33 18.33 257048 3.33 17.66 250040 2.73 

10 200 
3 35 447657 3 34.5 436293 2.54 

Average 
2.76 16.47 205352 2.76 16.2 201524.4 1.08 

V. CONCLUSION 

This paper treats a location-routing problem where both 
potential depots and vehicles have limited capacities. A 
memetic algorithm is developed to solve the problem which 
objectives are to minimize the total cost of distribution and 
meet the customers’ needs. The algorithm is tested on instances 
of the literature and compared to a GRASP. The proposed 
algorithm provides obtaining good quality solutions, it may be 
used to obtain a good initial solution to exact methods. 
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