
Scheduling on Heterogeneous Multi-core Processors
Using Stable Matching Algorithm

Muhammad Rehman Zafar
Department of Computer Science

Bahria University
Islamabad, Pakistan

Muhammad Asfand-e-Yar
Department of Computer Science

Bahria University
Islamabad, Pakistan

Abstract—Heterogeneous Multi-core Processors (HMP) are
better to schedule jobs as compare to homogenous multi-core
processors. There are two main factors associated while analyzing
both architectures i.e. performance and power consumption.
HMP incorporates cores of various types or complexities in a
solitary chip. Hence, HMP is capable to address both through-
put and productivity for different workloads by coordinating
execution assets to the needs of every application. The primary
objective of this study is to improve the dynamic selection of the
processor core to fulfill the power and performance requirements
using a task scheduler. In the proposed solution, there will be
dynamic priority lists for tasks and available cores. The tasks to
core mapping is performed on the basis of priorities of the tasks
and cores.

Index Terms—Heterogeneous, Performance, Scheduling, Multi-
core processors, Stable matching

I. INTRODUCTION

HMP is becoming mainstream because it has potential to
reduce the power consumption and improve the performance
than homogeneous core processors. In HMP architecture, indi-
vidual cores have different computational capabilities as shown
in Figure 1. Since, HMP architecture consists of a combination
of small and big cores, it can perform better in larger compu-
tations [1]. HMP architectures opens up new challenges and
possibilities for thread scheduling, load balancing and energy
management. The performance and energy efficiency can be
achived with HMP by allowing each job to run on core type
which suits the most [2]. Furthermore, HMP can adequately
reduce processor power utilization and can significantly build
the performance and speed of execution. The HMP decreases
the frequency of the processors which reduce the temperature
of the system. In these processors, the amount of parallelism
increased because of simultaneous execution of instructions on
individual cores. The MB scheduler can dynamically select the
relevant core to fulfill the power and performance requirements
[3].

HMP can be characterized into two groups i.e. ”perfor-
mance asymmetry” and ”functional asymmetry”. In functional
asymmetry, architecture cores have distinctive or overlapping
instruction sets while in performance asymmetry, architecture
cores vary in performance because of the difference in fre-
quency and architecture [4]. Additionally, HMP architecture
is more attractive and an alternative design as compare to

Big cores
Little
cores

Caches and bus interface

Back side

Front side

Fig. 1. HMP architecture

homogeneous designs. HMP has a unique benefit in maximiz-
ing both execution performance and throughput. Although, the
existing multi-core processors are mostly homogeneous which
leads to an unpreventable problem i.e. reproducing smaller
cores losses the throughput of the high-complexity single-
threaded applications, though duplicating bigger cores yields
the execution proficiency of the low-complexity low-priority
threads. However, HMP incorporates cores of various types or
complexities in a solitary chip, and hence it is capable to ad-
dress both throughput and productivity for different workloads
by coordinating execution assets to every application’s needs
[5].

In future, many core and multi-core processors will com-
prise of heterogeneous cores that might expose a typical
Instruction Set Architecture (ISA) but vary in features e.g.
performance, size and energy utilization. A solitary processor
will contain numerous small cores and a few bigger complex
cores. Simple cores will remain scalar in order and may have
a small cache and lower clock frequency. Complex cores will
be super-scalar and might be outfitted with high performance
and consume more power. Heterogeneous architectures are
inspired by their capability to accomplish a higher execution
per Watt than homogeneous architectures [6].

506 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

To understand this architecture, operating systems must be
aware with heterogeneity. That is, it must allocate applica-
tions to keep running on proper cores. Consider a workload
comprising of a logical application portrayed by Instruction
Level Parallelism (ILP), and a memory-bound employment,
for example, preparing exchange in a database. The logical ap-
plication will be executing essentially quicker on an complex
cores, though the database application may indicate equivalent
execution on both sorts of cores. In this case, assigning tasks
to cores that are fitting for them will accomplish huge power
saving.

Having the capacity to make intelligent decisions at run
time is the objective of heterogeneity scheduling. While het-
erogeneity scheduling algorithms were proposed in the past
which were focused at small scale multi-core frameworks. If
increase the number of chips, dynamic checking might become
excessively tedious and impractical. HMP gives another way
of various computing abilities. When the processor perfor-
mance and speed increases there are many challenges may
rise e.g. heat dissipation and power utilization.

The primary focus of this paper is to improve the dynamic
selection of the most appropriate processor core to fulfill the
power and performance requirements using a task scheduler.

II. LITERATURE REVIEW

Previous work on HMP architecture insights the importance
of heterogeneity for both performance and power efficiency.
In a study [7], authors proposed and evaluated a single
ISA HMP architectures to reduce processor power utilization
first time. In this paper, authors exploited the time varying
behavior of applications and power consumption using thread
migration approach at run time. The design of this approach
integrates heterogeneous cores indicating different facts in the
performance/power design space during the execution of an
application. The system software chooses the most appropriate
core dynamically to meet the particular performance and
power needs.

In another relevant study [8], authors proposed scheduler for
different applications to schedule on different cores in single
ISA HMP designs. In this study, authors have demonstrated
that by scheduling applications on more power efficient HMP,
throughput for static workloads will be increased. On the other
hand, it reduces the response time for dynamic applications.
Furthermore in [9], explored the standards to design single-
ISA HMP. In this study, authors just concentrated on frame-
work throughput and do not consider per-program execution.

Furthermore in [4], authors proposed a bias scheduling
approach for performance asymmetric heterogeneous with
different micro architecture cores. They identified the key
metrics that distinguish the possible benefits of scheduling
an application on a big core rather than on a small core
and according to the core type that outfits the resource
requirements of the application. Bias scheduler is very flexible
and can be implemented on any scheduler. In this paper,
authors have implemented bias scheduler on the top of Linux
Scheduler and concluded that performance can be improved

significantly. Bias scheduler monitors the application at run
time and match the threads according to the core types to
increase the throughput of the system.

Moreover in [6], authors proposed an approach that does not
depend on dynamic performance monitoring. In this approach,
the required information to make an appropriate decision for
core assignments is provided with the application itself. The
provided information is used as an architectural signature of
the running application which composed of certain architecture
independent features. These signatures can be generated offline
and embedded into the binary of an application. Further, au-
thors demonstrated prediction the sensitivity of an application
and evaluated a scheduler model that uses these architectural
signatures for scheduling on a heterogeneous system with
various clock frequencies cores.

Further, authors in [2] proposed a lucky scheduling algo-
rithm to schedule threads on HMP for energy efficiency and
performance boost up. In lucky scheduling algorithm each
task receives a dynamic number of tickets. The tickets will
determine the switching of running tasks between small and
big cores. Moreover, the idea of lucky scheduling algorithm
is derived from a lottery scheduler system [10]. Additionally,
the lottery scheduler system is used to select the lottery tickets
dynamically.

In another relevant studies [11], [12], sampling based
scheduling is applied using direct approach to determine the
best scheduling policy on a HMP. In sampling based schedul-
ing, samples of different workload are mapping to core dynam-
ically at runtime. After that best mapping is selecting with
respect to performance. Further, sampling based scheduling
periodically migrate the workload between different cores. By
using sampling based approaches performance is improving
while, on the other hand it also introduces migration over-
head. Moreover, migration overhead is directly proportional
to number of cores.

To overcome the migration between different type of cores,
authors proposed a Performance Impact Estimation (PIE)
approach [13]. In this study PIE mechanism is used to predict
best performing workload to core mapping. PIE collects Cy-
cles per Instruction (CPI) stack, ILP, number of misses, latency
per miss and the number of simultaneously outstanding misses
to make prediction. On the basis of collected information
it estimates the performance if the workload is to run on
a different core types. Dynamic PIE performs scheduling at
runtime.

III. PROPOSED METHODOLOGY

The proposed solution is using stable matching algorithm to
assign the tasks to suitable cores. In this approach both cores
and tasks have their own priority lists as shown in Table I and
Table II. The proposed scheduler keeps track of the priorities
and availability of cores. At the time of job mapping to core,
the algorithm selects the best possible pair of task and core.
Steps of the proposed algorithm is given below in Figure 2 and
architecture diagram in Figure 3. The algorithm takes priority
lists as an input in step 1. In step 2, set cores free to fetch

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

507 | P a g e
www.ijacsa.thesai.org

TABLE I
PRIORITY LIST OF EACH TASK

Task 1 Task 2 Task 3
Priority 1 Core - SISD Core - MIMD Core - SIMD
Priority 2 Core - SIMD Core - MISD Core - SISD
Priority 3 Core - MIMD Core - SISD Core - MISD

TABLE II
PRIORITY LIST OF EACH CORE

Core 1 Core 2 Core 3
Priority 1 Task - SISD Task - MIMD Task - SIMD

Priority 2 Task - SIMD Task - MISD Task - SISD

Priority 3 Task - MIMD Task - SISD Task - MISD

1: Input: priority lists of tasks and cores
2: Initialize each core to be free.
3: while (some core is free and hasn't assigned to every task)

 {
4: Choose such a core c
5: t = 1st core on c's list to whom c has not yet assigned
6: if (t is not assigned)
7: choose c and t to be assigned
8: else if (t prefers c to its assigned task c' and c' is free)
9: choose c and t to be assigned, and c' to be free
10 else
11 t rejects c
 }
12: Output: stable tasks to cores mapping

Fig. 2. Stable matching algorithm to map tasks to cores

jobs according to their priorities. The while loop in step 3 will
execute until until all cores and task mapped. Further, in step
4, select a core and fetch a task for execution in step 5. In step
6, 8, 10 if else conditions are checked. If condition is true and
task is not assigned to other core, the task t will be assigned to
that core in step 7. Otherwise, task is not executing and prefers
other core c on assigned core c’, task t will be assigned to core
c and c’ core will set free in step 9. If priorities of both task
and core do not match task will rejects the core.

IV. PERFORMANCE EVALUATION OF EXISTING SYSTEMS

The algorithms discussed in Section II have demonstrated
that the performance on HMP is increased but they have a
number of drawbacks. If the number of core types is large,
monitoring of a thread or subsets of threads become infeasible.
The operating system needs to track a lot of information
and performance will be affected. Also, the amount of time
for monitoring the thread will increase. Table III shows the
comparison of different schedulers and experimental results
of existing approaches and Figure 4 shows the comparison of
different dynamic approaches. In [2], authors have used one
core of speed 3.2 GHz and three cores of speed 0.8 GHz. The
L3 cache of size 6MB shared between cores. By using luck

Little
cores

Scheduler

Little
cores

Tasks
priority
list

Tasks
priority
list

Cores
priority
list

Check priorities and core-task
mapping

Fig. 3. Proposed scheduler architecture

Increase in speed and energy reduction (%)

12

12

0

0

25

25

0.6

0.6

39

39

46.8

46.8

0

0

16

16
Speed
Energy

Lucky Scheduling

HMP Optimization

PIE

Thread Mapping

0 10 20 30 40 50

Fig. 4. Dynamic approaches comparison

scheduler algorithms authors achieved 12% inc rease in speed
and energy consumption is reduced by 39%. Further, in [6], au-
thors used static approach to schedule jobs on different cores.
In this study authors have categorized the experiments into
two groups i.e ”high heterogeneous workload” and ”typical
workload”. In high heterogeneous workload, authors used two
cores of speed 2.0 GHz and other two cores of speed 3.0 GHz.
With this approach, throughput of the HMP is increased by
4.7%. While in typical workload, authors used all four cores of
different speed such as 2.0 GHz, 2.33 GHz, 2.67 GHz and 3.0
GHz and achieved 2.7% increase in speed of task completion.

Moreover, in [9], authors focused on energy consumption
reduction by scheduling task statically and dynamically. In
static approach, authors used 2 to 8 cores of speed 2.1 GHz and
reduced the 31.9% power consumption with 2.6% performance
loss. While, in dynamic approach authors have used L2 cache
of size 3.5 MB additionally and saved 46.8% energy with 10%
performance loss.

Further, authors in [13], performed experiments using both
static and dynamic approaches. In dynamic approach authors
increased the speed by 25% with four big cores of speed 2.1
GHz, L1 cache of 32 KB, L2 cache of 256 KB and L3 cache
of size 4 MB. While, in static approach, they used the same
cache with four small cores of speed 2.1 GHz and reduced the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

508 | P a g e
www.ijacsa.thesai.org

TABLE III
COMPARISON OF JOB SCHEDULERS IN HMP.

ID Scheduler Clock Speed (GHz) No. of Cores Cache Speed (%) Energy (%) Perf. Loss(%)
[2] Dynamic 3.2x1, 0.8x3 4 L3(6MB) 12 39 -

[6]
Static 2.0x2, 3.0x2 4 - 4.7 - -
Static 2.2, 2.33, 2.67, 3.0 4 - 2.7 - -

[9]
Static 2.1 2 to 8 - - 31.9 2.6
Dynamic 2.1 2 to 8 L2(3.5MB) - 46.8 10

[13]
Dynamic 2.0 4 big L1(32KB), L2(256KB), L3(4MB) 25 - -
Static 2.0 4 small L1(32KB), L2(256KB), L3(4MB) 47 - -

[14] Dynamic 2.5 64 to 1024 L2(256KB) 0.6 16 -

47% task completion time. Furthermore, in [14], authors used
dynamic approach with 64 to 1024 cores of speed 2.5 GHz
and L2 cache of size 256 KB. They gained the speed of 0.6%
and saved 16% energy consumption.

The above discussion shows the static and dynamic ap-
proaches to schedule jobs on HMP. The dynamic approaches
have proved to be beneficial but due to the overhead between
switching cores they yield a low performance. On the other
hand, static approaches do not have dynamic scheduling, how-
ever, they use a predefined allocation of cores. The proposed
approach in this study provides a solution to both of these
issues. It dynamically takes care of priorities of cores and
available tasks. Afterward, it maps each task to its preferred
core which in turn reduces the switching overhead that will
increase the throughput of the HMP and provide an energy
efficient approach to process computation intensive tasks.

V. CONCLUSION AND FUTURE WORK

The HMP design is vast and there are many ultimate
design choices to be made. The type of cores vary from
simple in order to complex out of order cores. There are
many possible configurations of core types and number of
cores. Therefore, job to core mapping is both challenging
and important for HMP to achieve optimum performance.
Previous studies focused on static and dynamic techniques
for scheduling tasks on different cores as presented in the
above discourse. The main objective of scheduling tasks by
employing these techniques was to save energy and enhance
throughput. However, there were associated challenges related
to switching tasks among cores such migrating overhead.

In the proposed solution, there will be dynamic priority
lists for tasks and available cores. Here, each core will be
assigned to that task which is at the 1st priority in core’s
list. If 1st priority task is not available then next task in the
priority list will be assigned and so on. By following this
approach, task execution and processor task mapping will yield
reduction in task completion time. Thereby, task switching
and migrating overhead will be optimized as well. In future,
the main objective is to implement and simulate the proposed
technique to evaluate its results in real time environment.

REFERENCES

[1] Q. Chen, Y. Chen, Z. Huang, and M. Guo, “Wats: Workload-aware task
scheduling in asymmetric multi-core architectures,” in 26th International

Parallel & Distributed Processing Symposium (IPDPS). IEEE, 2012,
pp. 249–260.

[2] V. Petrucci, O. Loques, and D. Mosse, “Lucky scheduling for energy-
efficient heterogeneous multi-core systems,” in Presented as part of the
2012 Workshop on Power-Aware Computing and Systems, 2012.

[3] L. A. Priyadarshni, “Heterogeneous multi core processors for improving
the efficiency of market basket analysis algorithm in data mining,”
CoRR, vol. abs/1409.6679, 2014.

[4] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proceedings of the 5th European conference
on Computer systems. ACM, 2010, pp. 125–138.

[5] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous
multi-core processors,” in Proceedings of the 46th Annual Design
Automation Conference. ACM, 2009, pp. 927–930.

[6] D. Shelepov and A. Fedorova, “Scheduling on heterogeneous multicore
processors using architectural signatures,” in In Proceedings of the
Workshop on the Interaction between Operating Systems and Computer
Architecture, in conjunction with the 35th International Symposium on
Computer Architecture, 2008.

[7] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction,” in Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on.
IEEE, 2003, pp. 81–92.

[8] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” ACM SIGARCH Computer Architecture News,
vol. 32, no. 2, p. 64, 2004.

[9] R. Kumar, D. M. Tullsen, and N. P. Jouppi, “Core architecture opti-
mization for heterogeneous chip multiprocessors,” in Proceedings of the
15th international conference on Parallel architectures and compilation
techniques. ACM, 2006, pp. 23–32.

[10] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible
proportional-share resource management,” in Proceedings of the 1st
USENIX conference on Operating Systems Design and Implementation.
USENIX Association, 1994, p. 1.

[11] M. Becchi and P. Crowley, “Dynamic thread assignment on heteroge-
neous multiprocessor architectures,” in Proceedings of the 3rd confer-
ence on Computing frontiers. ACM, 2006, pp. 29–40.

[12] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread
scheduling and global power management for heterogeneous many-core
architectures,” in Proceedings of the 19th international conference on
Parallel architectures and compilation techniques. ACM, 2010, pp.
29–40.

[13] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in ACM SIGARCH Computer Architecture News,
vol. 40, no. 3. IEEE Computer Society, 2012, pp. 213–224.

[14] G. Liu, J. Park, and D. Marculescu, “Dynamic thread mapping for
high-performance, power-efficient heterogeneous many-core systems,”
in IEEEE 31st International Conference on Computer Design (ICCD).
IEEE, 2013, pp. 54–61.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 6, 2016

509 | P a g e
www.ijacsa.thesai.org

