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Abstract—Biosensor networks are wireless networks consisting
of tiny biological sensors (biosensors, for short) that can be im-
planted inside the body of human and animal subjects. Biosensors
can measure various biological processes that occur inside the
body of the subject under test. Applications of biosensor networks
include automated drug delivery, heart beat rate monitoring, and
temperature sensing. Since biosensor networks employ wireless
transmission, heat is generated in the tissues surrounding the im-
planted biosensors. Human and animal tissues are very sensitive
to temperature increase. Therefore, the generated heat is miti-
gated by the natural thermoregulatory system. However, excessive
transmissions can cause a significant increase in temperature and
thus tissue damage. Hence, there is a need for a mechanism to
control the rate of wireless transmissions. Of course, controlling
the rate of wireless transmissions will lead to Quality-of-Service
(QoS) issues like the required minimum delay and throughput. In
this paper, we are going to investigate the above issues using the
framework of Markov Decision Processes (MDPs). We are going
to develop several MDP models that will enable us to study the
different trade-offs involved in QoS provisioning in biosensor
networks. The optimal policies computed using the proposed
MDP models are compared with greedy policies to show their
vigilant behavior and viable performance.

Keywords—Biosensor networks; Quality of service; Markov
decision processes

I. INTRODUCTION

Biosensors can be implanted inside the body of human and
animal subjects to form a biosensor network that can be used
for monitoring and observing various biological processes and
detect anomalies. No processing is done on the biosensors.
Therefore, measurements are transmitted to a Base Station
(BS) for processing and recommendation of necessary actions.
Biosensor networks can be used in daily medical tasks like
sensing body temperature, calculating heart beat rate and
automated drug delivery. Biosensor networks are powered by
either rechargeable batteries or by continuously transmitting
energy to them via electromagnetic waves.

Biosensor networks have the same technical challenges
introduced by traditional wireless sensor networks. In addition,
they introduce new challenges that are unique to them. For
example, a major challenge to realizing the full potential of
biosensor networks is the heat they generate as a result of
power dissipation and wireless communication. Every wireless
transmission generates heat. This heat increases the tempera-
ture of the tissues that surround the biosensor. The effect of

the generated heat is balanced by the human thermoregulatory
system. However, excessive transmissions may result in heat
that is greater than what can be drained by the thermoregu-
latory system. If the temperature increase exceeds a certain
threshold, the tissues may be damaged. In such a case, the
biosensor should be shut down in order for the tissues to cool
down and attain the normal body temperature.

As a consequence, the maximum safe temperature level
that human tissues can withstand becomes an important factor
while operating biosensor networks. Hence, there is a need
for intelligent thermal management techniques to mitigate the
thermal effect on human tissues. Such techniques, for example,
would enable long-term monitoring and measurement to be
performed. Furthermore, there is a need for a mechanism to
optimize the transmission schedule of biosensors to prevent the
potential damage to the human tissues and respect the required
QoS. All these contradicting challenges need to be carefully
and intelligently addressed.

Very little work has been done in the area of QoS pro-
visioning in biosensor networks. The main focus has been to
minimize the average temperature increase of the system with
no consideration for QoS [1], [2], [3]. On the other hand, QoS
issues such as data loss and late delivery are not studied in
the context of temperature-sensitive environments like the ones
in which biosesnor networks operate. These two specific QoS
issues are studied in this paper using a new model that includes
the state of the buffer inside a biosensor. In this way, a more
accurate picture of the operation of biosensor networks can be
painted.

The rest of the paper is organized as follows. Section II
provides a survey of the relevant literature. Then, section III
describes the newly proposed model. After that, section IV
presents the numerical results and several insights. Finally,
section V concludes the paper and provides directions for
further research.

II. RELATED WORK

The goal of this paper is to extend the models presented in
[1], [2], [3] to include some QoS metrics. The current models
consider only power and energy constraints with no regard for
the effect of traffic and finite buffer size on the performance
of biosensor networks. Hence, in this section, we are going
to critique the current models and discuss their shortcomings.
For more details about the problem and its context, the reader
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Fig. 1: Biosensors are implanted inside the body of a human
to collect physiological measurements and transmit them over
a wireless channel to an access point for further processing.

is encouraged to read our previous papers and the references
therein.

Support for various QoS requirements like low packet loss
and delay is essential in the development of future wireless
networks that employ tiny sensing devices. Several cross-layer
optimization techniques have been proposed in the literature
to tackle QoS-related issues. For example, the authors in [4]
handle the issue of the time-varying nature of the wireless
channel by constraining different system parameters like data
rate, modulation schemes, and transmission power. The trade-
offs between the average transmission power and average
packet dropping probability and the average buffer delay are
studied in [5]. The authors consider a system with a finite
transmission buffer and a time-varying wireless channel. The
system is formulated as both a constrained and unconstrained
MDP with an average cost criterion.

The heating issue in biosensor networks is addressed in
[1], [2]. The authors optimize the network lifetime under
strict temperature constraints by considering different amounts
of initial energy. The system consists of biosensor nodes
whose wireless transmission affects the temperature level of
the surrounding tissues. The system is modeled as a discrete
time MDP that grows in discrete time steps. During each time
slot, the scheduled sensor undergoes a change in its energy
and temperature in accordance with its action. Temperature of
the unaffected biosensors is assumed to decrease by a con-
stant value. However, temperature of the affected biosensors
increases according to a direct relationship with the biosensor
scheduled for transmission and the state of its wireless channel
with the base station. The system is solved to obtain an optimal
operating policy that maximizes the network lifetime while
keeping the system in a safe temperature zone to avoid tissue
damages. The results obtained indicate that the optimal policy
performs better when compared to several heuristic policies.
Figure 1 shows the system used in the study.

Optimization of biosensor networks by increasing the num-
ber of transmitted samples is addressed in [3]. Three actions
are considered as shown in Figure 2. The control signals are
initiated by the base station which also controls the power
source. The model is also formulated as a discrete time MDP

Fig. 2: A biosensor can be rechargeable. Recharging biosensors
can increase their lifetime but it also increases the temperature
of the tissues around them. A biosensor can be put to sleep to
cool down.

whose state includes the current energy, transmission power,
and temperature. The temperature is also used as a strict (i.e.,
global) constraint. The authors evaluate an optimal policy by
solving the system using the value iteration algorithm with an
average reward criterion. The obtained optimal policy maxi-
mizes the samples which can be transmitted by the biosensor
network when compared with greedy and heuristic policies.

III. SYSTEM MODEL

Figure 3 shows the layout of the system studied in this
paper. Only one biosensor node is shown. Each biosensor
has its own state. Multiple biosensor nodes share a common
wireless channel that connect them to the base station. Each
biosensor node contains a finite size buffer for storing the
samples generated by the biosensing elements. These arriving
samples may experience delay and loss while traveling to the
base station . We assume that each biosensor node knows
the state of the wireless channel and the size of its buffer.
Hence, the state of the biosensor node is made up of three state
variables: wireless channel, buffer size, and temperature. Based
on the state of the biosensor, the controller should determine an
efficient policy that optimizes certain QoS metrics. Basically,
in each time slot, the controller decides whether to make a
transmission or put the transmitter to sleep. Next, the details
of the system model are given.

A. Wireless Channel Model

We consider a slotted Rayleigh fading channel with Ad-
ditive White Gaussian Noise (AWGN) No and channel band-
width W . The Rayleigh fading channel is assumed to be slowly
varying so that the received Signal to Noise Ratio (SNR)
remains constant during a single time slot. It is also assumed
that transitions are only allowed to current or adjacent states.
This slowly varying discrete time Rayleigh fading process can
be represented by a Finite State Markov Chain (FSMC) which
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Fig. 3: System model for a biosensor node with a finite buffer and controller.

has K channel states [6]. The channel states are numbered
from 0 to K − 1. The channel gain for each state c, where
c ∈ (0, ....,K − 1), is represented by θc. The probability
distribution for the next channel state during a time slot n
is given by

PC(c, c′) = P [Cn = c′|Cn−1 = c] (1)

PC(c, c′) can be calculated by partitioning the range of channel
gains into a finite number of intervals. The information about
the fading process given in [7] is used. Further, we assume that
the channel state transition probabilities for all channel states
are available [8].

B. Buffer State Model

Samples generated by the on-board sensing elements are
stored in a finite buffer of size β. Let σn indicate the number
of arriving samples at the beginning of time slot n. Samples
arriving in time slot n can only be transmitted in the next
time slot n + 1. Sample arrivals are Poisson distributed with
an average arrival rate equal to λ. They are also independent
of the channel fading process. A truncated Poisson process is
considered since the number of on-board sensors is finite. This
necessitates an upper bound, represented by Z, on the number
of samples. It is assumed that the length of each time slot is
equal to one time unit. Hence, the truncated Poisson process
can be approximated as follows:

p(σn = i) = e−λ
λi

i!
, i = {0, 1, ..., Z − 1} (2)

p(σn = Z) = 1−
Z−1∑
i=0

p(i) (3)

It should be pointed out that p(σn = Z) has a large probability
due to truncation. In our model, this means that the likelihood
that all sensors generate samples in one time slot is high.

Let Bn be a state variable indicating the number of samples
in the buffer at the beginning of time slot n. Then, the number
of samples in the buffer in time slot n+ 1 is given by

Bn+1 = min{Bn −An + σn+1, β} (4)

where An is the number of samples transmitted in time slot
n.

C. Transmission Model

The number of samples transmitted in a time slot n is equal
to An which takes values from the set {0, 1, 2, ..., α}. The
transmitter is responsible for taking certain number of samples
from the buffer and transmit them over the correlated faded
channel. Let A = a0, a1, a2, ..., aA indicate the set of actions
performed by the transmitter where a1 indicates one sample is
transmitted , a2 indicates two samples are transmitted and so
on. a0 represents the sleep action;i.e., no sample is transmitted
by the biosensor node in this state.

Let P (Cn, An) represent the power required to make action
An in time slot n while the channel state is Cn. Power required
to take a certain action in slot t must belong to Pt(c, a) ∈ Pop,
where Pop indicates the set of power levels supported by the
transmitter. Furthermore, we enforce a fixed Bit Error Rate
(BER) constraint on all the transmissions done by the trans-
mitter. Assuming an adaptive M-ary Quadrature Amplitude
Modulation (MQAM) modulation scheme with ideal coherent
phase detection, the power required to satisfy a particular BER
can be evaluated by using the following equation from [8]:

P (c, a) ≥ W ·No
θc

.(
−(2a−1) log(5.Eb)

1.5
) (5)

In (5) No represents the channel noise, Eb represents the
fixed BER constraint that is satisfied assuming coherent phase
detection, θc represents the channel gain when the channel state
is c and W represents the bandwidth of wireless transmission.
If the required power is less than that described in (5) , it
means that action is not feasible. Power calculated in (5) give a
pessimistic estimate of the power required to achieve a certain
BER for different channel states and actions.

In each time-slot the biosensor node’s rate of transmission
can be calculated by

Rate =
G · Φ(An)

F
(6)

where Φ represents the number of bits per symbol used
for transmission of An samples during F channel uses. G
represents the size of incoming samples in terms of bits.
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If we set G = F , the rate will be equal to Φ. We can
transmit different number of samples by changing the number
of bits per symbol. If we set number of bits per symbol
equal to number of samples transmitted in a time slot, then
Φ(An) = An; i.e., the transmission rate becomes equal to the
action suggested by the optimal policy.

IV. MDP FORMULATION

The global state of the system, denoted by S, consists of
three variables and the state space is given by

S = C ×B × T (7)

where T is the temperature state variable. The size of the state
space is thus the product of the number of channel states,
number of buffer states, and number of temperature levels. In
this section, two MDP formulations are given. They differ in
whether the temperature is part of the global system state or
a constraint.

An important element of any MDP formulation is the sytem
state transition probability matrix. This matrix describes how
the system transitions from one state to another. We assume
that state variables are independent. Thus, the state transition
probability matrix of the system can be calculated by simple
multiplication of the transition probabilities of the channel and
buffer state variables. The temperature state variable plays no
role in the computation of the state transition probability matrix
of the system. This is because it is not random.

Hence, the following equation gives the state transition
probability matrix of the system.

PS [s′|s, a] = PC [c′|c]× PB [b′|b, a] (8)

where s, c and b represent the current state of the system,
wireless channel and buffer, respectively. On the other hand,
s′, c′ and b′ represent the next state of the system, wireless
channel and buffer when action a is performed. The next state
of the wireless channel is independent of the current action.
The current action a determines the next state of the buffer
only.

The solution of an MDP formulation is referred to as a
policy which is a mapping from the system state space to
action space. That is, a policy determines the best action that
should be performed in each possible state of the system. An
optimal policy guarantees an optimal behavior of the system.

Two objectives are considered. The first one is to minimize
the expected long-term average transmission power.

PAvg(π) = lim sup
n→∞

1

n

n∑
i=1

E[P (si, π(si))] (9)

where π(si) represents the action suggested by policy π and
P (si, π(si)) is the instantaneous transmission power.

The second objective, however, is to maximize the expected
long-term average transmission rate.

RAvg(π) = lim sup
n→∞

1

n

n∑
i=1

E[R(si, π(si))] (10)

where R(si, π(si)) represents the instantaneous transmission
rate.

An important performance metric is the average loss rate
which represents the expected number of samples that are
dropped due to buffer overflow. The following equation shows
how the number of samples lost in time slot n is computed
for a specific state s and action a.

Ln(s, a) = max {bn + σn − an − β, 0} (11)

The average number of lost samples can be computed using
the first moment as follows.

LAvg(s, a) = E(Ln(s, a)) (12)

The instantaneous delay during a time slot n can be
computed as follows.

Dn(bn, a) =
bn
λ

(13)

where bn is the instantaneous buffer size during time slot n.
The expected long-term average delay is the following.

DAvg(π) = lim sup
n→∞

1

n

n∑
i=1

E[D(bi, π(ai, bi))] (14)

Finally, our thermal model is discussed. In this model,
the increase in temperature is directly proportional to the
magnitude of the action. For example, transmitting one sample
during the best channel state (Cn = 0) will increase the
temperature by one unit. The following equation is used for
computing the instantaneous temperature increase.

Tn+1(sn, an) =

{
−1 a ∈ a0
at +K − ct − 1 a ∈ a1, a2, .....aA (15)

The long-term average temperature is mathematically ex-
pressed as follows.

TAvg(π) = lim sup
n→∞

1

n

n∑
i=1

T (si, π(si)) (16)

Notice that the expectation operator is dropped since temper-
ature is not a random variable.

Next, the details of the MDP models are given. First, in the
average thermal increment model, the problem is formulated as
a constrained MDP model where a particular objective function
is optimized while putting various constraints on other QoS
metrics . The first MDP formulation maximizes the system
transmission rate while keeping the average power, delay,
thermal increment and loss rate within given bounds. The
second MDP model, on the other hand, optimizes the system
power consumption while respecting a minimum transmission
rate and keeping the biosensor network in a safe operating
zone.
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A. LP Formulation for The Thermal Increment Model

Let x(s, a) indicate the decision variable in solving the
MDP models obtained in previous section. x(s, a) represents
the steady state probability distribution when the system is in
state s and action a is performed. Based on different rewards
and depending on the QoS parameters, we want to optimize
x(s, a) to obtain an optimal policy which describes what action
to take when the system is in state s. The MDP model proposed
is solved using the LP algorithms in MATLAB [11] to obtain
optimal operating policies for correlated wireless channel. The
default mode for LP solver is to minimize the reward function.

Since the problem is formulated as an average cost con-
strained MDP, there are certain basic constraints that must
applied for each implementation.∑

s∈S

∑
a∈A

x(s, a) = 1 (17)

∑
a∈A

x(j, a)−
∑
i∈S

∑
a∈A

pij(a)× x(i, a) = 0 j ∈ S (18)

x(s, a) ≥ 0 ∀ s ∈ S, ∀ a ∈ A (19)

The first constraint ensures that the x(s, a) is a probability
distribution with its sum over all pairs of system states and
actions equal to one. The second constraint ensures that we are
solving an average cost constrained MDP. The third constraint
enforces that the decision variable x(s, a) is always positive.
These basic constraints are common to all the LP models given
in this paper.

The first LP model is about the maximization of the
transmission rate (i.e., throughput). The details of the model
are as follows.

max
x

∑
s∈S

∑
a∈A

x(s, a)×R(s, a) (20)

subject to: ∑
s∈S

∑
a∈A

x(s, a)× P (s, a) ≤ PO (21)

∑
s∈S

∑
a∈A

x(s, a)× L(s, a) ≤ LO (22)

∑
s∈S

∑
a∈A

x(s, a)× T (s, a) ≤ Th (23)

∑
s∈S

∑
a∈A

x(s, a)×D(s, a) ≤ DO (24)

The constraints in (21)-(25) makes sure that the average
values of power consumption P (s, a), loss rate L(s, a), ther-
mal increment T (s, a) and delay D(s, a) do not exceed their
thresholds PO, LO,Th and DO, respectively.

In the next LP model, the objective is to minimize the
average transmission power and use the other metrics as
constraints. The following are the details of the model.

min
x

∑
s∈S

∑
a∈A

x(s, a)× P (s, a) (25)

subject to: ∑
s∈S

∑
a∈A

x(s, a)×R(s, a) ≥ RO (26)

∑
s∈S

∑
a∈A

x(s, a)× L(s, a) ≤ LO (27)

∑
s∈S

∑
a∈A

x(s, a)×D(s, a) ≤ DO (28)

The first constraint ensures that there is a minimum average
throughput. The remaining two constrains put an upper limit
on the loss rate and delay, respectively.

B. LP Formulation for the Strict Temperature Model

The LP formulation of the strict temperature model is
similar to that of the thermal increment model discussed above.
However, the reader is reminded that the system state now
includes the temperature as a state variable. This represents a
global constraint. Thus, there will be no explicit constraint on
the temperature increase like in the previous LP models. The
following are the details of the new LP model.

max
x

∑
s∈S

∑
a∈A

x(s, a)×R(s, a) (29)

subject to the following QoS constraints:∑
s∈S

∑
a∈A

x(s, a)× P (s, a) ≤ PO (30)

∑
s∈S

∑
a∈A

x(s, a)× L(s, a) ≤ LO (31)

∑
s∈S

∑
a∈A

x(s, a)×D(s, a) ≤ DO (32)

where x(s, a) represents the decision variable for the opti-
mization of average transmission rate. PO, LO, Th and DO

represent the thresholds on the average transmission power,
loss rate and delay, respectively.

C. Finding the Optimal Policy

After solving the above LP models, a probabilistic dis-
tribution over the state-action space is obtained. We would
would like to find a policy that tells us what action should be
performed in each system state with a probability of one. This
can be achieved as follows.

π∗(s, a) =
x∗(s, a)

As∑
i=1

x∗(s, ai)

∀ a ∈ As and s ∈ S (33)

Here, As represents the set of feasible actions in each system
state s.
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Channel states c 0 1 2 3 4 5 6 7
θc 0 0.1068 0.2301 0.3760 0.5545 0.7847 1.1090 1.6636
Pc,c 0.9359 0.8552 0.8334 0.8306 0.8420 0.8665 0.9048 0.9639
Pc,c+1 .0641 .0807 .0859 .0835 .0745 .0590 .0361 0
Pc,c−1 0 .0641 .0807 .0859 .0835 .0745 .0590 .0361

V. RESULTS AND DISCUSSION

In this section we numerically solve the model proposed
in the previous section to obtain the optimal policies and then
simulate them. In our simulation, we are going to analyze the
effect of various QoS constraints on the optimal policies. Then,
we study the different optimal policies obtained by solving the
average thermal increment and strict temperature models. The
thermal behavior of the obtained policies is also discussed.

A. Configuration

Parameter Value
G 100 bits
Bsize 8 Samples = 800 bits
K 8
Tsize 4
A 8
λ 3 Samples
W 100 MHz

NO 10−12

fD 10 Hz
θavg 0.8

The following system parameters are used in the model
formulation and simulation. They are also described in Table
II. Arrivals at the buffer input are assumed to be Poisson with
an average arrival rate of three. Buffer size is set to eight
samples. Eight channel states are considered. The state zero is
assumed to be the worst with a very small gain. There are eight
possible actions in each state of the system;i.e., transmitting
from one up to seven samples or no transmission. Based on
these system parameters, the MDP model is formulated as a
linear program and solved using MATLAB. The slowly varying
Rayleigh model is described in Table I. It has an average power
gain of 0.8 and a Doppler frequency of 10 Hz.

B. Analysis and Insights

For the purpose of analyzing the effect of various con-
straints on the optimization of average transmission rate and
average power consumption, we vary the magnitude of the con-
straints on the average loss rate, delay and thermal increments
to study their effects on the objective function. Values of the
input parameters are also varied and their effects on both the
constraints and objective function are studied.

First, the LP model expressed by equations (25)-28 is
studied. Figure 4 shows the effect of varying LO. It can be seen
that the average transmission power decreases as the average
loss rate increases. Since more samples are allowed to drop
when the loss rate constraint is increased, the optimal policy
will use the least amount of power possible for transmission.
Also, increasing the arrival rate increases the average power
consumption of the system. This is because there will be more
samples in the buffer which need to be transmitted.
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Fig. 4: Reduction in the optimal average transmission power
as the average loss rate constraint (LO) is varied.
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Fig. 5: The optimal average transmission power decreases as
the average delay constraint (DO) increases.

Figure 5 shows the effect of varying the delay (i.e., DO). It
can be seen that the value of the optimal average transmission
power decreases as the average delay constraint is increased.
This indicates that as the constraint on the average delay
is increased, samples are allowed to experience more delays
which results in a lesser average power consumption.

The effect of changing the average arrival rate λ on the

TABLE II: Simulation parameters.

TABLE I: Channel states and transition probabilities.
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Fig. 6: The increase in the minimum average transmission
rate constraint (RO) causes an increase in the optimal average
transmission power utilized.

average delay constraint is studied next. Figure 5 shows the
variations in the average delay and optimal average transmis-
sion power due to different arrival rates. The delay and average
arrival rate have an inverse relationship. For example, for a
fixed DO, the left side of the delay constraint in equation 28
will be reduced if we increase the average arrival rate. This in
turn should increase the optimal average power consumption
in order to achieve the same delay constraint. By contrast, the
behavior observed in Figure 5 is the opposite. This can be
explained by the fact that the delay is directly proportional to
the buffer occupancy while it is inversely proportional to the
average arrival rate. So, based on the insights obtained from
Figure 5, we can conclude that the effect of the increased
delay dominates the reduction achieved by increasing the
average arrival rate which in turns reduces the average power
consumption.

We next study the effect of having a minimum average
transmission rate requirement on the optimization of average
power. The behavior obtained after applying the minimum
average transmission rate constraint in equation (26) is shown
in Figure 6. It can be seen that as the value of the constraint
increases, the optimal average power consumption increases.
This happens because the increase in the minimum average
transmission rate constraint requires that the biosensor node
transmits more samples. As a result, the optimal value of
average power consumption increases.

Next, the LP model expressed by equations (20)-(24) is
studied. In the same way, the value of PO is varied. The results
are then plotted in Figure 6. It can be seen that the optimal
average transmission rate increases as the average transmission
power PO increases. This indicates that as the constraint on
average power is increased, more power is available which
can then be used to transmit a larger number of samples. Of
course, this will result in higher transmission rates.

The effect of increasing the arrival rate on average trans-
mission rate is depicted in Figure 7. It can be seen that as
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Fig. 7: The effect of increasing the average arrival rate (λ)
on the optimal average transmission rate as the average power
constraint (PO) increases.

the average arrival rate increases the average transmission rate
decreases. This is due to the fact that any increase in the
average arrival rate causes an increase in the loss rate which
in turns reduces the average transmission rate of the biosensor.

Maximization of the average transmission rate can cause
the temperature of the system to increase by a large amount.
The minimization of the average transmission power indirectly
minimizes the system’s thermal state increment by minimizing
the power consumption. However, for the maximization of
the average transmission rate, we need to explicitly include
a constraint that controls the increase in the thermal state of
the system at symbol level. In order to study the effect of the
constraint in equation (23), the value of Th is varied to obtain
various optimal policies. The results are then used to calculate
the optimal average transmission rates. Figure 8 shows that
the average transmission rate increases as the average thermal
increment increases. This is at the cost of damaging the tissues,
of course. So, we should try to keep the thermal increase
constraint as small.

It should be pointed out that a change in the average delay
constraint does not affect the average transmission rate. The
reason for such behavior is that the delay depends on the
buffer state and the average arrival rate. If we keep the average
arrival rate constant, the delay becomes directly related to
the state of the buffer. But, changes in the buffer state also
cause similar changes in the transmission rate. As a result, the
optimal average transmission rate stays constant as the average
delay constraint is varied. However, if we increase the arrival
rate at the input of the buffer, the average loss rate and the
delay both increase. This will cause a reduction in the optimal
average transmission rate as shown in Figure 9.

C. Optimal Policies for the Thermal Increment Model

In this section, we study the thermal increment model
and how the thermal increment constraint affects the optimal
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Fig. 8: The optimal average transmission rate increases as the
average thermal increment (Th) constraint increases.
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Fig. 9: Increasing the value of the average delay constraint does
not have any effect on the average transmission rate. However,
it decreases as the average arrival rate increases.

policies.

The optimal policy that results from solving the LP model
in equations (25)-(28) is plotted in Figure 10. The minimum
average transmission rate constraint RO is set to 0.07, average
delay constraint DO is set to 10msec and average loss rate
constraint LO is set to 2Samples. The 3D plot indicates that
as the channel state improves, the policy suggests to make
a transmission. Similarly, an increased number of samples
in the buffer also indicates that the transmitter should start
sending more samples to the base station. However, since
the objective is to minimize the average power consumption
and the minimum average transmission rate constraint is quite
small, a maximum of one sample is transmitted even in the
best channel state. This has the advantage of reducing the
temperature increase of the biosensor node. However, if we
increase the minimum average transmission constraint to 0.35,
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Fig. 10: Optimal policy for minimizing average power con-
sumption with RO = 0.07, DO = 10msec and LO =
2Samples.
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Fig. 11: Increase in the minimum average transmission rate
constraint (RO = 0.35) results in an increased number of
samples transmissions in the optimal policy

it can be seen in Figure 11 that the number of samples
transmitted as the buffer state improves is increasing.

The optimal policies obtained from the different LP models
have unique behaviors. They are observed to be monotonically
increasing in the channel and buffer state of the system. This
means that as the channel state improves or the buffer state
increases, the optimal policy also increases monotonically.
When embedding these policies into an actual hardware, we
can define the actions in terms of increasing values of channel
and buffer state information. The controller can make an easy
decision based on these thresholds defined by the optimal pol-
icy. This behavior can thus help in the practical implementation
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Fig. 12: Comparison of sample transmissions for different
policies with a varying number of time slots.

of these optimal policies on biosensor hardware.

The optimal policies computed in the previous section are
simulated using MATLAB and the results are compared with
a greedy policy. In the case of the transmission rate maximiza-
tion, the greedy policy works on the principle that it always
tries to transmit the maximum number samples that are allowed
under the given system state without exceeding the constraints
of the average loss rate, average thermal increment, average
delay and average transmission power. As for the transmission
power minimization, the greedy policy works by transmitting
the least number of samples possible without violating the
required average transmission rate. Each data point is the
result of running the simulation five times. Both policies are
simulated for a different number of time slots and their results
are compared. The performance of the average transmission
rate maximization policy against the greedy policy is shown in
Figure 12. Clearly, this Figure indicates that the optimal policy
outperforms the greedy policy in terms of the total number of
transmitted samples.

D. Strict Temperature Model

In this section, we are going to study the LP model
expressed by equations (29)-(32). The obtained optimal policy
is simulated and the temperature variations are observed.
Similar to the previous approach, a comparison is performed
with a greedy policy. The conclusion is that the optimal policy
provides better performance.

We choose four temperature levels to represent the temper-
ature states in the model proposed for the strict temperature
model. The lower and upper bounds on the temperature are
set to 37oC and 40oC. The number of channel and buffer
states are set to eight, respectively. The average arrival rate at
the input of buffer is set to three. The optimal policy allows
transmissions only when the temperature is in state one. For
higher temperature states, the policy chooses the sleep action
to keep the thermal state of the system within the provided
constraints.
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Fig. 13: Comparison of sample transmissions for different poli-
cies achieved by the average transmission rate maximization.

Again, the behavior of the optimal policy is observed to
be monotonic in the channel and buffer states. The policy
ensures that more samples are transmitted as the state of the
wireless channel and buffer improves. The average temperature
and power constraints are also kept within bounds. It is also
observed that when the temperature is in its worst state,
the policy suggests not to transmit any samples in order to
save the biosensor from going into the highest thermal state.
Therefore, the optimal policy is also monotonic in terms of
the temperature states.

The optimal policy computed for the transmission rate
maximization problem is also compared with a greedy policy
that satisfies the constraints given in the model. The greedy
policy always tries to transmit the maximum possible number
of samples while respecting the QoS constraints. A running
average for all the constraints is used to make the decision
in each time slot. The simulation is run five times for each
number of slots and the average results are calculated. Figure
13 shows the results obtained by running the simulation for
up to 10000 time slots. The results indicate that the optimal
policy again outperforms the greedy policy in terms of the
total number of transmitted samples. However, the difference
between the two is small as compared to the optimal policy
for the previous average thermal increment model.

VI. CONCLUSION

In this paper, the problem of QoS provisioning in biosensor
netoworks has been studied using the framework of MDPs.
The newly proposed model captures the interaction between
the wireless channel and buffer at a biosensor node. The
obtained policies maximizes network throughput and lifetime
under several QoS constraints. They are also monotonic which
means that they can be easily realized. Further, the simulation
of the thermal behavior of the optimal policies indicate that
the strict temperature model provides a better control over
temperature increase when compared to the average thermal
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increment model. However, the strict temperature model has
the disadvantage of requiring a high computation power which
can be vital for battery-operated biosensor nodes that have
limited energy. The average thermal increment model shows
some promising results for average transmission power min-
imization since transmission power is indirectly related to
thermal increase. However, in both cases, the optimal policies
outperform the greedy policy in both network life time and
transmission rate maximization. One possible direction for
further research is to include the level of battery energy as part
of the system state in the current model. The recharge action
can also be taken into consideration for biosensor networks
that have wireless recharging sources.
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