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Abstract—Ventilation is one of the key safety tasks in 

underground mines. Determination of the airflow through mine 

openings and ducts is complex and often requires the application 

of numerical analysis. The governing equations used in the 

computation of mine ventilation are discussed in matrix forms. 

The aim of this paper is to compare the most frequently used 

numerical analysis methods, which includes Newton-Raphson 

and the Linear Theory. It is the challenge of this study to 

investigate the influence of the initial flow rates and the fans in 

the network. A simulated mine ventilation network is 

represented in order to examine the two numerical methods. The 

numerical results acquired from Newton-Raphson method 

exhibited faster rate of convergence in comparison to those of the 

Linear Theory method. The mine ventilation networks are less 

expanded, therefore, the Newton-Raphson method converges 

faster. On the other hand, when using computational tools and 

software the advantage of faster convergence becomes less 

important, and therefore the Linear Theory method will be more 

preferred. 

Keywords—mine ventilation; network analysis; Newton-

Raphson method; linear theory 

I. INTRODUCTION 

Mine networks often comprise a number of loops and 
nodes connecting all branches. The airflow and air pressure 
distribution in mine openings and ducts can be worked out 
through solving the governing equations based on conservation 
Theory. The objective of the mine ventilation network analysis 
is twofold: a) the airflows and pressure distribution around the 
network are determined; b) the energy losses associated with 
all branches including those with fans and regulating doors are 
calculated. The laws of mass and energy conservation are used 
for the achievement of these objectives. The earliest numerical 
method, which is primarily used in water distribution network 
design, is that of Hardy-Cross method [1]. This method has 
also been used for mine ventilation network analysis [2]. The 
method was further developed to Newton-Raphson method to 
speed up the rate of convergence. In order to satisfy continuity, 
some initial values may be given to the airflows. The accuracy 

of these estimates will affect the speed of convergence. A new 
method was proposed by civil engineering practitioners in 
designing hydraulic distribution networks [3]. It is called the 
Linear Theory method and also relies on approximate 
evaluation techniques, which include functional approximation. 
The method was further extended by adding pumps and 
reservoir to the network [4], and later applied to mine 
ventilation networks by Bhamidipati and Procarione [5]. 

The governing equations may be combined and shown in 
the forms of matrixes. Kolarczyk [6] discussed on the 
application of matrix analysis methods in determining the 
changes due to the resistances and air flows of branches. The 
operations research methods were used in analysis and design 
of mine ventilation systems [7]. A simulation and optimization 
software for mine ventilation system of underground mines 
was programmed [8]. The use of 3D simulation system in mine 
ventilation management was also reported [9]. In this paper, 
first the key equations used for the ventilation networks 
analysis in the matrix forms will be represented. Then, the two 
approximate evaluation techniques, the Newton-Raphson and 
the Linear Theory methods, will be compared. In order to 
disclose some of the most significant features of the two 
methods, an example of a simulated mine ventilation network 
problem will be solved to demonstrate the applicability of the 
iterative numerical methods used. It will aim at demonstrating 
the difference between the approximation methods, the 
associated convergence properties in particular. The matrix 
form problem solving approach will be useful for the 
development of mine ventilation network algorithms [8, 9]. 
The nature of oscillations in successive estimates and the way 
each method reaches the converged solution will be examined 
and discussed. Attempts will be made to show which method 
works more efficiently for mine ventilation networks. 

II. MINE VENTILATION NETWORKS 

Mine ventilation networks generally consist of a number of 
loops, where each loop has a number of branches. A simple 
form of a mine ventilation network is shown in Figure 1. 
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Fig. 1. An example of a simulated mine ventilation network 

The branches join at nodes. Each branch represents one of 
the mine openings that may intersect with other openings at 
two ends. The network includes 5 actual loops as well as a 
virtual loop. It also includes 16 branches and 10 nodes. There 
will be lack of information about the air flows in all branches 
and the pressure drops concerned. Thus, the aim is to initially 
work out the airflows using the governing equations and taking 
into account the characteristics of the network. The matrix 
form approach will provide useful data, which then could be 
used in mine ventilation network algorithm and system 
developments [9]. 

Equations 1 and 2 are the governing equations used for the 
analysis of the ventilation networks. The first equation is 
satisfied for each branch to introduce the associated pressure 
drop, while the second equation is satisfied for each node 
according to the continuity law. In eq. 2,   represents the total 
number of nodes while       is the number of independent 
nodes. Other parameters are n: the number of branches,   : the 
resistance,   : the airflow and    : the pressure drop due to the 
airflow in branches [10] 
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A node matrix may be represented, as shown in equation 3, 
in which     is the general element of the matrix [11]. It equals 
1 if the flow direction is such that it passes through branch i 
and enters node k. But, it equals -1 if the air goes through 
branch i after it leaves node k. When there is no intersection 
between the branch and node     is considered to be zero. 
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Equations (1) and (2) are used if the unknowns are the 
branches’ airflows, but if the pressures at nodes are the 
unknowns these equations should be rearranged for pressure 
[12]. 

Equation (4) can be applied to each loop: 
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where   is the number of loops, and the values of     (the 
elements of the matrix in equation 5) are defined as:       if 
branch i is contained in loop o, and possesses the same flow 
direction,        if branch i is contained in loop o, but has 
the opposite flow direction, and       if branch i is not 
contained in loop o. 
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III. FURTHER DEVELOPMENT TO MINE VENTILATION 

NETWORKS 

It is essential to include a source of energy for circulation 
of the air through the mine network. For that reason, a fan is 
normally installed at the entrance of the mine, normally a shaft 
or a tunnel. Sometimes, booster fans are also used on long 
airways deadlocks. The main fan is usually radial type while 
the booster fans are auxiliary type and installed inside the 
branches [13]. Furthermore, it is literally possible to add a new 
virtual loop to the network. The virtual loop (the dash line in 
Figure 1) connects the entrance airways to the exit airways and 
includes the main shafts and tunnels and a few branches. The 
airflow and pressure distributions in a ventilation network are 
controlled by suitably placing the fans, doors, and regulators 
[14]. Taking the virtual loop, as depicted in Figure 1, into 
consideration one would be able to further develop the energy 
conservation equations to [10]: 
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Where:    is the pressure due to natural ventilation. It takes 
a negative sign if the natural ventilation flow is in the same 
direction as the general flow, backing the air flowing clockwise 
in the loop; it otherwise takes a positive sign. The value of    
remains constant and is independent of airflow changes. Also 
    is the pressure due to the fan in branch i, whose value can 
be obtained using the fan characteristic function. Usually, the 
characteristic curve is given by the manufacturer and can be 
represented by equation (7) [10]: 

             
                               (7) 
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IV. THE NEWTON-RAPHSON METHOD 

In this method, a correction to the airflow (  ) is defined 
and applied to all branches. The energy equation (4), therefore 
could be rewritten as equation (8) for the loop o, bearing in 
mind that i is the number of branches in this loop. This 
equation is satisfied assuming that the correction factor (  ) is 
applied to the existing airflows associated with all branches in 
the same loop. For a small value of (  ) compared to    the 
additional terms vanish, and solving for (  ) equation (10) will 
be obtained. 
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The value for (  ) is generalized in equation 11: 
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Equation 11 should be satisfied for every loop in the 
network. In this equation, i and o denote branch and loop 
indices, respectively, and m is the iteration number. The energy 
equation associated with the oth loop can be defined according 
to equation (12). The denominator in equation (11) is the 
derivative of numerator. Also, the numerator in equation (10) is 
the same as    (equation 12). Therefore, a combination of the 
three equations (10, 11, and 12) can be expressed in the matrix 
form (13): 
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It is apparent that the approximation done for the individual 
loops is independent to those computed for the other loops. 
This approach, also known as Hardy Cross method, is widely 
used due to simplicity. However, in the Newton - Raphson 
method, the value of (  ) associated with the oth loop is 
determined taking those associated with the other loops into 
account at the same time. Similar computation has been done 
for correcting the air pressures associated with the nodes 
connecting all branches [15]. Also the corrections are done for 
the airflows associated with the common branches connecting 
the loops. The matrix form for this method is given in equation 
(14). As can be seen, the diagonal matrix (13) is now changed 
to a normal form (14) because the derivative of the energy 
equation is considered against all parameters involved in the 
iteration process. The approximation of the airflow in each 
loop in the mth iteration is done according to the energy 
equation written for the same loop in the (m-1)th iteration in 
addition to those of other loops. 
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V. THE LINEAR THEORY METHOD 

The Linear Theory is used for solving the algebraic and 
nonlinear differential equations. Equation (15) shows a 
common form of the Linear Theory [12]. In this equation, the 
relation of a function to the (k+1)th power is given with the 
same function to the kth power. This is the basis of Linear 
Theory method.    

(15)
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The Linear Theory function reconciles the airflows 
associated with all branches in successive iterations. The rate 
of convergence in this method is higher than those in the other 
two methods [17]. 
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The initial values should not necessarily be given in this 
method. This is also an advantage, especially for large 
networks in which any errors in the initial guess may lead to 
substantial divergences. It is noteworthy to mention that the 
head losses in all branches, which were previously represented 
as nonlinear equations are now converted to linear equations, 
as in equation (16)

 
[18]. 
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The linear Theory method requires that some apparent 
changes to be done on the previously given energy equations 
(6). The term associated to the fans may become similar to that 
of the branch energy losses. For instance, the energy equation 
of the o-loop can be given as equation (17): 
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Where    is the natural ventilation pressure, which could be 
either in the same direction as the fan or in the opposite 

direction of the fan. Beside, for linearization of the term    
 , 

equation (20) which is similar to equation (16) can be used 
[18]. 
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Where    is analogous to    in equation (16). Then the 
number of linear equations will be the total number of loops 
and nodes. These equations will create a n×n system of linear 
equations as shown in matrix form (21): 
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In this equation system, the Node Continuity Equations can 
be obtained from multiplying the upper rows of the coefficient 
matrix by the variable matrix (i.e. the unknown values of the 
airflows). Also, the energy equations associated with each loop 
can be obtained from multiplying the lower rows of the 
coefficient matrix by the variable matrix. Note that the lowest 
row in the coefficient matrix, which includes the fans and the 
natural ventilation, is the most inclusive term exclusively 
introduced to the network. Some features of the matrix are as 
follows: 

 It is defined to include most of the decisive terms in the 
network, where all the nodes and loops equations can be 
identified. 

 More than one fan can be selected in the virtual loop, if 
needed. The natural ventilation which exists in many 
mines is included, and similar equations could be 
defined for those loops with fans or booster fans. 

 The negative/positive effect of natural ventilation in 
accordance to that of the mechanical ventilation is also 
included. 

The calculation will continue until the equation (22) is 
satisfied. Then, the operation stops and the final values 
associated with the branches’ airflows will be the answers

 
[19]. 
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VI. A NUMERICAL EXAMPLE 

These are for the ventilation network shown in Figure (1), 
which will be used in conjunction with equations (12), (13), 
and (22) to do a comparative study of the Newton-Raphson and 
Linear Theory methods. Also given is the main fan 
characteristic curve as in equation (23): 

                                           (23) 

Table (1) shows the results obtained for all branches 
iteratively using the Newton-Raphson method. The values 
given in the first row (i.e. the 1

st
 iteration) are the initial guess 

quantities chosen according to the nodes continuity equations. 
Also shown in Table (2) are the error values from the Newton-
Raphson method using equation (24): 
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To solve the example by the Linear Theory an identical 
initial value (i.e. the airflow =      ⁄ ) for all branches is 
assumed. Table (3) shows the solved values obtained for all 
branches using the Linear Theory method. Also shown in 
Table (4) are the iterative error quantities resulted from the 
Linear Theory method using equation (24). 
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TABLE I.  THE VALUES OBTAINED FOR ALL BRANCHES USING THE NEWTON-RAPHSON METHOD 

Branch No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Resistance 0.5 13.5 13 16.2 0.6 16.2 15.6 16.2 0.6 16.2 16.2 16.2 15.6 16.2 0.6 0.6 

Iteration 

1 100 50 25 47 50 25 25 22 53 50 62 40 25 13 12 100 

2 145.67 46.25 41.52 44.80 99.42 38.16 4.73 3.28 100.87 42.89 38.73 35.45 61.26 65.42 -4.16 145.67 

3 129.44 43.52 47.16 40.80 85.92 35.31 -3.64 -6.36 88.64 31.67 30.48 36.84 50.61 51.80 -1.19 129.44 

4 123.59 42.07 46.54 40.21 81.52 34.64 -4.47 -6.33 83.38 30.17 29.88 36.21 46.88 47.17 -0.29 123.59 

5 123.10 41.94 46.43 40.12 81.16 34.54 -4.49 -6.61 82.98 30.06 29.82 36.13 46.61 46.85 -0.23 123.10 

6 123.10 41.94 46.43 40.12 81.16 34.54 -4.49 -6.31 82.98 30.06 29.82 36.13 46.61 46.85 -0.23 123.10 

TABLE II.  THE ITERATIONS ERRORS OBTAINED BY NEWTON-RAPHSON METHOD 

Iteration number 1 2 3 4 5 6 

Sum of the branches errors  - 403.02 139.52 37.54 4.38 ≤0.01 

 Average of the branches errors - 25.19 8.72 2.35 0.27 ≤0.01 

TABLE III.  THE SOLVED VALUES OBTAINED FOR ALL BRANCHES USING THE LINEAR THEORY METHOD (M3⁄S) 

   Branch No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Resistance 0.5 13.5 13 16.2 0.6 16.2 15.6 16.2 0.6 16.2 16.2 16.2 15.6 16.2 0.6 0.6 

Iteration 

1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

2 151.09 47.35 43.07 44.05 103.74 35.76 4.28 0.99 107.03 40.04 35.53 34.54 67.96 72.49 
-
4.51 

151.09 

3 163.47 56.63 52.09 54.17 117.38 44.93 8.26 4.83 121.52 43.39 41.73 39.25 79.17 83.32 
-

7.41 
163.47 

4 146.25 45.64 50.36 43.28 108.74 39.80 
-
2.34 

1.35 95.45 37.46 33.29 34.64 61.65 61.81 
-
6.17 

146.25 

5 131.14 42.68 48.17 41.42 86.76 36.12 
-

5.49 

-

7.75 
89.02 30.63 29.57 37.32 50.64 51.70 

-

1.06 
131.14 

6 127.38 42.35 47.65 41.62 85.33 35.48 
-
4.30 

-
6.53 

88.56 31.18 30.07 36.60 51.85 52.96 
-
1.11 

127.38 

7 124.58 42.43 45.53 40.68 82.53 34.93 
-

4.71 

-

6.24 
84.38 31.02 29.76 36.29 47.52 48.76 

-

0.59 
124.58 

8 123.59 42.05 46.54 40.21 81.53 34.64 
-
4.48 

-
6.33 

83.37 30.15 29.87 36.20 46.90 47.17 
-
0.28 

123.59 

9 123.10 41.94 46.43 40.12 81.16 34.54 
-

4.49 

-

6.31 
82.98 30.06 29.82 36.13 46.62 46.85 

-

0.23 
123.10 

10 123.10 41.94 46.43 40.12 81.16 34.54 
-
4.49 

-
6.31 

82.98 30.06 29.82 36.13 46.62 46.85 
-
0.23 

123.10 

TABLE IV.  THE ITERATIVE ERROR QUANTITIES RESULTED FROM THE LINEAR THEORY METHOD 

Iteration number 1 2 3 4 5 6 7 8 9 10 

Sum of the branches errors - 891.40 137.50 171.22 121.03 17.80 26.80  10.05 3.04 ≤0.01 

Average of the branches errors - 55.71 8.59  10.70  7.56  1.11  1.67  0.63 0.19 ≤0.01 

As can be seen, the Newton-Raphson method would yield a 
satisfactory error after five iterations. However, the Linear 
Theory method would do the same after nine iterations. This 
implies a higher rate of convergence for the Newton's method. 

The initial guess for     is considered to be equal to the 
average of the apparent final answers. Because, when this 
guess, which is the same for all the branches, differs 

significantly from the average of the final answer it will be less 
likely to suppress divergence in the iteration process. Such 
divergence is likely to occur when fans are used in the 
network

4
. It has also been shown that to reduce the likelihood 

of oscillation for the real answers the mean of the two previous 
iterations may be used for every branch in the sequence

 
[18]. 

For comparison, the iteration error against the number of 
iterations is plotted in Figure 2 for both methods. 
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Fig. 2. The iteration error against the number of iterations for the Newton-Raphson method (continuous line) and the linear Theory method (discrete line) 

As can be seen in Figure 2, in the first iteration 
implemented by the Newton-Raphson method, the value of the 
error is lower in magnitude. It also decreases smoothly to yield 
the answer. In the linear Theory method, the iteration error 
starts with higher value and changes with some oscillation to 
reach the answer. This oscillation can lead to divergence in 
large networks. It is suggested that in the Linear Theory the 
next trial solution should be the average of the previous two 
solutions equation( 25): 

2
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 nn

n

QQ
Q
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Alternatively, it may be suggested equation (26): 

nQ
= 
√

21   nn QQ
                             (26) 

which works just as satisfactorily in removing the 
oscillatory nature of successive solutions. 

It can adequately deal with large systems of equations and 
has the advantage that the first approximation to the solution 
does not need to satisfy continuity conditions and the initial 
values may be arbitrary. Wood and Charles [20] observed an 
oscillatory nature in successive estimates close to the 
converged solution and suggested the next trial solution to be 
the average of the previous two solutions. 

VII. CONCLUSION 

The large number of variables in mine ventilation networks 
implies the need for using the approximate methods. The 
matrices of nodes and loops are shown to be good 
characteristics of the network.  Using the equations in the 
matrices form and applying the approximate methods based on 
iteration could be the core of simple programming tasks in 
mine ventilation network analysis. The possibility of the initial 
guesses for the branch airflow being incorrect in the Newton-
Raphson method is lower. This is because, in comparison with 
the water and gas networks, the mine ventilation networks are 
less expanded. Therefore, in comparison with the Linear 
Theory method, the Newton-Raphson method converges faster. 
On the other hand, when using computational tools and 
software the advantage of faster convergence becomes less 
important and therefore the Linear Theory method will be more 
preferred. 
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