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Abstract—Desirable features of support vector regression 

(SVR) models have led to researchers extending them to survival 

problems. In current paper we evaluate and compare 

performance of different SVR models and the Cox model using 

simulated and real data sets with different characteristics. 

Several SVR models are applied: 1) SVR with only regression 

constraints (standard SVR); 2) SVR with regression and ranking 

constraints; 3) SVR with positivity constraints; and 4) L1-SVR. 

Also, a SVR model based on mean residual life is proposed. 

Our findings from evaluation of real data sets indicate that 

for data sets with high censoring rate and high number of 

features, SVR model significantly outperforms the Cox model. 

Simulated data sets also show similar results. For some real data 

sets L1-SVR has a significantly degraded performance in 

comparison to the standard SVR. Performance of other SVR 

models is not substantially different from the standard SVR with 

the real data sets. Nevertheless, the results of simulated data sets 

show that standard SVR slightly outperforms SVR with 

regression and ranking constraints. 

Keywords—support vector machines; support vector regression; 

survival analysis; simulation study; Cox model; mean residual life 

I. INTRODUCTION 

Survival analysis is applied in different fields, such as 
medicine, public health, biology, epidemiology, engineering, 
economics, and demography. In survival studies within the 
medical field, patients are followed over the length of a 
predefined period. Those patients which experience an event of 
interest (failure) during the follow-up period are considered as 
complete (uncensored) observations.  An event of interest is 
defined as some individual occurrence or experience such as 
death, disease incidence, relapse from remission, etc. The 
patient, whose exact time of event is not known but is known 
to occur in a certain period of time, is considered as censored. 
Right censoring is the most common form of censoring which 
is focused on in this study. If a patient is right censored at a 

given time, he has not experienced the event by that time and 
the event of interest will occur after wards. For example if the 
death is considered as the event of interest then the patients 
who survive the entire follow-up period are considered as right 
censored [1]. 

The traditional models such as the Cox proportional hazard 
model and the accelerated failure-time model are applied in 
statistical literature for survival prediction [2, 3]. The most 
common survival model is the Cox proportional hazards 
regression. This model requires the proportional hazard 
assumption that is not always realistic. Also Cox is not able to 
model the nonlinear relations. Some other models such as 
artificial neural networks (ANN) and support vector machines 
(SVM) are applied for overcoming these problems [4-6]. SVM 
models are based on the statistical learning theory and have 
some beneficial features. They are able to model nonlinear 
relationships between variables using the kernels. Also they 
result in globally optimal solutions by solving a convex 
optimization problem, while contemporary models such as 
artificial neural networks deal with problems of local minima 
[7]. 

SVM first was proposed for solving classification problems 
[8]. Later, these models were extended to be applicable in 
regression problems [9]. Support Vector Regression (SVR) has 
been extensively applied in the literatures for response 
prediction [10-13]. However, there are few studies which use 
SVR for survival analysis. This is in part due to the response 
variable (survival time) in survival analysis including censored 
observations that the traditional SVR is not able to model. 
However, the desirable features of SVR have led researchers to 
extend them to be applicable in survival problems. 

Yijun et al. [14] considered the survival time as a 
categorical variable and used the support vector classification 
model for survival analysis. The SVR model for survival 
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analysis is proposed by Shivaswamy et al. [7]. The authors 
investigated performance of some competing SVR models for 
real data sets with different censoring percentages. Ding [15] 
also has discussed possible application of SVM in survival 
analysis. They applied SVR model with different kernels on 
some real data sets. Khan and Zubek [16] compared SVR with 
Cox for five real data sets. Van Belle et al. [17, 18] proposed a 
SVR approach making use of ranking and regression 
constraints for right censored data. The authors compared 
performances of SVR and Cox models for both clinical and 
micro-array datasets. Also, they discussed a modified SVR 
model for other types of censorships in [6]. In another study, a 
new survival modeling technique based on least-squares SVR 
was proposed. The proposed model was compared with 
classical techniques on a breast cancer data set [19]. Du and 
Dua [20] applied SVR with two feature selection methods 
namely individual feature selection and feature subset forward 
selection and discussed their effect on performance of Cox and 
SVR on breast cancer data sets. 

A data set has characteristics such as: censoring percentage, 
number of features and training sample size. To the best of our 
knowledge, there is no previous survival study which uses 
simulated data with different characteristics for evaluating and 
comparing performance of Cox and SVR models. The aim of 
this study is evaluating and comparing performance of various 
SVR models and Cox for survival analysis using simulated and 
real clinical data sets. To this end, different SVR models are 
applied: 1) SVR with only regression constraints; 2) SVR with 
regression and ranking constraints; 3) SVR with positivity 
constraints; 4) L1-SVR. Also, a new SVR model based on 
mean residual lifetime (MRL) is proposed. 

The rest of this paper is organized is follows. SVR models 
for censored data are explained in section 2. Section 3 gives 
three performance measures which are used for comparing the 
models. In section 4 three real data sets are described. Section 
5 explains the simulation method which is used to make 
clinical data sets with different characteristics. In section 6, the 
results of implemented analysis on artificial data sets as well as 
real data sets are presented. Finally, discussion is given in 
Section 7 and Section 8 is conclusion. 

II. SVR MODELS 

In this section, first, the standard SVR model is described 
for censored data. Second, a new SVR model is proposed and 
other SVR models and Cox regression are explained. 

A. Standard SVR for survival analysis 

SVM models are able to incorporate nonlinearity relations 
by different kernels. SVM do not use standard statistical 
approaches for estimation of model parameters. In these 
models the empirical risk of misranking two instances with 
regard to their event time, is minimized. We used some 
notations throughout the current text. 𝑥𝑖  denotes a d-
dimensional vector of independent variables, 𝑦𝑖  is the 
corresponding survival and δi is censorship status. δi is 1, if an 
event has occurred, and δi  is 0, if the observation is right 
censored. The prognostic index, i.e. the prediction of the model 
in SVR, is formulated as: 

𝑢 = 𝑤𝑇φ(𝑥) + 𝑏              (1) 

In (1), w denotes the weight vector, φ(x)  denotes a 
transformation of the variables and b is a constant. To estimate 
the parameters, SVR is formulated as an optimization problem 
and a loss function is minimized subject to some constraints 
[6]. Shivaswamy et al. [7] proposed a modified algorithm for 
employing SVR to survival problems. This algorithm modifies 
the constraints of standard SVR. In this paper, standard 
survival SVR, is called SSVR and is formulated as: 

SSVR: 

𝑚𝑖𝑛
𝑤,𝑏,ϵ,ϵ∗

           
1

2
𝑤𝑇𝑤 + γ∑(ϵi + ϵi

∗)

𝑛

𝑖=1

 
 

(2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (∀𝑖 = 1,… , 𝑛):                             

       

{
 

 
𝑤𝑇φ(𝑥𝑖) + 𝑏 ≥ 𝑦𝑖 − ϵi,                   

−δi(𝑤
𝑇φ(𝑥𝑖) + 𝑏) ≥ −δi𝑦𝑖 − ϵi

∗,
  ϵi ≥ 0,                                                

ϵi
∗ ≥ 0.                                              

 

In (2) n is sample size and the parameter γ is a positive 
regularization constant. ϵi and ϵi

∗ are slack variables and allow 
the errors in the prediction.  The large values of slack variables 
are penalized by the loss function. The prognostic index, the 
prediction of the model, for a new point 𝑥∗ is computed as: 

𝑢̂(𝑥∗ ) =∑(αi − δiαi
∗)φ(𝑥𝑖)

Tφ(𝑥∗)

i

+ 𝑏, (3) 

Where αi and αi
∗ are the Lagrange multipliers. φ(xi)

Tφ(xj) 
is formulated as a positive definite kernel: 

𝑘(𝑥𝑖 , 𝑥𝑗) = φ(𝑥𝑖)
Tφ(𝑥𝑗), (4) 

Kernels often used for survival data are: linear, polynomial, 
RBF and clinical [21]. The linear kernel is formulated as: 

𝑘(𝑥, 𝑧) = 𝑥𝑇𝑧 (5) 

Linear kernel was employed for all experiments in this 
paper. 

B. A new SVR model using MRL function 

The survival SVR model discussed in previous section uses 
a one-sided loss function for errors arising from prediction of 
censored observations. This loss function penalizes the model 
only when the censored observations are predicted smaller than 
their censoring time. A new SVR model is proposed which 
uses a two-sided loss function.  

This model assumes that the event time for a censored 
observation, is equal to sum of its censoring time and the MRL. 
For individuals of age x, MRL measures their expected 
remaining lifetime [1] and is  calculated using the following 
formula: 

 
where S(x) is survival function. A standard estimator of the 

survival function is Kaplan–Meier estimator which is used in 
current study. Therefore, the model is also penalized when 
censored observations are predicted greater than sum of 
censoring time and the MRL. This model is called SSVR-MRL 
in this paper and is formulated as follows. 

𝑀𝑅𝐿(𝑥) =
∫ 𝑆(𝑡)𝑑𝑡
∞
𝑥

𝑆(𝑥)
                                                         (6) 
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SSVR-MRL: 

 
The prognostic index, for a new point 𝑥∗ is found as: 

𝑢̂(𝑥∗ ) = ∑ (α𝑖 − δiα𝑖
∗ + (δi − 1)𝛽i)φ(𝑥𝑖)

𝑇𝑛
𝑖=1 φ(𝑥∗) + 𝑏,  

(8) 

Where αi, α𝑖
∗ and 𝛽i are the Lagrange multipliers. For more 

information, please refer to [18]. 

C. Linear survival-SVR model with positivity constraints 

This model is used for feature selection. In this model, a 
constraint is added the SSVR model to ensure positivity of 
weights [17].  

Feature selection is included in this model by restricting the 
weights w to accept positive values. In this method, a 
preprocessing step on the dataset is required before training the 
model. Suppose 𝑥𝑝 presents the p

th
 feature of input data. The 

concordance between each 𝑥𝑝  and the event time is calculated, 
and each 𝑥𝑝  with a concordance less than 0.5 is changed to 
−𝑥𝑝 . This model is called SSVRP in this paper. After 
modifying the data set, model is trained on data set. The 
estimation is obtained by solving the following optimization 
problem: 

SSVRP: 

 
This constraint leads to the estimated weights be close to 

zero for irrelevant variables and be higher for relevant 
variables. 

D. L1-SVR method 

L1-SVR is another SVR model that is used for feature 

selection. In this model, the L1 penalty, ∑ |𝑤𝑖|
𝑑
𝑖=1  is used 

instead of the term 𝑤𝑇𝑤 . This model results in sparse 
solutions. Therefore, it selects fewer features than standard 
SVR [6]. In this paper, L1-SVR for survival analysis is called 
L1-SSVR. 

E. A survival-SVR using ranking and regression constraints 

Van Belle et al. [17, 18] proposed an SVR approach which 
makes use of ranking and regression constraints. This model is 
called SSVR2 in this paper. The standard SVR method (SSVR) 
includes only the regression constraints but SSVR2 includes 
the both regression and ranking constraints. In this method, the 
observations are arranged according to their event or censoring 
times. Then comparable pairs of observations are identified. A 
data pair is defined to be comparable whenever the order of 
their event times is known. For example, if patient A is 
censored in time a and patient B is uncensored with the related 
event occurring at time b (a<b), they are not comparable as it 
is not known that which has occurred earlier. 

Since the event time for a censored observation is not 
known, a data pair is comparable if both observations are 
uncensored, or only one of them is uncensored with the 
censoring time of the other observation being later than event 
time of the uncensored observation. 

The SVR method with ranking constraints involves a 
penalization for each comparable pair of observations for 
which the order in the prediction of model (prognostic index) 
differs from the observed order. The number of comparisons is 
reduced by comparing each observation i with the comparable 
neighbor with the largest survival time smaller than 𝑦𝑖 , which 

will be indicated with 𝑦𝑗(𝑖) . This model for censored data is 

formulated as: 

 
The parameters γ ,  μ in SVR models were tuned using the 

three-fold cross-validation criterion. Different SVR models 
were used for survival analysis using artificial and real data 
sets. 

The prognostic index, for a new point 𝑥∗ is computed as: 

𝑢̂(𝑥∗ ) = ∑(𝛼𝑖 (φ(𝑥𝑖) − φ(𝑥𝑗(𝑖)))
𝑇

𝑛

𝑖=1

+ (𝛽𝑖 − δi𝛽𝑖
∗)φ(𝑥𝑖)

𝑇)φ(𝑥∗) + 𝑏, 

(11) 

Where αi, 𝛽𝑖 and 𝛽𝑖
∗ are the Lagrange multipliers [18]. 

F. Cox proportional hazard (PH) model 

The Cox PH model is formulated as: 

ℎ(𝑥, 𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝑤
𝑇𝑥) (12) 

ℎ(𝑥, 𝑡) denotes the hazard rate, ℎ0(𝑡) is a baseline hazard 
rate, x is a specific feature vector and t is the time at which the 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  (∀i = 1,… , n):                                                              

   

{
  
 

  
 
𝑤𝑇φ(𝑥𝑖) + 𝑏 ≥ 𝑦𝑖 − ϵi,                                          

−δi(𝑤
𝑇φ(𝑥𝑖) + 𝑏)  ≥ −δi𝑦𝑖 − ϵi

∗,                        

(𝛿𝑖 − 1)(𝑤
𝑇φ(𝑥𝑖) + 𝑏) ≥ (δi − 1)(𝑦𝑖 +𝑀𝑅𝐿𝑖)

ϵi ≥ 0,                                                                        

ϵi
∗ ≥ 0,                                                                       

   ξi ≥ 0,                                                                           

 

 𝑚𝑖𝑛
𝑤,𝑏 ,ϵ,ϵ∗,ξ

            
1

2
𝑤𝑇𝑤 + γ∑(ϵi + ϵi

∗) +

n

i=1

μ∑ξi

n

i=1

,     
 

(7) 

          subject to ( ∀𝑖 = 1,… , 𝑛, ∀𝑝 = 1,… , 𝑑):                     

    

{
 
 

 
 
𝑤𝑇𝑥𝑖 + 𝑏 ≥ 𝑦𝑖 − ϵi,                      

−δi(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ −δi𝑦𝑖 − ϵi

∗,       
𝑤𝑝 ≥ 0,                                              

  ϵi ≥ 0,                                                

ϵi
∗ ≥ 0.                                                

 

      min
𝑤,𝑏,ϵ,ϵ∗

           
1

2
𝑤𝑇𝑤 + γ∑(ϵi + ϵi

∗)

n

i=1

,             
 

(9) 

subject to (∀𝑖 = 1,… , 𝑛):                                            

           

{
  
 

  
 
𝑤𝑇φ(xi) + 𝑏 ≥ 𝑦𝑖 − ϵi,                                   

−δi(w
Tφ(xi) + 𝑏) ≥ −δi𝑦𝑖 − ϵi

∗,              

𝑤𝑇 (φ(xi) − φ(xj(i))) ≥ 𝑦𝑖 − 𝑦𝑗(𝑖) − ξi    

ϵi ≥ 0,                                                                   

ϵi
∗ ≥ 0,                                                                  

ξi ≥ 0,                                                                  

 

     min
w,b ,ϵ,ϵ∗,ξ

       
1

2
wTw+ γ∑(ϵi + ϵi

∗) +

n

i=1

μ∑ξi

n

i=1

, 
 

(10) 
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hazard is to be calculated. The hazard rate is the instantaneous 
risk to occur the event now, knowing that the event did not 
happen before. The Cox PH model is based on the proportional 
hazards assumption. This assumption presumes that the ratio of 
hazard rates for each two individuals in study is constant. The 
hazard of an observation with covariates 𝑥𝑖  is associated to  
𝑤𝑇𝑥𝑖 . The parameters w are estimated by maximizing the 
partial likelihood function [1, 3].  Cox model was used for 
comparison with SVR models. 

III. PERFORMANCE MEASURES 

Three performance measures were used for performance 
evaluation of survival models [17, 18, 21]. 

The researchers are usually interested in groups of patients 
with higher or lower risk profiles. Therefore, the concordance 
index (c-index) is used as a first performance measure to assess 
the concordance between the model results and the observed 
survival. For the second measure, patients are divided into two 
risk groups according to median prognostic index. The median 
prognostic index is used as threshold to identify the two 
groups. The second measure is the logrank test χ2 statistic that 
measures the difference in survival between the two groups. To 
obtain a third measure, first the estimated prognostic indexes 
are normalized. Then a univariate Cox model is fitted to the 
normalized prognostic indexes. The estimated hazard ratio for 
this model is reported as the third measure. For all used 
performance measures, higher measures indicate better 
performance. 

IV. REAL DATA SETS 

The first data set concerns a historical cohort study which 
was performed on 197 heart attack patients, who visited the 
hospitals of Bushehr port, in South of Iran, from April 1997 to 
April 2001. Inclusion criteria were as follows: (i) the patient 
must be living in Bushehr, and (ii) the patient has not had a 
heart attack previously. In this experiment (HA), the event is 
death. The patient status and event time were attained by 
visiting the patients. The data set contains information on sex, 
age, cholesterol, LDL, HDL, systolic blood pressure and 
diastolic blood pressure. 

We also used two publicly available data sets
1
 for four 

other experiments. The first data set is from the Mayo Clinic 
trial in primary biliary cirrhosis (PBC) of the liver conducted 
between 1974 and 1984 [22]. This data set contains 312 PBC 
patients that have participated in the randomized trial. A total 
of 276 patients remain after removing missing values. In a first 
experiment (PD), the event is death while in a second 
experiment (PT) the event is transplantation. The variables in 
this data set are as follows: age, sex, stage, treatment, alkaline 
phosphatase, aspartate aminotransferase, albumin, bilirubin, 
cholesterol, triglycerides, urine copper, edema, platelet count, 
presence of ascites, presence of hepatomegaly or enlarged 
liver, standardized blood clotting time and blood vessel 
malformations in the skin. 

The other data set concerns one of the first successful trials 
of adjuvant chemotherapy for 929 patients with colon cancer 

                                                           
1. Data are available at 
https://vincentarelbundock.github.io/Rdatasets/datasets.html 

[23]. 888 patients remain after removing missing values. There 
are two events in this data set. In a first experiment (CD), the 
event is death while in a second experiment (CR) the event is 
recurrence. This data set contains 10 variables which are as 
follow: treatment, sex, age, obstruction of colon by tumor, 
perforation of colon, adherence to nearby organs, number of 
lymph nodes with detectable cancer, differentiation of tumor, 
extent of local spread and time from surgery to registration. 

V. SIMULATION METHOD 

In simulated experiments of this study, continuous features 
were generated from a normal distribution with zero mean and 
unit variance. The correlations between the first ten features are 
zero except for the first and second variable, the third and 
fourth, the fifth and sixth, and the seventh and eighth, having 
correlation coefficients 0.7, 0.3, -0.7 and -0.3, respectively. The 
correlations between the second ten features, the third ten 
features up to end are similar to the first ten features. Similar 
methods of data set generation has been previously applied in 
the literature [18]. To generate weight vector of features, w, 
half of weights are set to zero and the rest are simulated from a 
normal distribution with zero mean and unit variance. There 
are some previous studies which have used similar methods of 
data set generation [6, 24, 25]. The event (failure) time follows 
the exponential distribution with parameter equal to 𝑤𝑇𝑥 , 
where x is the feature vector. So the survival time is associated 
to half of features through the prognostic index, 𝑤𝑇𝑥 . The 
censoring time also follows an exponential distribution with 
parameter equal to 𝑐𝑤𝑇𝑥  where the coefficient c is used to 
control the censoring percentage in the training and test sets. 
Similar methods of data set generation has been previously 
applied in the literature [6, 26]. 

We were interested to evaluate the effect of censoring 
percentage, number of model features and the sample size on 
the model performance. In the first setting, to evaluate the 
effect of censoring percentage, we generated datasets with 
different censoring rates: 0.1, 0.2, … , 0.9. For each censoring 
percentage, we generated 50 datasets with 20 continuous 
features. These data sets included 200 training and 1000 test 
observations [18]. 

A clinical data set often includes both categorical and 
continuous features. So, to investigate the impact of categorical 
features on model performance, in the second setting, we 
generated data sets similar to previous setting except that 16 
features were generated from a Bernoulli distribution with 
different nonzero means and 4 features were generated from a 
normal distribution with zero mean and unit variance. 

To evaluate effectiveness of number of features, in the third 
setting, we generated data sets with different number of 
features: 10, 20, … , 120. For each given number of features, 50 
data sets with censoring rate equal to 0.5 including 200 training 
and 1000 test observations were generated. 

In the fourth setting, we generated data sets with different 
training sample sizes: 50, 100, 200, 350, 500, 750, 1000 and 
1500. The testing sample size was set equal to 4 times the 
training sample size. In this setting, 50 data sets with 20 
continuous features and censoring rate equal to 0.5 were 
generated for each given sample size. 

https://vincentarelbundock.github.io/Rdatasets/datasets.html
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VI. RESULTS 

Three real data sets were used for evaluating performance 
of SVR models. Each experiment was repeated 100 times with 
random partitioning of training and testing such that in each 
experiment 2/3 of the data set was used for training set and the 
rest was used for test. In all experiments, real and artificial data 
sets, the training set was used for learning the models and 
tuning the parameters. Models performance was evaluated 
based on the test data. 

All SVR models were implemented in Matlab using the 
Mosek optimization toolbox for Matlab and Yalmip toolbox. 
Also we used ‘R’, Version 3.1.2 for implementing Cox model 
and calculating some performance measures. 

TABLE I presents the censoring percentage, number of 
features and total sample size for five experiments with real 
data sets. For each experiment, performance measures of Cox 
and SVR models are displayed in TABLE II. 

Statistically significant differences between SSVR and 
other models are indicated based on the Wilcoxon rank sum 
test. In experiments PT and PD, SVCR significantly 
outperformed Cox. These experiments had the highest 
censoring percentage and number of features among the five 
real experiments. In the HA data set, censoring times for all 
censored observations were similar and were equal to the 
follow-up period and we were not able to compute MRL for 
this data set. In the rest of the experiments, SSVR-MRL 
performed slightly better than other models but these 
differences were not significant. Real data sets did not indicate 
significant differences between SSVR and SSVR2 or SSVRP. 
In some experiments, performance of SSVR model was 
significantly better than L1-SSVR. 

Figures indicate performance measures of Cox and SVR 
models using artificial data sets. In these figures, reported 
measures are median performance of 50 simulated 
experiments. 

Fig. 1 shows performance measures of Cox and SSVR 
models for data sets with different censoring percentages. The 
left plots are related to data sets with only continuous features 
and the right plots concern the data sets which also have 
categorical features. All plots show that Cox outperforms 
SSVR for lower censoring percentages and when censoring 
percentage is high, SSVR outperforms Cox. Performance of 
SSVR and SSVR-MRL models are compared in fig. 2. This 
figure indicates that SSVR-MRL slightly outperforms SSVR 
for almost different censoring percentages but this difference is 
very small. In this figure similar to Fig.1, the results for two 
data sets, the data sets containing categorical features and data 
sets with only continuous features are similar except that plots 
for data sets with only continuous features exhibit smoother 
curves. Performance measures of two models, SSVR and 
SSVR2, for data sets with different censoring percentages are 
displayed in Fig. 3. All plots show SSVR outperforms SSVR2 
for all censoring percentages. 

TABLE I.  SOME CHARACTERISTICS OF REAL DATA SETS 

Data sets Sample size 
Number of 

features 

Censoring 

percentage 

HA 197 7 86.3 

PD 276 17 59.78 

PT 276 17 93.48 

CD 888 10 51.58 

CR 888 10 49.78 

TABLE II.  COMPARISON OF DIFFERENT SURVIVAL MODELS ON SIX REAL 

EXPERIMENTS. MEDIAN AND MEDIAN ABSOLUTE DEVIATION OF 100 RANDOM 

SPLITS INTO TRAIN-TEST SETS ARE GIVEN. STATISTICAL SIGNIfiCANT 

DIFFERENCES BETWEEN MODEL SSVR AND THE OTHER MODELS ARE 

INDICATED BASED ON THE WILCOXON RANK SUM TEST 

Data 
sets 

method c-index 
 

logrank test 
ststistic 

Hazard ratio 

HA Cox 0.62 ± 0.05 1.24 ± 1.11 1.27 ± 0.17 ** 

SSVR 0.62 ± 0.05 1.15 ± 1.04 1.51 ± 0.30 

SSVRP 0.61 ± 0.05 1.21 ± 1.07 1.46 ± 0.24 

L1-SSVR 0.61 ± 0.05 0.96 ± 0.80 1.46 ± 0.24 
SSVR2 0.60 ± 0.05* 1.08 ± 0.92 1.39 ± 0.23 

PD Cox 0.82 ± 0.02 *** 23.08 ± 5.22 ** 2.66 ± 0.30 *** 

SSVR 0.84 ± 0.01 26.25 ±  5.11 3.10 ± 0.56 

SSVR-MRL 0.84 ± 0.01 26.12 ± 5.78 3.13 ± 0.53 

SSVRP 0.84 ± 0.01 26.12 ± 4.22 3.10 ± 0.55 
L1-SSVR 0.82± 0.02 ** 25.40 ± 5.87 2.95 ± 0.51 * 

SSVR2 0.83 ± 0.01 27.37 ± 5.67 3.07 ±  0.55 

PT Cox 0.70 ± 0.05 ** 2.13 ± 1.50 ** 1.41 ± 0.24 *** 
SSVR 0.74 ± 0.06 3.18 ± 2.24 2.11 ± 0.49 

SSVR-MRL 0.76 ± 0.06 3.91 ± 2.40 2.12 ± 0.49 

SSVRP 0.75 ± 0.06 3.38 ± 2.07 2.17 ± 0.53 
L1-SSVR 0.69 ± 0.06 *** 1.85 ± 1.65** 1.95 ± 0.51 

SSVR2 0.74 ± 0.06 3.14 ± 1.92 2.14 ± 0.48 

CD Cox 0.64 ± 0.01 20.81 ± 5.50 1.56 ± 0.06 
SSVR 0.64 ± 0.01 21.59 ± 5.53 1.49 ± 0.07 

SSVR-MRL 0.66 ± 0.01 22.63 ± 5.51 1.50 ± 0.09 

SSVRP 0.64 ± 0.01 21.93 ± 5.84 1.49  ± 0.07 
L1-SSVR 0.64 ± 0.01 21.34 ± 4.97 1.45 ± 0.06 *** 

SSVR2 0.64 ± 0.01 22.17 ± 6.41 1.51 ±  0.07 

CR Cox 0.64 ± 0.01 18.87 ±  4.96 1.57 ±  0.06 
SSVR 0.65 ± 0.01 19.71 ±  3.63 1.47 ±  0.08 

SSVR-MRL 0.65 ±  0.01 22.63 ± 5.51 1.50 ±  0.09 

SSVRP 0.65 ± 0.01 20.51 ±  4.38 1.47 ± 0.08 
L1-SSVR 0.64 ± 0.01 * 19.24 ±  5.28 1.49 ±  0.08 

SSVR2 0.65 ± 0.01 21. 42 ± 4.49 1.45 ± 0.09 
*  p-value <  0.05  (Wilcoxon  rank  sum  test). 
**  p-value <  0.01  (Wilcoxon  rank  sum  test). 
***  p-value <  0.001  (Wilcoxon  rank  sum  test). 

   
                            (a)                                                      (d) 

   
                            (b)                                                      (e) 
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                            (c)                                                      (f) 

Fig. 1. (a), (b), (c): performance measures of Cox and SSVR models for 

artificial data sets with 20 continuous features and different censoring 

percentages, (d), (e), (f): performance measures of Cox and SSVR model for 
artificial data sets with categorical and continuous features and different 

censoring percentages. These measures are obtained using median measures 

of 50 artificial train-test sets 

 Fig. 4 shows performance measures of three models, 
SSVR, SSVRP and L1-SSVR for data sets with different 
censoring percentages. In this figure, SSVR is compared to 
SSVRP and L1-SSVR. The plots indicate that performance of 
SSVR, SSVRP and L1-SSVR are comparable. The left plots of 
Fig. 5 display performance measures of SSVR and Cox for 
data sets with different number of features. The plots indicate 
that performance of two models, Cox and SSVR, decrease as 
number of model features increases but the amount of 
reduction for SSVR is lower than Cox. Therefore, for data sets 
with higher number of features, SSVR outperforms Cox. 
Performance measures of SSVR and Cox for data sets with 
different sample sizes are shown in right plots of fig. 5. These 
plots indicate that performance of both SSVR and Cox 
improves as training sample size increases. Also two plots in 
this figure indicate that for lower training sample size, 
performance of SVR is a little better than Cox. When training 
sample size slightly increases, Cox outperforms SVR and for 
large training sample size, two models perform similarly. 

   

                            (a)                                                      (d) 

   
                            (b)                                                      (e) 

   
                            (c)                                                      (f) 

Fig. 2. (a), (b), (c): performance measures of SSVR and SSVR-MRL models 

for artificial data sets with 20 continuous variables and different censoring 

percentages, (d),(e), (f): performance measures of SSVR and SSVR-MRL 

models for artificial data sets with categorical and continuous features and 
different censoring percentages. These measures are obtained using median 

measures of 50 artificial train-test sets 

VII. DISCUSSION 

The results of current study indicated that performance 
measures of SSVR and Cox decreased as censoring percentage 
increased, but the amount of reduction for SSVR was lower 
than Cox. For data sets with a high censoring percentage, SVR 
models outperformed the traditional Cox model. 

Shivaswamy et al. [7] also evaluated the effect of censoring 
rate on performance of SVR model. They did not use simulated 
data and changed survival times in some real data sets to obtain 
data sets with different censoring percentages. They did not use 
Cox model and compared SVR with a survival model based on 
Gaussian process. They similar to current study found that 
performance of two mentioned models decreased as censoring 
rate increased and the amount of reduction for SVR is lower 
than the Gaussian process model. 

Van Belle et al. [17, 18] compared performance of some 
survival models on six clinical data sets and three high 
dimensional data sets. They compared performance of some 
survival models with the SVCR2 model (the model with both 
regression and ranking constraints) and found that the 
differences of performance measures between SVCR2 and Cox 
were not significant.  

In our study, SVCR model was compared with other 
survival models and the findings based on two real data sets 
indicated that SVCR significantly outperformed Cox model. 

   

                            (a)                                                      (d) 
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                            (b)                                                      (e) 

   
                            (c)                                                      (f) 

Fig. 3. figures (a), (b), (c): performance measures of SSVR and SSVR2 

models for artificial data sets with 20 continuous variables and different 
censoring percentages, (d), (e), (f): performance measures of SSVR and 

SSVR2 models for artificial data sets with categorical and continuous features 

and different censoring percentages 

Van Belle et al. [18] using clinical data sets found that 
differences between SVCR2 and SVCR were not significant. 
This result is Similar to our results for real data sets. They also 
yielded that for some high dimensional data sets that SVCR 
significantly outperformed SVCR2. Our simulated data sets 
also showed that SVCR slightly outperformed SVCR2. SSVR 
is a simpler model with one parameter while SSVR2 has two 
parameters and requires much time for tuning the parameters of 
model. Therefore, SSVR has better performance and less time 
complexity than SSVR2. 

Some studies used a two-sided loss function for uncensored 

observations and a one-sided one for censored observations [6, 

7, 17, 18]. In current study a tow-sided loss function was used 

for all observations. The results indicated that this loss 

function improves model performance slightly but the amount 

of improvement is not significant. Khan et al. [16] also applied 

a two-sided loss function for censored observations but their 

method is different from used method in this study.  They 

entered some parameters in model to consider a two-sided loss 

functions for all observations and different losses for errors of 

underestimation and overestimation. The results of their study 

using five real clinical data sets indicated that SVR 

outperformed Cox. In contrast to current study, their model 

contains many parameters and requires much time for tuning 

the parameters of model. 

   
                            (a)                                                      (d) 

   
                            (b)                                                      (e) 

   
                            (c)                                                      (f) 

Fig. 4. (a), (b), (c): performance measures of SSVR and SSVRP models for 

artificial data sets with 20 continuous variables and censoring percentage 

equal to 0.5, (d), (e), (f): performance measures of SSVR and L1-SSVR2 
models for artificial data sets with categorical and continuous features and 

censoring percentage equal to 50 

Current study indicated that when the number of features 
was large, SVR outperformed Cox and when number of model 
features compared with the sample size was large enough, Cox 
was not able to be trained. Due and Dua [20], also using a 
breast cancer data set, yielded that feature selection improved 
performance of Cox and SVR and the amount of improvement 
for Cox was more than SVR. They reported that SVR 
outperformed Cox on the initial data set. After using feature 
selection, fewer features were included in the model and 
performances of Cox and SVR was similar. Some studies also 
reported good performance of SVR in dealing with high-
dimensional data [7, 17]. 

There are limited papers which used artificial survival data 
sets for training survival SVR models. Shiao and 
Cherkassky[26] proposed two SVM methods to apply in 
survival analysis. The authors evaluated their methods using 
real data sets and artificial data sets. In contrast to current 
study, they used SVM models for classification of survival 
data. Van Belle et al. [6, 18] used limited artificial data sets for 
evaluating the performance of a SVR model with only ranking 
constraints. Liu et al. [25] also used limited artificial data sets 
to evaluate a novel survival L1-SVR method for large scale 
data sets. Goldberg and Kosorok [27] proposed a novel SVR 
method for censored data and used a simulation study for 
evaluating their method. The proposed survival SVR model in 
their study is completely different from methods studied in 
current paper and other studies in the literature. Apart from this 
study, to the best of our knowledge, there is no previous 
survival study which uses simulated data sets for comparing 
performance of Cox and SVR. 
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                            (a)                                                      (d) 

   
                            (b)                                                      (e) 

   
                            (c)                                                      (f) 

Fig. 5. (a), (b), (c): performance measures of SSVR and Cox models for 

artificial data sets with different number of model features, (d),(e) and (f): 

performance measures of SSVR and Cox models for artificial data sets with 

different training sample size. Censoring percentage of datasets are equal to 
50 

L1-SSVR and SSVRP (model with positivity constraints) 
are employed for feature selection. This study indicated that 
there were not significant differences between performances of 
SSVR and SSVRP. However for some real data sets it was 
found that SSVR significantly outperformed L1-SSVR. Cox 
model is a semiparametric model that needs to check the 
proportional hazard assumption. This model is only able to 
expose linear effects of features on hazard while some features 
may have a non-linear effect. For using of SVR models one 
does not have to check such assumptions. Also, the findings 
showed that for data with high censoring percentage or many 
features, SVR models have desirable performance. Due to 
good performance of SVR models for survival analysis, It is 
suggested that in future studies, these models are extended to 
other survival subjects such as competitive risks and analysis 
of recurrent events data. 

VIII. CONCLUSION 

The results of current study for two real data sets showed 
that if the censoring percentage of the clinical data sets is high 
and the model includes many features, SVR significantly 
outperforms traditional Cox model. Experiments with the 
artificial data sets in current study indicated that when 
censoring percentage of a clinical data set is high, SVR 
outperforms Cox. If the censoring percentage is low, Cox has a 

better performance. However, SVR has the advantage of not 
requiring the proportional hazard assumption. Also, when the 
data set includes many features, SVR outperforms Cox. In 
addition, if the training set size is large enough, two models 
perform similarly. 

The use of a two-sided loss function using MRL did not 
improved performance of SVR model. Real data sets did not 
indicate significant differences between SSVR (model with 
only regression constraint) and SSVR2 (model with regression 
and ranking constraints). However, SSVR had a better 
performance compared to SSVR2 using simulated data sets. 
For two real data sets, performance of L1-SSVR significantly 
was worse than the SSVR model. 
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