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Abstract—the analysis and control of delayed systems are 

becoming more and more research topics in progress. This is 

mainly due to the fact that the delay is frequently encountered in 

technological systems. Most control command laws are based on 

current digital computers and delays are intrinsic to the process 

or in the control loop caused by the transmission time control 

sequences, or computing time. In other hand, the controls of 

humanoid walking robot present a common problem in robotics 

because it involves physical interaction between an articulated 

system and its environment. This close relationship is actually a 

common set of fundamental problems such as the 

implementation of robust stable dynamic control. This paper 

presents acomplete approach, based on switched system theory, 

for the stabilization of a compass gait robot subject to time delays 

transmission. The multiple feedback gains designed are based on 

multiple linear systems governed by a switching control law. The 

establishment of control law in real time is affected by the 

unknown pounded random delay. The results obtained from this 

method show that the control law stabilize the compass robot 

walk despite a varying delay reaching six times sampling period. 

Keywords—Biped robot; delayed system; Switched system; 
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I. INTRODUCTION  

Research on mobile robots during the last three decades has 
a huge progress. The biped robots are a relevant class of 
mobile robots due to their adaptability to various floors 
grounds and movement in rough environments. The non-
linearity of biped walking makes the conventional control 
methods obsolete. 

The stable walking of a biped robot can be defined as a 
stable oscillation around dynamic equilibrium points [1]. Other 
researchers are based mainly on the decomposition of a gait 
cycle indifferent main phases; flight, single and double support, 
with instant impact phase [2]. In this case the objective is to 
find a stabilizing control law which run between multiple 
operating modes, where each mode is governed by its own 
dynamics. The overall feedback control must stabilize each 
mode separately and the transitions between them. Therefore, 
we can formulate a switched model that includes the 
description of different mode and switching between them [3].  

The study of the stability of biped robots under the effect of 
communication delays is currently the subject of intense 
research in the branch of the automatic delayed systems.  By 
the way, research in the field of systems controlled via 
computer networks is growing. The analysis and control 
synthesis of delay systems are becoming more and more 
research topics in progress [4] [5].This is mainly due to the fact 
that the delay is frequently encountered in technological 
systems and can affect their behaviors significantly. Most are 
base don current digital computers and delays may occur 
intrinsically to the process or in the control loop caused by the 
transmission time control sequences, or computing time. The 
delay may affect one or more states of the considered system. 
It may also affect the establishment of the output. Several 
studies have modeled the linear systems with delays by 
differential equations covering both the present and the past 
states of the system, assuming that the derivative of the vector 
of states can be explained at every time t. Other studies 
consider delay systems as nonlinear and no stationary [6], [7] 
with parameters varying depending on time or the state of the 
system. The representation of such variation may be 
continuous or piecewise continuous [8].Modeling a delayed 
discrete time system as switched system is a new approach 
emerging from researches on lines supports and 
telecommunications systems. The idea is to build a set of 
several systems where each set constraints a value of delay[9]. 
Applied to the case of biped walking the overall model must be 
represented by a switched system submitted to two switching 
law. The first one is depending on gait cycle phases and known 
in real time, which allow us to choose between the appropriate 
feedback gains. The second one is unknown and depending on 
the delay value, which is bounded and integer (multiple of the 
sampling time).The feedback control synthesis approach is 
considered as a problem of robust control and leads us to aset 
of non-linear matrix inequalities conditions. To overcome this 
difficulty, we propose original relaxations stabilizing the robot 
running despite the delays and the non-linearity’s.  

In the first part of this article, we present a feedback control 
synthesis method for the command of delayed discrete time 
systems, based on the second method of Lyapunov.  

The second part is dedicated to the modeling of compass 
gait biped robot.  In the last part we show the results of the 
method applied to the obtained model. 
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II. STABILIZABILITY OF A DELAYED SYSTEM 

A. Stability and stabilization of switched system 

The stability of switched system analysis is assumed using 
a sufficient (but relatively nonrestrictive compared to the 
quadratic approach) stability condition using the poly-quadratic 
approach [10][11]. This approach is drawn primarily from a 
parameter dependent Lyapunov function [12]. 

Let’s consider the following switched system defined as 
hybrid systems represented by a set whose elements are 
dynamic discrete time models with commutation law which 
define, in time, the switch between the elements: 

             
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Where the parameters  i k  replace the commutative law 

such as 
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  the feedback control is written in the 

following form:
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The closed loop system is described by the following 
equation: 
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(3) 

The poly-quadratic stability analysis of the switched 
systems was proposed by [10]. It is possible to write the system 
(3) under the same following expression 

If the model is described by the matrix A

other

1:

w se0 i:

i
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
 
  
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We can thus write the system according to the following 
form: 

1

( 1)

N
i

k i

i

x k A



 
    

(5) 

The system (5) is poly-quadratically stable only if there are 
N symmetric matrices defined positively S1... SN   and N 
matrices G1... GN     of appropriate dimensions confirming: 

 0,  , 1...
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(6) 

The parameter dependent Lyapunov function used is 
written as: 

1

( )) ( )V( (k) ( ) ( )

N
t i

i k
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x k x k P x k 
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With:
1

i iP S  

Replacing 
iA by ( i i iA B K ) and linearizing the matrix 

disparity by the change of variable i i iR G K . We reach the 

following condition expressed in LMI terms: 

 
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         (8) 

The closed loop system is asymptotically stabilizable by 

state feedback if there are symmetric matrices 0ijS , 

Matrices ,i iR G of appropriate dimensions such as the gain of 

return of state is given by: 

1
i i iK R G 

     
(9) 

B. Stability analysis of delayed switched system 

When the delay affects commands, ( ) ( ( ))iu k K x k k 

where    min max min max( ) , ,e ek i T i T    is a variable delay. 

Then we consider the augmented state vector: 

min max( ) ( ) ... ( ) ... ( )
T

T T Tk x k x k x k        (10) 

 
Condition (6) can be used for the stability analysis of 

discrete delay system. The equivalence between the Lyapunov-
Krasovskii functional approach for discrete delay systems and 
the stability conditions (6) was proved in [13]. 

The dynamic of the system can be represented by set of a 
state matrix: 

 

0 0 0 0

0 0

0 0 0

0 0 0

i i i

i

A B K

I

A I

I

 
 
 
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 
 
     (11) 

The position of 
i iB K is depending in the value of i, it is 

found on the ( 1)thi  column of the first line of iA .  

The augmented switched discrete delay system can be seen 
as an uncertainty switched system. Where any element of the 
set is a polytope whose apex are depending on the value of 
delay as shown in figure 1. Where SSn represent the subsystems 

of the delayed switched system.Anithe different apex iA of the 

subsystem n. 

Then the condition of stability analysis of the switched 
discrete delay system is the same than the one used for a 
polytopic uncertainty switched system [14]. 
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Fig. 1. Uncertainty switched system 

Considering in condition (6) a commune matrix G of 
appropriate dimensions: 
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The condition (6) becomes: 
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    (14) 
The condition (13) is a BMI, which is impossible to solve 

by the current solvers. That is why it is essential to introduce 
relaxations in order to obtain linear conditions:   

First we start with the change of variables 1, 1i i i iR K g   , 

then we consider , 0i jg i j   for all
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Then we replace in the conditions (13) i (14) by : 
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The feedback gains are given by: 1
1, 1i i i iK R g
   

In case we are looking for a common feedback gain: 
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Then it is necessary to satisfy the equality (16), to 
overcome this non-linearity one can consider: 
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In particular case where
min 0  : 

max maxi iG g I      

 

 

with I is the identity matrix of appropriate dimensions. 

III. SWITCHED SYSTEM MODEL FORWALKING COMPASS 

GAIT ROBOT 

In this part, we are interested, in the modeling of the 
walking compass gait biped robot. The control sequence is 
transferred via a network data transmission. This transfer 
prevents the establishment of command sequence in the real 
time. We study more particularly the linear system stability 
when the pair applied by actuators, switches between the hip, 
the ankle, or the pair ankle - hip at the same time. 

First, we have considered as a walker simplified model a 
bi-pendulum formed of point masses, containing only a single 
articulation in the hip, which is capable of reproducing the 
running. It is called compass gait robot. The figure1 presents 
this geometrical conception of the compass robot (fig.2). [15] 

 
Fig. 2. Compass robot 

:s Absolute angle of the leg in touch with the ground 

(indication ‘s’ is for support leg)   
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:ns  Absolute angle of the leg during flight (indication ‘ns’ 

is for no swing leg)  

: The half inter leg angle 

: The slope angle 

, :ns sh h Height separating both legs with regard to the point 

of biped contacting the ground 

h :h  Height between hip and the point contacting the sole 

of compass 

m,m :h Masse of the pendulums which represents the leg 

and the hip 

The equations of the compass during the phase of simple 
support are obtained by using the following Equations of 
Euler-Lagrange: 

( , ) ( , )
( ) ( )

d L L
F

dt

   



 
 
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(18) 

With: ( , ) : the Lagrangian of the system :L    

( , ) ( , ) ( , )c pL E E        (19) 

F: External forces applied to the system. 

The correspondent relations between the actuator pairs and 
the robot degrees of freedom are represented as follows: 
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uP is given by the following relation: 
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The equations of Euler-Lagrange are written by: 

( ) ( , ) ( ) * iM N G J Torc         (24) 
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The torc is applied to the hip and the ankle. 

The Lagrange equation (1) can, thus, be written in the 
following form: 
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The state vector 
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the linear representation of the 

compass model by the jacobian method is thus written as: 
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The linear representation of the compass model is written 
as follows: 
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                                                                                       (32) 
The pair applied by actuators, switches between the hip, 

ankle, or the pair ankle - hip at the same time. This switching is 
described by the selection matrix J. 

 Hip is commanded:  In this case, where only the hip is 
commanded, the selection matrix J is then written: 

1 0

1 0
J
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The model of compass is: 
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 The ankle is commanded: the selection matrix is: 

 

0 0

0 1
J

 
  
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(35)

 
The model command matrix B becomes: 
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 
      

(36) 

 The ankle and the hip are commanded. 

The selection matrix in this case becomes: 
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1 0 0 0
 and B
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chJ
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(37) 

In the case of the compass gait robot model, the application 
of the switching system approach has to find the set of 
feedback gainKi, such as the closed loop system for a well 
determined delay is stable, has to take into account the 
command swaying between the hip, the ankle, or both at the 
same time. 

IV. SIMULATION RESULTS 

The compass robot described the owing discrete time 
system, with: 
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 Thematrix of control Bdis depending in which part is 
controlled hip, ankle or hip and ankle. 

016009

009009

012

009 016

009 009

012

0 1.167e5e 0

0 5e5e 0
, ,

0.0001 0 0 4.667e

0.0001 0 0 0.0001

5e 1.167e

5e 5e

0.0001 4.667e

0.0001 0.0001

dh dc

dch

B B

B







 

 



   
  
  

    
   
   
   

  
 
 

  
  
 
 

 

1 0 0 0

0 1 0 0
, 0

0 0 1 0

0 0 0 0

d dC D
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 
 
 

 

The commutation due to the control choice is known at real 
time. In other part the commutation law due to the time delay is 
considered as unknown in real time but bounded. So the 
difficulty is to determinate three different state feedback gains 
stabilizing the walk despite the delay and the switch between 
control positions. 

The studies of the stability of the delay compass gait biped 
robot controlled with feedback state rely on the use of 
parameter dependent Lyapunov function. The formulation of 
the gain calculation problem has led to nonlinear matrix 
inequality. Allaying the relaxation method presented in partII 
lead to a LMI’s conditions. The use of Matlab (c) for the 

resolution of LMI allows calculating three feedback gains dK

(Table 1) ensuring the stability of the walking with an arbitrary 
delay affecting the input from one to six times the sampling 
period. 

TABLE I.  GAINS dK  

Hip Command: Bd= Bdh 

            [
                             
    

] 

Ankle Command: Bd= Bdc 

            [
    

                          
] 

(Hip and Ankle) Command: Bd= Bdch 

             [
                          
                          

] 

The simulation of the system around the balance point for 

various command matrices dK , applied at the level of the 

ankle and of the hip, gives the following signals:(fig2, fig3, 
fig4) 

 
Fig. 3. Switching of the command according to the delays 

 

Fig. 4. s : Angle of the leg when it touch the ground 
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Fig. 5. ns : Angle of the leg during flight 

According to the curves of signals, s  , ns ,the system 

remains stable, the gains by state feedback iK  calculated by 

the switching system method stabilizing the closed loop system 
for a delay reaching six times the sampling period in the three 
cases of command swaying. This calculus method offers thus 
an important stability domain because it tolerates the 
uncertainties on the system model aspect in real time. The 
simulation under Matlab simulink of the compass model 
verifies the compass stability conditions before the flight: 

2ns s      and 2ns s    , and the condition after one 

step movement: 2 .ns s s ns           for the various 

gains of dK  command. 

V. CONCLUSION 

We are interested in this product to the application of 
switched system approach to the compass robot control, 
controlled via a data transmission network seat of delays which 
prevent the establishment of control sequences in real time. 
Specifically, we studied the stability of the switched system of 
this model, when the transmitted control switches between the 
hip, ankle, hip or ankle at the same time. The simulation results 
justified the stability of the robot model for a delay varying 
from one to six times sampling period. 
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