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Abstract—Several factors (e.g., target energy, sensor density)
affect estimation error at a point of interest in sensor networks.
One of these factors is the number of allocated bits to sensors that
cover the point of interest when quantization is employed. In this
paper, we investigate bit allocation in such networks such that
estimation error requirements at multiple points of interest are
satisfied as best as possible. To solve this nonlinear integer pro-
gramming problem, we propose an iterative distributed auction-
bidding protocol. Starting with some initial bit distribution, a
network is divided into a a number of clusters each with its
own auction. Each cluster head (CH) acts as an auctioneer and
divides sensors into buyers or sellers of bits (i.e., commodity).
With limited messaging, CHs redistribute bits among sensors,
each bit at a time such that the difference between achieved and
required estimation errors within each cluster is reduced in each
round. We propose two bit-pricing schemes used by sensors to
decide on exchanging bits. Finally, simulation results show that
our proposed ‘distributed’ protocol’s error performance can be
within 5%−10% of that of a ‘centralized’ genetic algorithm (GA)
solution.
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I. I NTRODUCTION

A Distributed sensor network (DSN) consists of a large
number of sensors deployed in a region of interest (ROI) with
the main task of monitoring certain phenomenon in the ROI
[1], [2]. With their ability to continually monitor in harsh and
hostile environments with limited human intervention, DSNs
bridge the gap between the physical world and our computa-
tional world. DSNs have found uses in many fields such as;
environmental, industrial, agriculture and defense. However,
in many cases it is not sufficient to monitor the phenomenon
(e.g., fire) and detect its presence. It might be also necessary to
identify the coordinates of the source of the phenomena (i.e.,
target localization) in order to take meaningful action (e.g., fire
control) [3]-[6].

Target localization in general is a nonlinear estimation
problem [7]-[9], in which sensors send their nosy data to a
fusion center that employs some estimator (e.g., ML estimator)
to determine location information. The problem’s nonlinearity
arises from the nonlinear relationship between sensor measure-
ments (e.g., received signal strength (RSSI) and time difference
of arrival (TDOA) ) and target location. RSSI measurements
are commonly used due to the simplicity of obtaining them in
comparison to other types.

In RSSI-based localization, error performance is dependent
on several factors. These include; sensor positions with respect
to target, target-related parameters (e.g., energy profile), mea-
surement model [10], [11]. Moreover, in practical networks
with imposed bandwidth and energy limits, measurement quan-
tization is usually employed. In such a case, the localization
error performance further depends on both the number of bits
allocated to each sensor and the quantization thresholds used
[12].

Due to the complicated relationship between the above
mentioned parameters and the error performance, it becomes
important to devise intelligent methods for bit allocation in
RSSI networks. Furthermore, and due to the large number
of sensors typically found in DSN, it is important for bit
allocation to be scalable and easy to implement.

We state the problem we study in this paper as follows;
Given a network ofM sensors deployed in an ROI that con-
tains multiple points of interest with corresponding estimation
error requirements and having some given initial bit allocation
distribution, how can we re-allocate these bits in a ”distributed”
fashion such that error requirements at the points of interest
are met as best as possible?. To solve this problem, propose a
novel distributed bidding/auction protocol for bit re-allocation.
Next, we provide an overview of some related works to the
bit allocation problem in RSSI-based localization networks.

In [13], an iterative two-stage algorithm for bit allocation
and threshold selection is proposed with the goal of mini-
mizing the average overall error. The first stage deals with
the reconstruction of the quantized sensor measurement at the
fusion center (FC). The second part is concerned with the
error between the actual location of the target and its estimated
location. We note that the proposed algorithm constructs the
quantizer using a training data set according to some given
probability distribution of the target’s possible location. In
addition, the authors propose a simple equal distance divided
quantizer (EDQ) for threshold selection, where each quanti-
zation interval corresponds to a quantization ring within the
sensor field.

More recently, in [14] and [15], the authors propose several
bit allocation methods for the target tracking problem with
the goal of minimizing estimation error. As a cost function,
the authors use the determinant of the Fisher information
matrix (FIM). To solve this problem, the authors propose
an ‘approximate’ recursive dynamic programming (A-DP)
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approach for bit allocation. In addition, a modified version of
the Breiman, Friedman, Olshen, and Stone (GBFOS) algorithm
is proposed. Both algorithms are shown to have a comparable
performance. In [16], the authors devise several bit allocation
algorithms to meet error requirements at multiple points within
the region of interest rather than a single point which enables
the considerations of multiple subregions with different levels
of importance. Furthermore, an adaptive thresholding scheme
is devised in [16] that incorporates error requirements within
a sensor’s sensing zone in threshold selection.

We note the algorithms presented in the works above are
‘centralized’ in nature, that require sensors to send relevant
data to a central processor to perform allocation. This central-
ized approach might not be computationally practical for dense
networks with a large number of sensors. In addition, it might
result in inadequate performance, especially if requirements
are rapidly changing. In contrast, the algorithm we propose
in this paper is distributed in nature and requires information
exchange between a sensor and the sensors in its immediate
neighborhood. The second difference is the fact that in most
of these works, error minimization was considered at a single
point. This is in contrast to this work, in which the goal is to
meet error requirements over an area of interest.

The bit allocation algorithm we propose in this paper is
an auction/bidding-type algorithm. As a network become more
complicated and the operation of its different components (e.g.,
sensors) more inter-related, its management becomes more
difficult. One important problem that faces such a DSN is
resource allocation [17]. One method for solving this problem
is auction theory, which has been applied to bandwidth, power
and time-slot allocation problems [18]-[20] in communication
networks. Auction theory has been applied as well to sensors
networks. For example, the authors in [21] propose a bidding
protocol for mobile sensors deployment with the goal of
maximizing the coverage within a region of interest. In this
protocol, static sensors detect coverage holes and estimate their
size and send this information to near-by mobile sensors which
only relocate to the new location if the improvement in cover-
age after movement is larger than coverage degradation at the
original sensor location. The proposed coverage-maximizing
protocol is distributed and is scalable to dense networks.

In this paper, we consider an (ROI) withN points of
interest. Each point is assigned a minimum estimation re-
quirement that is to be met. A numberM of sensors are
deployed, each with an initial number of quantization bits
that need not be uniform. It is of interest to reallocate bits
such that specified estimation error requirements are met as
best as possible. To solve this problem, we propose a novel
iterative auction/bidding protocol for bit reallocation. In each
iteration/round, the network is divided into clusters, each with
its own cluster head (CH). The CH acts as an auctioneer
in an auction. The CH then divides sensors in its cluster to
either buyers or sellers where the commodity to be exchanged
is bits. The pricing policy (i.e., valuation) of bits can be
specified in several ways. Here, we propose two valuation
policies in terms of two factors; the number of bits that a
sensor already uses and the difference between achieved and
required estimation requirements within a sensor’s sensing
radius. The CH deallocates a bit from a seller sensor with
the lowest valuation, to the buyer with the highest valuation.

Simulation results show that the proposed distributed algorithm
can provide a comparable performance to that of a centralized
genetic algorithm (GA) solution.

The paper is organized as follows; in Section (II) we
discuss the system model and our problem set-up. In Section
(III), we introduce the proposed bit allocation methods. Sim-
ulation results are discussed in Section (IV) and conclusions
are summarized in Section (V).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an2−D region of interest (ROI) of di-
mensions b × b with N points of interest in the ROI.
The coordinates of these points are given as{pn =
[xn, yn]

′, n = 1, 2, . . . , N}. Minimum estimation error re-
quirements{Ereq(n), n = 1, 2, . . . , N} are specified for each
point. UsingEreq enables us to divide the ROI into different
subregions with varying levels of importance if needed.

The network consists ofM static sensors with known
positions denoted as{sm = [xm, ym]′,m = 1, 2, . . . ,M}.
Sensors are assumed to provide received signal strength in-
dicator (RSSI) measurements which are easier to obtain than
other measurement types (e.g.,time of arrival (ToA)) [22], [23].

Let pt = [xt, yt]
′ denote the target’s position, then the

RSSI measurement of them-th sensor is given as [24], [25]

zm =
√

P0 e
−α
2 d2

t,m + wm, m = 1, 2, ..M (1)

where,P0 denotes the energy emitted by the target anddt,m
denotes the distance between them-th sensor andpt. The
parameterα is a decay factor. The noisewm is assumed to be
i.i.d zero-mean Gaussian (wm ∼ N (0, σ2)).

To reduce energy and bandwidth usage, sensors are as-
sumed to transmit their measurements quantized. LetRm

denote the number of bits used by them-th sensor and let
{ηlm, l = 1, 2, . . . , 2Rm−1} denote its quantization thresholds,
then the quantized measurement of them-th sensor which is
denoted aszq

m is mapped as follows

zq
m =



















0 , if −∞ < zm ≤ η1m
1 , if η1m < zm ≤ η2m
·
·

2Rm − 1 , if η2
Rm−1

m < zm ≤ ∞

(2)

Let E(n) denote the achieved estimation error at then-th
point, thenE(n) quantifies how accurate is the estimator in
estimating the location of the target if it were placed at the
n-th point. The mean square errorE(n) is defined as

E(n) = E[(pn − p̂n)(pn − p̂n)
T] (3)

where, E[·] denotes the expectation operator.

The errorE(n) can be bounded using the Cramer-Rao
lower bound(CRLB) [26], [27]. In many cases (e.g., large SNR
measurements, dense network), the CRLB can be used as an
approximation of the actual estimation error.

In our problem,E(n) can be bounded using the CRLB as

E(n) ≥ Trace[(Jn)
−1] (4)
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where,Jn is the Fisher information matrix (FIM) correspond-
ing to then-th point. For the derivation of the FIM matrix for
the quantized RSSI measurement model, the reader is referred
to [24] and is given as

J =

[

J11 J12
J21 J22

]

(5)

where, the FIM elements are given as [24], [25]

J11 =
∑

m

βm(xn − xm)2 (6)

J12 = J21 =
∑

m

βm(xn − xm)(yn − ym) (7)

J22 =
∑

m

βm(yn − ym)2. (8)

The parameterβm is given as

βm =
α2P0e

−αd2
m,n

2πσ2
γm (9)

where λm andγm are given as

λm =
α2P0e

−αd2
m,n

2πσ2
(10)

and

γm =
∑

l

1

plm
[e

−(ηl
m−am)2

2σ2 − e
−(ηl+1

m −am)2

2σ2 ]2 (11)

where, plm is the probability that the quantized measure-
mentzq

m takes on the valuel and is given as

plm = Pr(zq
m = l) (12)

= Q(
ηlm − am

σ
)−Q(

ηl+1
m − am

σ
). (13)

Based on the equations above (Eqns.(6)-(11)), that the
estimation error depends on several parameters (e.g.,P0, α
andσ2). We also note that a sensor’s contribution to reduction
of error at a point is inversely proportional with the distance
separating it from the point of interest. Finally, we note that
the number of quantization bits and thresholds are incorporated
in the γm parameter in Eqn. (11). In general, the more bits
allocated combined with an intelligent choice of quantization
intervals results in increase of the sensor’s contribution to
estimation error reduction.

Thus, it is evident that the distribution of bits within the
ROI is an important factor in determining the overall error
performance of the network. An informed allocation of bits
is especially important for networks deployed in areas with
different estimation requirements. It is also critical in the case
of varying requirements or network topology (e.g., death or
malfunction of sensors) in which loss of bits needs to be
compensated.

The problem we study in this paper can be stated mathe-

matically as follows

minimize
R

N
∑

n=1

(Ereq(n)−E(n))2

subject to R � 0,
M
∑

m=1

Rm = RT ,

(14)

where,R = [R1, R2, . . . , Rm] is the vector of the number of
bits allocated to each sensor andRT is the total number of
bits.

The allocation problem in Eqn. (14) is an integer non-
linear programming problem. Because of its computational
complexity, especially for dense networks, it is desirable to
develop computationally tractable algorithms for solving such
a problem.

One important note is the fact that the estimation error
achieved at some points might not be defined. Localization in
2-D setups requires that a point be covered (i.e., within the
sensing radius of a sensor) with at least3 sensors. Hence, if a
point is covered by less than3 sensors, then regardless of how
many bits are allocated to the sensors covering it there will
be no meaningful achieved estimation error. We denote this as
havingE(n) = ∞. To alleviate this problem, we propose the
following logarithmic error definition [16]

EL(n) = log(1 +
1

E(n)
) (15)

which solves the problem of dealing with errors. Hence, we
can consider modifying the objective function in Eqn. 14 to
be in terms of the logarithmic errors.

We next present a distributed protocol for solving the above
mentioned allocation problem.

III. PROPOSEDALLOCATION PROTOCOL

The bit allocation problem in RSSI localization is difficult
due to the nonlinearity between achieved estimation error
and the number of bits allocated to a sensor. This is in
addition to the error dependence on the actual quantization
thresholds used. Another factor is the dependence of estimation
error at one point on not only on a single sensor, but on
the total number of sensors covering this point along with
their quantization bits and thresholds. We later refer to this
dependence as the coupling problem.

To solve this problem we next outline our proposed bit
allocation protocol.

A. Proposed Protocol

To establish an auction, we need several elements; sellers,
buyers, auctioneer and commodities to be exchanged with
certain prices and revenues. To attain these elements, we divide
the network into several clusters, each with its own cluster
head (CH). Sensors in each cluster participate as either sellers
or buyers with the CH acting as an auctioneer. To reduce
communication costs, the CH (i.e., auctioneer) collects data
about possible sellers and buyers in its cluster and makes the
allocation decision. Using some bit valuation (i.e., a pricing
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scheme whichwill be discussed later), a sensor is to deallocate
a bit (i.e., sell) to another sensor in its cluster if it produces a
better overall network valuation (e.g., error performance) than
if bit were to be kept by the sensor. Similarly, a sensor is
permitted to use an additional bit (i.e., buy), that has been
deallocated from another sensor, if it produces a better overall
network valuation. To reduce communication cost between
sensors, communication is restricted to the CH. The proposed
protocol can be outlined as follows

1) The CH calculates its own selling price according
to the specified scheme and transmits its price to its
cluster nodes.

2) Each sensor locally calculates its own selling price
and those with a price lower than that of the CH
identify themselves as sellers and inform the CH of
their status and price.

3) Next, the CH calculates its buying price and transmits
it to cluster sensors.

4) Sensors locally calculate their buying price and com-
pare to that of the CH. Sensors with a higher buying
price than that of the CH identify as buyers and
similarly send their information to the CH.

5) The CH then deallocates a bit from the sensor with
the lowest selling price and allocates it to the sensor
with the highest buying price.

6) Repeat the above steps as much as specified by the
user.

In addition to being an auctioneer, the CH acts as a
possible buyer or seller. This is true since it provides a ceiling
on the selling price and a floor on the buying price which is
useful for limiting unnecessary communication.

Notes:

1) The selection of CHs can be achieved using a cluster
head selection algorithm. A popular approach is using
the LEACH algorithm which is employed in this
paper [28], [29]. Using this algorithm, a sensor(s)
generates a random number between0 and1. If this
number is less than a certain thresholdT (s), then the
sensor becomes a CH for this round. The threshold
T (s) is given as [28], [30]

T (s) =

{

pCH

1−pCH(r mod 1
p
)

if s ∈ G

0 else
(16)

where, pCH, r, G represent, respectively, the desired
percentage of cluster-heads, the current round num-
ber, and the set of nodes that have not been cluster-
heads in the last1/pCH rounds. We note thatpCH =

C
M

,
whereC is the number of CHs to be selected. Sensors
closer to a CH join the cluster corresponding to this
CH.

2) One problem resulting from the coupling of error
performance is the collision problem. We define the
collision problem in this context as the problem of
interfering sensors whose sensing zones (i.e., disc of
radiusRs) overlap with the domains of other sensors
that fall within another cluster. Under such situation,
CHs of two adjacent clusters might deallocate bits

from neighboring sensors concurrently. This might
produce a change in estimation errors more than the
one reported by sensors to be their selling price,
which can not be matched by improvement in es-
timation error reported by the winning sensor. On
the other hand, bits can be allocated concurrently to
adjacent sensors from two clusters which causes over-
meeting estimation requirements at some area while
requirements at other areas are not met.
To solve this problem, it is possible to force the
CHs to be a certain distance away from each other
such that sensors that belong to a cluster do not have
overlapping domains with sensors that belong to other
clusters. IfRCH andRs denote the clustering and sens-
ing radii respectively, then the distance between CHs
R∆CH that eliminates the collision problem should be
such that

R∆CH ≥ 2(RCH +Rs) (17)

We note that using a smallerR∆CH, does not neces-
sarily mean that collision will always happen as this
depends on sensor positions within the clusters. How-
ever, it implies that randomly-occurring degradations
in estimation performance are possible. One problem
with this approach that it sets a bound on the number
of clusters (i.e., auctions) that can be formed in each
iteration resulting in a slow reduction of estimation
errors. Furthermore, it produces varying number of
CHs in each round.

3) The collision problem can also affect bidding in
the same cluster, especially when a sensor evaluates
bits assuming neighboring sensors are to keep their
bits fixed. Assume a sensor submits its selling price
and is chosen as a seller. Furthermore, assume the
winning sensor’s domain overlaps that of the selling
sensor. Under this setup, the improvement in estima-
tion error is likely less than what was anticipated
by the winning sensor. Thus a lower bidding price
might have been more suitable (i.e., another sensor
could have won). Different methods can be used
to solve the above problem. For example, sensors
can calculate their valuations taking into account
changes (i.e., increase or decrease) in number of
bits at neighboring sensors. However, this comes at
the expense of increased computational complexity.
Another method, that is employed in this paper, is
for each selling sensor to exclude overlapping sensors
(i.e., sensors less thanRs away) from the pool of its
possible buyers.

4) With no constraints on the number of bits that a sen-
sor can have, a sensor might end up selling all its bits.
Thus, the sensor will not report any measurements
resulting in a coverage loss (i.e., as if the sensor
does not exist when calculating actual estimation
errors). One possible solution is for a sensor to stop
participation in selling when it has one bit left.

B. Bit Valuation

We propose two possible bit valuation (i.e., pricing
schemes) methods that require a limited amount of message
passing. These schemes require knowledge of positions of
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Algorithm 1 Proposed algorithm outline

-Initialization:
-Transmit sensor location and initial bit distribution to
neighboring sensors
-Specify number of protocol rounds/iterationsK
-Specify number of clustersC andpCH

FOR k = 1 : K
-SelectK-CHs
FOR c = 1 : C
-CH broadcasts its base selling/bidding price to sensors in
its cluster
-Sensors with lower/higher selling/bidding price identify as
sellers/buyers and transmit their selling/bidding price to CH.
-CH constructs matching sets for each seller sensor.
-CH deallocates bit from lowest price selling senors and
allocates it to highest price bidding sensor.
-Sensors update their thresholds and calculate error
END // C-loop
END // K-loop

sensors that are less thanRs units away which can be per-
formed one time after the initial deployment. Knowledge of the
number of bits allocated to each sensor is also required, which
can be transmitted by the CH after each algorithm iteration.

1) Estimation error difference: When a sensor wants to
determine its selling price, it locally calculates the
degradation in estimation performance when one of
its bits is removed. LetIm indicate the set of point
indexes within the sensing radius of them-th sensor.
Then the total localization error at these points is
given as

e(m) =
∑

i∈I
+
m

∆EL(i) (18)

where,I+m denotes indexes of points where require-
ments are not met and∆E(i) is defined as

∆E(i) = EL
res(i)− EL

req(i). (19)

When calculating the selling price, the sensor locally
calculates the total localization errore−(m) if one bit
was removed. The selling pricep−m is then defined as

p−m = |e−(m)− e(m)| (20)

Therefore, as the degradation in anticipated estima-
tion error decreases, the sensor will be more willing
to sell its bit. Similarly, the bidding price is then given
as

p+m = |e+(m)− e(m)| (21)

where,e+(m) is the error if one bit was added to
the sensor. Thus, the larger the improvement in error
performance, the greater is the bidding pricep+m.
The above scheme is not the only scheme that we can
propose. We next, propose a pricing scheme that in
addition to estimation error, incorporates the number
of used bits in calculating a bit’s price.

2) Error-Bit Efficiency: In this pricing scheme, we pro-
pose to incorporate the error per bit efficiency metric.
This enables us to quantify how efficient is the sensor

using each of its bits. LetR(m) denote the number of
them-th sensor bits, we define the error-bit efficiency
ηm as

η(m) =
%e(m)

R(m)
, (22)

where,

%e(m) =
∑

i∈I
+
m

EL
res(i)− EL

req(i)

EL
req(i)

(23)

Using the efficiency measure, we can now define the
selling/bidding price as

p±m = |η±(m)− η(m)| (24)

The selling price defined above indicates the relative
change in bit efficiency when one bit is to be re-
moved. The smaller the efficiency change, the more
willingness to sell the bit and thus the lower price.
In case of bidding for bits, sensors with the most
efficiency will propose higher bidding prices.

In the next section, we investigate the performance of the
proposed protocol.

IV. SIMULATION RESULTS

To study the performance of our proposed bidding protocol,
we use the average error criterion which we define as the
difference between achieved and required estimation error
requirements over the whole region of interest at thek-th
protocol round and is given as

Average Error(l) =
∑

i∈I+

∆EL
k (i),

where,I+ denotes the set of points where error requirements
are not satisfied. We also employ the normalized average error
criterion which is the overall average error at thek-th iteration
normalized with respect to the initial average error before any
bidding is performed denoted as Average Errorinitial. That is;

Normalized Error(k) =
Average Error(k)
Average Errorinitial

,

We note that we use a number100 Monte Carlo iteration to
average our results over. Another criterion we use is the relative
average error gap with respect to the error of that of a solution
generated by a ‘centralized’ genetic algorithm (GA) approach,
and is defined as

REGA(k) =
Average Error(k)− Average ErrorGA

Average ErrorGA

where, Average ErrorGA is the error corresponding to the GA
solution. We note that in all of our GA simulations we use
a population size of100 with 30 generations. We also note
that the EDQ threshold selection method is used in all of our
simulations.

In the first experiment, we investigate the behavior of our
proposed protocol for different initial energyP0 levels for both
proposed pricing schemes. We consider a20 × 20 ROI, with
uniform estimation requirements set to1.5 m2. Additional
experiment parameters as listed in Table. I below (notably,
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Fig. 1: REGA(k) vs. rounds for differentP0. Price=1 and 2
refer to the error difference and error-bit efficiency schemes,
respectively.

M = 30 sensors withRm = 3 bits for each sensor in addition
to usingC = 5 CHs withK = 10 rounds).

b 20
σ2 1
M 30
N 200
Rs 5
α 0.1
C 5
L 10
Rm 3

TABLE I: Parameters of Experiment Set1

The relative error gapREGA is depicted in Fig. 1 below.
We first note that theREGA(k) decreases as more rounds of
the protocol are executed and asP0 is increased. AsP0 is
increased, sensor measurements become more accurate and
sensors can more accommodate selling their bits to other
sensors. This is especially true for sensors that are within
an area of high coverage (i.e., large number of overlapping
sensors) where requirements are more satisfied relative to
other low coverage areas (i.e., with fewer sensors overlapping)
where requirements are less satisfied. More notably, the use
of the second pricing scheme (i.e., error-bit efficiency) results
in a smaller gap than that of the first pricing scheme (error
difference). For example, using the error difference scheme
results in an error gap of between20% − 38%. However, a
smaller gap of between5%− 10% can be achieved using the
second scheme afterK = 10 rounds. This is a direct result of
the incorporation of the relative error difference as well as the
number of bits assigned to a sensor.

The second experiment investigates the error performance
as we vary the number of cluster heads (C). The experiment
parameters are similar to that of the previous experiment with
P0 = 35 and a variableC. Results are depicted in Fig. 2 below.
We note that increasingC increases the error reduction. This
is expected as having more clusters implies more auctions are
being performed which results in a faster reduction of errors.

However, we note that increasingC has a diminishing return
behavior, especially when using the second pricing scheme
where increasingC from 3 to 5 results in a small overall
improvement in error reduction.
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Fig. 2: Normalized error vs. rounds for differentC CHs

We next consider a different setup in which sensors are
uniformly deployed but with nonuniform bit allocation. In
particular, sensors in the upper right corner of the ROI are
assigned a number of bits (which we call ’corner bits’)
different from other sensors which are each assigned one bit
(Rm = 1). It is evident (see Fig. 3) that the proposed protocol
is capable of reducing the average error even when possible
bits to be traded are concentrated in one area. We remind the
reader that sensors with one bit are prohibited from selling in
our protocol. Thus, the more bits are available for exchange,
the better the protocol reduces error using any of the pricing
schemes. This is especially true fo the error-bit efficiency
price which produces a lower selling/bidding price when the
number of allocated bits is larger than those of other sensors
in cluster. It is noted that this nonuniform bit distribution
amplifies the performance difference between the two proposed
pricing schemes. An example of the re-distribution of bits
among sensors is shown in Figs. 4, 5 that show the initial
distribution of bits (with 4 corner bits) as well as that of the
GA algorithm’s and the proposed protocol pricing schemes.

In the fourth experiment, we consider an ROI with nonuni-
form estimation requirements as shown in Fig.?? and param-
eters as shown in Table. I . From Fig. 7, we note that the
more stringent requirements become (i.e., loweringEreq), the
larger is the error gap with respect to the optimal solution.
This is especially true before the protocol is implemented.
Satisfying stringent requirements requires moving bits closer
to the required region while not degrade performance at other
regions. We further note, the as requirements become less
stringent (i.e., fromEreq = 0.5 to 1.5 m2 ) the larger is the
error reduction. That is because estimation errors are more
satisfied and thus bits can be traded and moved to areas with
more stringent requirements.

Figs. 8 and 9 show an example of the error difference
distribution over the ROI, withEreq = 0.5 set to the lower left
corner. The darker the areas (i.e., lower vale on the color bar)
the more the error is satisfied.
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V. CONCLUSION

In this paper, we studied the bit allocation problem for the
RSSI-based localization network. Having an initial distribution
of sensors, the goal is to re-allocate bits such that estimation
requirements at multiple points in the ROI are satisfied as best
as possible. To solve this problem, a novel iterative distributed
auction/ bidding protocol is introduced. The network is divided
into clusters, with each cluster head acting as an auctioneer
and dividing sensors into buyers or sellers of bits. Two
pricing schemes are proposed; the error difference and error
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Fig. 5: Bit distribution using proposed protocol
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Fig. 6: Nonuniform estimation requirements

difference-bit efficiency schemes. Simulation results indicate
that the proposed protocol can achieve an error performance
that is within less than10% of that a centralized genetic
algorithm (GA) approach.
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