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Abstract—Fractals are geometric patterns generated by 

Iterated Function System theory. A popular technique known as 

fractal image compression is based on this theory, which assumes 

that redundancy in an image can be exploited by block-wise self-

similarity and that the original image can be approximated by a 

finite iteration of fractal codes. This technique offers high 

compression ratio among other image compression techniques. 

However, it presents several drawbacks, such as the inverse 

proportionality between image quality and computational cost. 

Numerous approaches have been proposed to find a compromise 

between quality and cost. As an efficient optimization approach, 

genetic algorithm is used for this purpose. In this paper, a 

crowding method, an improved genetic algorithm, is used to 

optimize the search space in the target image by good 

approximation to the global optimum in a single run. The 

experimental results for the proposed method show good 

efficiency by decreasing the encoding time while retaining a high 

quality image compared with the classical method of fractal 

image compression. 

Keywords—Fractal; Iterated Function System (IFS); Genetic 

algorithm (GA); Crowding method; Fractal Image Compression 

(FIC) 

I. INTRODUCTION 

Fractal image compression (FIC) is produced from 
Barnsley's research IFS system [1] and the fractal image block 
coding suggested by Jacquin [2]. In 1988, Barnsley [3] used 
FIC based on the theoretical IFS system to represent computer 
graphics and compress the aerial image. Using this approach, 
Barnsley obtained a compression ratio of 1000:1, but the 
approach requires manual interference. Thereafter, Jacquin 
suggested a new FIC method that depends on image block and 
can behave automatically without manual interference. This 
method has become a perfect representation for this research 
direction, in which FIC theory is realized. At present, FIC has 
obtained extensive interest from the research community, 
because of its novel concept, high compression ratio, 
independent resolution, and fast image decoding. This 
technique is based on the fractal inverse problem and aims to 
find an IFS, in which the attractor is close to a query image. 

The emerging technique for image compression that based 
on fractal theory is fully different form traditional image 
compression techniques. It is focused on two main problems: 

the first one is how to find the IFS mappings and the second is 
finding of an efficient algorithm to find those mappings, such 
that, they can approximate the original image. Toward solving 
these problems, Jacquin [2] proposed an efficient technique by 
partitioning of a given image M into non-overlapping range 
blocks and an overlapping domain blocks, the IFS parameters 
is achieved by finding the best corresponding domain block 
for each range block. Therefore, as a result of this encoding 
process, we obtain a different transformation for each range 
block. If we composed all the transformations of all range 
blocks and iterated starting with the initial image, the attractor 
(fractal) that approximate the original image is produced, it is 
also called the fixed point of the transformations. This type of 
representation is called partitioned IFS [4] or local IFS [5]. 

Many researchers have emphasized on overlapping of an 
efficient and reliable image compression technique based on 
fractal. It is firstly presented by Barnsley and Sloan [6] in 
1988, when they introduced of finding an IFS, whose attractor 
approximate the given image and the IFS is sent instead of 
sending the image itself over the channel.  In 1992, A. Jacquin 
[7] Barnsley's student improved IFS theory and introduced the 
concept of local IFS through presenting the concept of fractal 
image coding. In 1994, Y. Fisher [4] made many 
improvements on Barnsley's algorithm. He combined his idea 
in a very famous book in this field. Since Jacquine's 
publication of the original fractal coding scheme, several 
papers try to popularize his work both in practical and 
theoretical [8], among others, however none of these attempts 
in general have been proven to be efficient. Therefore, many 
efforts are highlighted towards employing of evaluative 
algorithms. Numerus optimization models have been proposed 
to represent a normal evolution mechanism [9]. Genetic 
algorithms [10,11] is one of these models. In these algorithms, 
the population represents as an IFS models and it is 
responsible of making adjustments toward the optimum 
through a random process that used for selection of genetic 
operators called crossover and mutation. 

GAs that are used to address an optimization problem are 
required to solve multimodal and multidimensional problems, 
through which a large search space with different optima can 
be obtained. These problems do not have deterministic 
algorithms to obtain the global optimum; if they do exist, 
however, the algorithm is an inclusive search along the 
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solution space that, in turn, leads to exponential time and 
machine resources using algorithms of this kinds in solving 
the problem described above. Therefore, the algorithms used 
to solve various complex problems can show their respective 
capacities. The GAs work with population of individuals that 
are iteratively adjusted towards the optimum by means of a 
random operation of selection restructure and mutation [11]. 

Meanwhile, crowding is a technique that is applied in GAs 
to maintain variety in the population and prohibit early 
convergence to local optima. This technique involves the 
combination of both the offspring and the identical individual 
from the present population in this process, which is called 
coupling phase; determining which of the two will remain in 
the population is a process called alternation phase [12]. The 
current work depends on the alternation phase of crowding, 
which is applied by using one of the following three 
approaches: deterministic [12, 13], probabilistic [14, 15], and 
simulated annealing [16]. In our work, we used an improved 
crowding method to achieve the aim with a shorter time and 
good quality. We achieved our goal by selecting the 
chromosome for a maximum of three times to prevent 
repetitive selection and provide an opportunity to check 
another chromosome that may obtain a better result. 

The rest of the paper is presented as follows; section 2 
presents the theoretical background of fractal, fractal inverse 
problem, and PIFS.  The detailed explanations on the fractal 
image compression, collage theorem, and Jacquin approach 
for fractal image coding are discussed in sections 3. The GA 
and its relationship with the fractal image compression in 
introduced in section 4. Crowding method and its improved 
version is introduced in section 5. The implementation and the 
analysis of the results is discussed in section 6.  Finally, the 
work is concluded in section 7. 

II. BASIC CONCEPTS OF FRACTAL IMAGE CODING 

The theory of self-affine transformation and self-similarity 
is the bases that fractal image coding depends on. In this 
section, we introduce the theoretical basis for fractal image 
compression, such as the IFS, contraction mapping, and fixed 
point theorem. 

A. Self-similarity Property 

One of the base properties of fractal image is self-
similarity. A typical image is said to be self-similar if the 
image looks “almost” the same on any scale. However, all 
images do not contain this kind of self-similarity found in 
fractals and actually contains different sort of similar parts 
(Distasi et al. [17], Truongx et al. [18]). Figure 1 shows an 
example of this fractal image. 

Self-similar parts in the Lena image are shown in Figure 2, 
as can be seen in part of her shoulder and the reflection in the 
mirror with her hat [19]. In this type of image, only a portion 
of an image is self-similar, whereas, in Figure 1, the whole 
image is self-similar. 

 

Fig. 1. Fractal image repeated at different locations 

 
Fig. 2. Self-similarity in the Lena image 

Now, let (X, d) be a metric space and a sequence (Xn) is 

called a Cauchy sequence, if for any given   0, we have 

 (     )     for all m, n  N (natural numbers). (X, d) is 
called complete if every Cauchy sequence in X converges to 
an element of X. 

Readers that are interested in greater detail can refer to 
[3,20]. 

Definition 1: Let            be a transformation of the 
form  (     )  (                   )  where 
         , and   are real numbers. This transformation is 
called a (two-dimensional) affine transformation. The 
following equivalent notations have been used: 
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)              ( ) 
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)  is a two-dimensional, 2  2 real 

matrix, and l is the column vector ( 
 
), such as  (    )     .  

The matrix A can always be written as follows: 
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)  (
                   

                 

). 

Definition 2: let (   ) be a metric space, a transformation 
         is called contractive mapping if (( )  ( ))   
    (   )  for all       , where           is called 
contractivity factor of  . 
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Definition 3: Let           be a transformation on a 

metric space (X, d), a point        such that  (  )     is 

called the fixed point of the transformation  . The fixed point 
is highly important; it represents that the part of the shape in 
which we are interested that is not affected by the 
transformation. 

The Hausdorff metric is an important concept in fractal 
theory. Therefore, many mathematicians have discussed and 
proven basic concepts and results of this space [21,22]. The 
Hausdorff metric is known as the space of fractals and is 
denoted by  ( )  It is generated from the complete metric 
space   comprising elements that are the compact sets in  . 
The distance that is defined in  ( ) is given as follows. 

Definition 4: Let (X, d) be a complete metric space, for the 
space of fractal  ( ) ,  The Hausdorff distance    is defined 
on this space as follows:- 

                            (   )     (   )    (   ), 
for any points   and   ( ) 

where               (   )         (   )        
and                    (   )          (   )         

The IFS is the most important concept of fractal theory. 
The IFS was developed by Hutchison (1981), and then by 
Barnsley and other researchers [1, 6]. These systems of 
mapping have been widely discussed and used in many 
applications, such as image compression. The general formula 
for IFS is introduced as follows. 

Definition 5: Let (X, d) be a complete metric space. An 
IFS on l is a finite set of contractive self-mappings        
with respective contractivity factors    for              
such that                    . IFS is based on the 
affine transformations given by 

 ( )   (
 

 
)  (

                   

                 
) (

 

 
)  (

 

 
) 

Definition 6: In IFS, any compact subset (fixed point) 
   ( ) is called an attractor for IFS if 

   ⋃   
 
   ( ). 

The fixed point observes existence and uniqueness based 
on the contraction mapping theorem. The iteration process of 
the IFS based on any starting image the attractor, which is 
fully known by the parameters of  . 

III. FRACTAL IMAGE COMPRESSION 

The FIC approach is an important search area with many 
possible application fields. This approach is focused on 
finding fractal code that generates given objects. Barnsley [3] 
introduced this concept with the well-known collage theorem. 
When the object is considered as an image, FIC is often 
involved, which is also known as fractal image coding. The 
foundation for FIC is the IFS. This problem has been studied 
by many authors, and a method has been proposed by 
Jacquine [7] to solve this type of inverse problem. The major 
problem of standard fractal image coding is its time 
consumption compared with other image coding methods. 
Some time is spent in searching for a similar domain block. 
Therefore, new techniques to solve this problem and 
accelerate this method are in great demand. 

The problem of finding IFS’s that used to generate fractal 
is called an inverse problem. However, if the given set is self-
similar, then the required construction is almost 
straightforward. The IFS can easily be found by conducting 
mathematical translation of the property of self-similarity. 
This solution is verified in the collage theorem, which is the 
first step towards solving the inverse problem. 

A. The Collage Theorem 

This theorem states the process of obtaining the set of 
transformations that represent an accurate approximation of a 
fixed image. It is stated as follows. 

Let (   )  be a complete metric space. let           
            be an IFS with contractivity factor s,           
and let   be a closed subset of   such that 

                         (  ⋃   ( ))      
    , 

for some      , and h is the Hausdorff distance. Then 

                        (   )   
 

   
   

where   is the attractor of the IFSs 

B. Jacquin Approach for Fractal Image Compression 

FIC depends on the self-similarity property in an image. 
The main idea comes from the partitioned iterated function 
system (PIFS), which is an expansion of IFS theory. The 
difference between the two concepts appears in the application 
domain. Thus, the main difference is that instead of dealing 
with the whole image, a specific part is used to obtain the 
PIFS parameters. 

For an original image M of size mm, it is partitioned into 
(m/n)

2
 blocks which are non-overlapping to form a set of 

range blocks each of them is of size mm. To comply with the 
contractive point theorem, the domain block is twice the size 
of the range block. Hence, a set of (m-2n+1)

2
 elements, each 

of them is a block of size 2n2n is constructed from M and 
known as domain blocks. In this case, the partitioned is 
overlapping. In each search for similarity between the range 
and domain blocks, two types of blocks emerge from the same 
image, as shown in Figure 3. As an example, for M of size 

128128 if the size of the each range block is 88, then we 

have (128/8)
2
 = 256 range blocks and (128-28+1)

2
 = 12,769 

domain blocks of size 1616. 

 
Fig. 3. Clarification of PIFS 

The image is equally partitioned by the range blocks, 
which resulted that each pixel of the image is included in one 
of the range blocks. However, since the domain block is 
overlapping, this may cause losing of some pixels. The aim of 
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this process is to find an approximate domain block for each 
range block. 

By the PIFS technique, the third dimension is appeared 
that represent the pixel z. after shrinking the domain block to 
the size of the range block, the eight transformation is applied 
to resulted in eight different blocks zk, k =0, 1,…, 7. These 
transformations  , k =0, 1,…, 7 can be represented in (2). 

   [
  
  

]  ,     [
  
   

] ,    [
   
  

] ,                    

   [
   
   

]     [
  
  

]  ,    [
  
   

]  ,                  

   [
   
  

] ,    [
   
   

]                                  ….   (2) 

T1 and T2 correspond to the flips of z along the horizontal 
and vertical lines, respectively. The flip of z along the 
horizontal and the vertical lines is denoted by T3, whereas, an 
additional flip along the line of the main diagonal is performed 
by the transformations T4, T5, T6, and T7 which are correspond 
to T0, T1, T2, and T3. Finally T0(z) = z. 

In fractal coding, a contrast scaling s and a brightness 
offset o on the transformed blocks occur, so the fractal affine 
transformation becomes three-dimensional as shown in (3). 

   [
 
 
 
]   [

     
     
    

] [
 
 
 
]   [

  

  
  

]                ….            (3) 

We let            and            be two squares 
containing   pixel from    and   , respectively. Here, we 
minimize the quantity of   and   between of the coded range 
block XD and its corresponding coordinates of the domain 
block YD, such as;  
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where the minimum distance between Ri and Di is found by 
the RMS such that; 
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When this error is less than the predefined threshold, the 
search will be finished. 

The execution time of fractal compression implementation 
is the main problem that most standard algorithms. Fisher’s 
algorithm [4], involves a classification pattern that has been 
greatly accelerated; however, the resulting image quality is 
extremely poor because of the search space reduction from the 
classification used by Fisher. To overcome these problems, 
some evolutionary algorithms is used to serve in solving these 
problems, its methodology is introduced in the following 
section. 

IV. GENETIC ALGORITHM 

Using a GA is important for obtaining solutions to 
complicated search problem. In this section, we discuss the 
relationship between the processing of GA and its operation 
when dealing with the fractal inverse problem. Holland’s 1975 
book [10] introduced GAs as a summary of biological 
evolution and showed the theoretical structure of GAs. 

A. Genetic Algorithm for  Fractal Image Compression 

Searching processes begin after dividing the image into 
range and domain blocks as in standard Jacquine approach  
image compression. For each range block, the domain block 
and identical transformations that best cover the range block is 
specific. In general, for best correspondence, transformation 
codes are set, including contrast and brightness. Searching 
succeeds when the domain block is appropriate for the suitable 
range block. Eventually, mapping data are stored. Then, we 
use GAs to attain the intended outcome via fractal 
compression. Usually, GAs are employed to find the near 
optimal solution, and thus the GA for fractal compression of 
images is shown below [10]. 

1) Chromosomes 
Given that, the GA works on the chromosomes, producing 

chromosomes from the range and domain blocks is a crucial 
step in using the GA for FIC. The transformation parameters 
obtained for each block are coded on a set of a fixed number 
of bits. These parameters are then stored as chromosomes. By 
encoding the parameters of an image, a chromosome 
comprises N genes that are equal to the number of the non-
coded parts of an image. These genes are generated from 
parameters XD and YD, which refer to the coordinates of the 
domain block, and the flip, refers to the transformation 
isometrics. Figure 4 show the chromosomes 

Range Block 

Block1 Block2 ……… Block N 

  
    

  Flip1   
    

  Flip2 ………   
    

  FlipN 

Fig. 4. Image representing a chromosome 

2) Fitness Function 
Fitness function is a specific task for each chromosome, 

which refers to the capability of each chromosome to survive 
and proliferate. We denote fitness as the value of error 
between the coded range and domain blocks that are assigned 
by the transformation with analogous luminance and 
contrasting values. The error is computed using the root mean 
square equation (4). 

3) Genetic Operators 
Crossover and mutation are two basic operators that are 

used in all implementations of genetic algorithms. These 
operators are described as follows. 

 Crossover Operator: The crossover operator selects 
two parents based on their fitness, and then attempts to 
produce a new child with the best possible quality. A 
high fitness value provides the crossover operator with 
a high probability of selection. The crossover operator 
changes the genes of the parent. Given that a random 
number a is produced in the interval [0, 1], the new 
coordinates are computed using the equation below. 
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First offspring                   (   )         

                                       (   )         ….(5) 

   Second offspring         (   )       (   )        

                                    (   )       (   )        

 Mutation Operator: The mutation operator changes the 
value of one or more genes in the chromosome, thereby 
adding completely new gene values to the gene pool. 
The GA may achieve a better solution using these new 
values. The mutation operator also introduces the 
verity in the chromosomes. The information changes 
randomly based on the mutation rate. 

B. Genetic Algorithm for Fractal Image Compression 

Fractal image compression algorithm 

1. Decompose the input image M into blocks according to 

Jacquine’s  technique 

2. Begin with FIC parameters, such as range block size, 

fitness function, error limit, and number of iterations;  

3. Begin with GA parameters, such as mutation rate and 

crossover rate; 

4. Set t = some tolerance level; 

5. Partition image M into non-overlapping ranges Ri's and 

overlapping domain Di;s; 

For each range block Ri in the range, do 

- The transformations (a random population of 

chromosomes) is generated 

while number of  populations is not the maximum and the 

optimal domain is not found, Do 

 The fitness value is computed for all individuals to be 

used for search for the optimal domain in the domain pool 

using the fitness function; 

 when the optimal domain block is found; 

 apply the crossover operator on individuals;  

 apply the mutation operator on individuals; and 

 generate the new population; 

end while 

        The obtained transformation parameters from the search 

is written in the transformation W  

end for  

V. CROWDING METHOD 

De Jong [23] introduced crowding as a general technique 
for maintaining population variety and early convergence. 
Crowding is often used to determine survival of genetic 
algorithms in order to determine the individuals in the present 
population and identify the offspring that will pass to the next 
generation. It is divided into two principal phases, namely, 
coupling and alteration. In the coupling phase, the offspring 
individuals are coupled with individuals in the present 
population based on a likeness metric. Meanwhile, in the 
alteration phase, the pairs of offspring and individuals that will 
remain in the population are selected. The main crowding 
scheme of De Jong [23] involves the random selection of 
offspring individuals from the present population. The 
identical selected of individual is used to replace the selected 

offspring. Which makes crowding is an improved genetic 
algorithm is that; 

1) In the crowding method, parent selection is not 

commonly used, therefore, the individuals are randomly 

paired in the present population. However, in the population, 

each individual becomes a parent. 

2) In the crossover operator, for each pair (P1, P2), the 

parents are recombined with probability Pc. In the mutation 

operator, the two producing children (c1, c2) are mutated with 

probability Pm, where Pc denotes crossover probability, Pm 

denotes mutation probability, and M denotes population size 

[13]. 

3) The population of the next offspring includes one of 

the two parents that complete with each child. 

4) The distance between two individuals i1, i2 is denoted 

by d(i1, i2). 

If d(p1,c1) + d(p2,c2) < d(p1,c2) + d(p2,c1) 

p1  win the emulation between p1 and c1. 

p2  win the emulation between p2 and c2. 

Else 

p1  win the emulation between p1 and c2. 

p2  win the emulation between p2 and c1. 
For survival, each offspring oriented to fight with its most 

identical parent. Other variants exist when more than two 
parents and children are selected before applying the 
resemblance metric [26]. This idea is the basis of several 
widely applied modern crowding approaches. The difference 
between these approaches is used to determine the winner in 
each competition. 

B. The Proposed Crowding Algorithm for FIC 

The crowding method [23] is proposed to eliminate the 
selection process and introduce a preselecting process. This 
will cause in a very fast GA to be used for multidimensional 
optimization problem. By reducing the selection process, the 
individuals are mutate randomly with any other population 
individuals. During the replacement process the paining 
between the offspring and one of the parents is performed 
first. This operation is done with probability Pc. This pairing 
process is happened according to the similarity between them. 
In the evaluation step, the fitness function which represented 
the least square error between the offspring and the parents is 
responsible for deciding about which individual of the 
population is allowed to stay. 

In this section, we proposed an improved crowding 
method in order to be applied to improve FIC. With this 
method the diversity is preserved in the population with the 
opportunity for each individual to be a parent. What 
distinguish our proposed method from original crowding 
method [23] and Mahfoud method [13] is some technical 
differences in the main phases of the algorithm.  The 
population set {T1,T2,…,Tn} is constructed by finding all 
contruction mapping Ti that resulted from the similarity 
measure between the range block and domain block of the 
query image. This set is calculated using Jacquine approach 
[7]. Each individual Ti is assigned a fitness value f(Ti) as its 

weight, where fi{f1,f2,…,fn} represents the minimum distance 
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between Ri and Dj, j=1,…,m.  This value is used in the 
selection process of the parents {P1,P2} and controlled by a 
chosen factor known as crowding factor that determine the 
number of the maximum selection of this individual as shown 
in the following diagram. 

 

 

 

 

 

 
Parent1 (P1)  Parent2 (P2) 

Fig. 5. Selection process 

Crowding algorithm 

Input: Image I,M               % M is known as a crowding factor 

pc                            % crossover probability 

pm                            % mutation probability 

Output: New optimized population       
    

      
   

Bagin 

      Genetic crowding population                 
      Evaluate (cp)                      % calculate the fitness for cp 

  while terminated () do 

       P = selection (cp, M)        % select parents P = {T: T TP,  

                                                    such that,  RMS (T(i), i)   } 

      Offspring = recombination (cp, pc, P) 

      Offspring = mutation (offspring, pm) 

      Compare offspring with parents and add the best  

                      one to the cp 

   end while 

end.  

 

In the selection phase, the parents are chosen according to 
the minimum fitness values, where the maximum number of 
selection of each individual is equal M (crowding factor). 

Selection function 

Input:     cp                              % crowding population 

M                            % maximum number the selection 

Output:   P                              % parents 

Begin 

for i = 1 to n                   % n is the size of cp  

         
  

∑   
 
   

                % f is the fitness 

end 

while z = false do 

     Select the best two individual P from cp according to pi  

                 and call it P 

      If pc f  = M then  

        Z = true 

     end if  

  end while 

end 

 

In the recombination phase, the offspring is generated 
according to two logical values as shown in the following 
algorithm. 

Recombination function 

Input: cp                    % crowding population 

  pc                   % crossover probability 

  pm                  % mutation probability 

output:  offspring  

begin  

   select    [ ]   [ ]     [ ]   [ ]     [ ]   [ ]  
        case 0  0 

                 [ ]     [ ]    [ ]     [ ]    [ ]     [ ] 
        case 0  1 

               [ ]     [ ]    [ ]     [ ]    [ ]     [ ] 
        case  1  0 

               [ ]   [ ]    [ ]     [ ]    [ ]     [ ] 
         case 1  1 

               [ ]     [ ]    [ ]     [ ]    [ ]     [ ] 
    end select  

end 

After the recombination phase, the resulting offspring are 
competed with their parents the mutation phase for surviving. 
The decision of winning is taken based fitness value (the 
similarity measure between the offspring and the parents) in 
order to decide the one that should in the new population, such 

that: If RMS(P,C)< then C is the winner of the competition 

else P    is the winner of the competition 

Mutation function 

Input:     Pm                       % mutation probability 

              Offspring  

Output:  offspring 

begin  

x, y, f = rand ()           % generate random number 

if x  y and x  f then 

   x = rand() 

else if  y  x and y  f then 

   y = rand() 

else if  f  x and f  y then 

  f = rand() 

end if 

end 

The termination value of the algorithm is deduced 
according to learning process on a sample of different images 
to determine the best that can satisfy the compromising 
between the optimum solution and the execution time. 

VI. IMPLEMENTATION AND ANALYSIS 

A. Implementation 

The proposed system was established using Matlab 
Ver.8.2 and then tested on an pc with cor i7, 2.5 GHz and 8 
GB RAM, windows 10 pro. The proposed system was tested 
on five 8-bit gray images of size 512×512. We tested the 
proposed system on three ranges, namely, 2, 4, and 8. The 
RMS of the decoded image partitioned by the 8×8,  4×4 and 
2×2 block sizes. A smaller block size indicated a smaller 

Population 

T1 T2 …. T255 T256 

f (T1) f (T2) …. f(T255) f (T256) 

min 
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appropriate error for the affine transformation. The partitions 
of range blocks were calculated according to (m/n)

2
,
 
while the 

partitions of domain blocks were calculated according to (m–
2n+1)

2
. Table 3 illustrates the coding, decoding, time, and 

compression ratio of the selection images using the proposed 
technique, while Table 4 illustrates the peak signal-to-noise 
ratio (PSNR) and MSE of some selection images using the 
proposed technique. 

B. Analysis 

The results of the abovementioned algorithms in terms of 
compression ratio, quality, and implementation time (coding 
time) are compared for the genetic and crowding FIC 
algorithms with the standard FIC algorithm as shown in 
Tables 1-6. The comparison was performed on an image with 
a range pool containing 16384 range blocks of size 4×4 and a 

domain pool containing 255025 domain blocks of size 88. 
Table 5 presents the comparison results. 

In the chosen images, the PSNR is inversely proportional 
to MSE, and the compression ratio is proportional to that 
value. A small range block size resulted in a higher 
compression ratio. The time for producing the image depends 
on how much error is allowed in the transformations. The 
employ of the image determines the required amount of 
compression and the image quality. The predefined number M 
is used as an indicator that determine the number of times for 
selecting the individual as a parent. This modification in the 
selection in new generation. This diversity in the population 
that achieved by the crowding method resulted in some 
advantages, which are:- 

1) Through the search, different local maxima can be 

achieved. 

2) The diversity is maintained. 

3) For different crowding factor, the subpopulation is 

almost stable. 
The replacement process is responsible about picking the 

new individual to construct new population. 

By applying the proposed crowding method the following 
results is obtained. Tables 1-6 represent the analysis of the 
results for some chosen images. 

TABLE III.  CODING, DECODING TIME, AND COMPRESSION RATIO BASED 

ON THE PROPOSED METHOD FOR DIFFERENT RANGE SIZE 

Images Range 
Coding  
Time 

Decoding 
Time 

Compression 
Ratio  

 

22 5.66 2.10 3.12 

44 0.99 0.26 7.04 

88 0.18 0.18 12.38 

 

22 5.98 2.84 2.33 

44 0.895 0.278 4.33 

88 0.26 0.19 7.41 

 

22 6.09 2.97 3.56 

44 0.878 0.265 5.72 

88 0.29 0.19 7.4 

 

22 5.90 2.02 2.29 

44 0.895 0.269 6.03 

88 0.17 0.17 10.1 

 

22 6.158 2.83 3.21 

44 0.920 0.261 7.16 

88 0.22 0.18 14.06 

TABLE IV.  PSNR AND MSE FOR DIFFERENT RANGE BLOCK 

Images Range PSNR MSE 

 

22 12.11 0.07 

44 13.18 0.026 

88 13.38 0.04 

 

22 7.13 0.38 

44 9.86 0.39 

88 9.86 0.51 

 

22 7.03 0.113 

44 12.48 0.113 

88 10.64 0.113 

 

22 9.06 0.039 

44 9.18 0.023 

88 10.08 0.049 

 

22 10.01 0.08 

44 12 0.039 

88 12.89 0.03 

VII. CONCLUSIONS 

Image compression technique is always in a continuous 
competition and challenge according to the fast developing of 
the technology fractal image compression is an emerging 
technology that based on the fast that most of real world 
images contain some redundant area that are similar to the 
other area in the same image. It is basic idea is how to express 
an image by a set of IFSs. The argumentative discussion about 
compromising between the compression ratio and the 
contracted image quality is motivation for new optimized 
technique towards this goal. Genetic algorithm is ….. to be 
appropriate used to solve of a multidimensional problem that 
have large search space with no exact solution exist. In this 
study, we improve this technique by omitting of the parent 
selection which resulted, each individual becomes a parent. 
However, the selection process is specified by a pre-defined 
value known as crowding factor that determine the number of 
selection of each individual. Therefore, each offspring is 
randomly selected from the population, and its most identical 
parent. Comparing the performance of the proposed technique 
is accomplished through some experiments which show best 
result over the standard fractal compression technique and 
standard genetic algorithm technique as shown in tables (6) 
and charts (1-3). From these figures are can see that RMS 
error is inversely proportional to the PRNS ratio. They show a 
good compromise value that resulted in good performances. 
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TABLE I.  STANDARD FRACTAL IMAGE COMPRESSION BY JACQUINE APPROACH [7] 

 

 
Images 

     
Coding Time 2.03 2.03 2.99 2.98 2.97 

Decoding Time 0.20 0.20 0.20 0.20 0.20 

PSNR 11.15 7.13 11.74 9.01 11.18 

MSE 0.81 0.89 0.94 0.91 0.83 

Compression ratio 11.6 9.21 10.82 9.41 12.1 

 

TABLE II.  FRACTAL IMAGE COMPRESSION BASED ON GENETIC ALGORITHM 

 

 
Images 

     
Coding Time 3.08 1.94 2.01 2.09 1.92 

Decoding Time 0.61 0.27 0.93 0.21 0.57 

PSNR 12 8.76 11.97 9.93 12.01 

MSE 0.129 0.138 0.109 0.262 0.396 

Compression 

ratio 
12.6 7.33 8.88 11.53 14.44 
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TABLE III.  CODING, DECODING, TIME, AND COMPRESSION RATIO OF THE SELECTION IMAGES USING THE SUGGESTED TECHNIQUE  

 
 

Images 

     
Coding Time 0.99 0.89 0.87 0.89 0.92 

Decoding Time 0.26 0.27 0.26 0.26 0.26 

PSNR 13.18 9.86 12.48 9.14 12 

MSE 0.026 0.39 0.113 0.03 0.039 

Compression 
ratio 

7.04 4.33 5.72 6.03 7.16 

TABLE V.  COMPARISON BETWEEN STANDARD, GENETIC AND PROPOSED CROWDING  FOR RANGE BLOCK OF SIZE 4 

 
 
Images 

     

Fractal image 

compression based on 

Jacquine method 

Coding Time 2.03 2.03 2.99 2.98 2.97 

MSE 0.81 0.89 0.94 0.91 0.83 

Compression 

Ratio 
11.6 9.21 10.82 9.41 12.1 

 Fractal image 

compression 
based on genetic 

algorithm 

Coding Time 3.08 1.94 2.01 2.09 1.92 

MSE 0.129 0.138 0.109 0.262 0.396 

Compression 
Ratio 

12.6 7.33 8.88 11.53 14.44 

Fractal image 
compression based on 

crowding method 

Coding Time 0.99 0.89 0.87 0.89 0.92 

MSE 0.026 0.39 0.113 0.03 0.039 

Compression 
Ratio 

7.04 4.33 5.72 6.03 7.16 
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