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Abstract—This article present a novel direct torque control 

(DTC) scheme using high order sliding mode (HOSM) and fuzzy 

logic of a doubly fed induction generator (DFIG) incorporated in 

a wind turbine system. Conventional direct torque control 

strategy (C-DTC) using hysteresis controllers presents 

considerable flux and torque undulations at steady state period. 

In order to ensure a robust DTC method for the DFIG-rotor side 

converter and reduce flux and torque ripples, a second order 

sliding mode (SOSM) technique based on super twisting 

algorithm and fuzzy logic is used in this paper. Simulation results 

show the efficiency of the proposed method of control especially 

on the quality of the provided power comparatively to a C-DTC. 

Keywords—DFIG; wind turbine; DTC; SOSM; super twisting; 

fuzzy logic 

I. INTRODUCTION 

Among all kinds of renewable energy sources that are 
being developed recently in the world, wind energy source is 
the fastest growing one [1]. Currently, variable speed wind 
turbine system (WTS) employing DFIG is the most popular 
technology in presently installed wind turbines [2]. This is 
because DFIG presents many advantages compared to other 
generators used in WTSs such as reduced converter size, 
improved efficiency, and economic benefits [3]. 

Stator vector control with proportional-integral (PI) 
regulators is the usual strategy employed currently for WTS 
based on DFIG [4,5]. This strategy presents a good decoupling 
between the two current axes (d and q), therefore the model of 
the DFIG becomes simple and PI regulators can be employed. 
However, this method of control is highly depends on the 
accuracy of the machine parameters, employs diverse loops 
and needs a big regulation strength in order to ensures stability 
during the whole speed domain [6]. 

To avoid the disadvantages of the filed oriented control 
method, a novel DTC scheme has been discussed in this paper 
[7,4]. In the C-DTC strategy, torque and flux are directly 
regulated through switching table plus hysteresis regulators. 
However, some drawbacks brake the employ of these 
regulators, for example variable switching frequency and 
torque ripple [8,9]. In several research articles realized on DTC 
scheme, these undesirable problems are decreased by 

employing space vector modulation (SVM) technique, but the 
control robustness was immolated [10,11]. 

In recent years, sliding mode control (SMC) based on the 
theory of variable structure systems (VSS) has been 
extensively employed for nonlinear systems. It uses a particular 
version of on-off control, or discontinuous signal across the 
sliding surface, satisfying the sliding mode condition, to 
achieve a robust control. However, the SMC has a major 
inconvenience which is the chattering effect created by the 
discontinuous part of control. In order to resolve this problem, 
various adjustments to the usual control law have been 
discussed. The approach based on boundary layer is applied in 
almost all cases [12]. Another efficiency solution consists to 
substitute the discontinuous control signal by fuzzy logic one 
has also been used recently in some research works [13-15]. 
For the same goal the notion of HOSM control has also proven 
its competence in [16,17] for different applications. 

Some useful solutions for sliding mode DTC with small 
torque and flux undulations, applied for induction motor (IM) 
controls are presented in [18,19]. In [20], the authors suggest 
the using of a DTC with SOSM controllers employed to IM 
drive. 

In the aim to design an advanced DTC with very small 
torque and flux undulations and without chattering effect, in 
our article we suggest to employ a new DTC scheme based on 
SOSM and fuzzy logic functions for a DFIG-based wind 
turbine. This is for essential objects, including reducing 
mechanical stresses and improving power quality provided to 
the grid. The SOSM technique generalizes the basic SMC 
design by integrating second order derivatives of the sliding 
variable [21]. A few of such controllers have been discussed in 
the literature [22-25]. 

The rest of the paper is arranged as follows. In section 2, 
the modeling of the DFIG-based WTS is presented. Section 3 
provides the application of the SOSM-DTC scheme to the 
DFIG. In section 4 the novel SOSM-DTC strategy using on 
fuzzy logic algorithm is applied to the DFIG control. Section 5 
discusses the simulation results to demonstrate the 
effectiveness of the proposed control strategy. 
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II. MODEL OF THE DFIG-BASED WTS 

A. The WTS model 

Equation (1) gives the expression of the power captured by 
a WTS: 

  32

Pt v ρRβλ,CP
2

1


                         

(1) 

Where, R, ρ, v, CP, λ and β are respectively:  radius of the 
turbine (m), air density (kg/m

3
), wind speed (m/s), the power 

coefficient, the tip speed ratio and blade pitch angle (deg). 

The power coefficient Cp is given as follows [26]: 
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Where, Ωt is the wind turbine speed. 

B. Model of the DFIG 

The DFIG model in Park reference frame is given by 
[27,28]: 
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Where (Vds, Vqs, Vdr, Vqr), (Ids, Iqs, Idr, Iqr), (ψds, ψqs, ψdr, ψqr) 
are respectively the stator and rotor voltages, currents and 
fluxes, Rs and Rr are the resistances of the rotor and stator 
respectively, Ls, Lr and M are the inductance own stator, rotor, 
and the mutual inductance between two coils respectively. 

The stator and rotor pulsations and rotor speed are 
interconnected by the following equation: ωs = ω+ωr. 

Where ωs and ωr are respectively the stator and rotor 
electrical pulsations, while ω is the mechanical one. 

The mechanical equation of the DFIG is: 
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(5) 

Where we can express the electromagnetic torque Cem as 
follows: 
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Where Cr, Ω, J, Fr and np are respectively: the load torque 
(Nm), mechanical rotor speed (rad/s), the inertia (kg.m

2
), the 

viscous friction (Nm/s) and the number of pole pairs. 

The stator powers of the DFIG are defined as: 
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To obtain a decoupled control between the stator active and 
reactive powers, we use a dq reference frame linked to the 
stator flux as shown in figure 1. Basing on equation (4) and 
supposing that the stator resistance can be neglected we can 
write: 
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Fig. 1. Field oriented control technique 
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By using (9) and (10), equations (6) and (7) can be written 
as follows: 
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III. SOSM-DTC OF DFIG 

The main objective of using SOSM-DTC is to develop a 
robust control of torque and rotor flux of the DFIG. In our 
system, the electromagnetic torque and flux are respectively 
controlled by Vdr and Vqr. 

Chattering effect which is a serious problem that exists in 
the conventional SMC can be very hurtful for the DFIG 
because it can create some undesirable phenomenon such as 
torque pulsation, current harmonics and acoustic noise, etc 
[29]. To relieve the influence of this problem, various solutions 
have been proposed [30, 31]. HOSM is one of the solutions 
proposed recently to eliminate the effect of this problem. This 
control method can ensure eradication of this undesirable 
phenomenon because it can acts on the sliding surface and its 

1
st
 derivative ( 0 SS  ) [17, 32]. On the other hand, to retain 

the main advantages of the usual method, they debate the 
chattering phenomenon and offer advanced precision in 
practice. In the last decade many research works have applied 
this type of control [22, 23]. 

The big problem that accompanies the HOSM control 
executions is the increased required information. Indeed, it’s 

necessary to know the derivatives of the surface 
)1( , ... , , nSSS   for performing an n

th
-order controller. Amid all 

algorithms used recently for the HOSM control, the super-
twisting one is an exclusion. Indeed, this kind of algorithms 
needs just the information about S [24]. Therefore, the super 
twisting algorithm has been employed in this paper. As 
presented in [25], for all SOSM controllers stability can be 
easily verified with this algorithm. 

The bloc diagram of the DFIG control using SOSM-DTC is 
shown in figure 2. 

The SOSM controllers of rotor flux and electromagnetic 
torque are used to act successively on the two rotor voltage 
components as in (13) and (14) [20,33].  
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Where the sliding mode variables are the flux magnitude 
error Sφr = φr

*
-φr and the torque error SCem = Cem

*
 - Cem, and the 

control gains K1 and K2 should verify the terms of stability. 

A. Controller synthesis 

Suppose a dynamic system defined as follows: 
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where u is the input, x is the variable state and y is the 
output. 

 
Fig. 2. Bloc diagram of the DFIG with SOSM-DTC 
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the input u = f(y, y ) that be able to forces the trajectories of the 

system toward the beginning dot of the phase plane represented 
by y = y = 0, if feasible in restricted period of time. Input u is 

supposed a new state variable, where the switching control is 
appended to its derivedu . Output y is regulated by a SOSM 

controller. 

 

 Su

uSS

K

Ku
r

sign 

sign

21

11



 

                         

(16) 

Where S = y
*
 - y is the sliding surface. 

As indicated by expressions (16), the appropriate 
stipulation for convergence to S that can verify stability is for 
the gains to be large sufficient [20]. 
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Where AAM   and 
mM BBB   are the bigger and 

lower limits of A and B in the 2
nd
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IV. FUZZY SECOND ORDER SLIDING MODE DIRECT 

TORQUE CONTROL (FSOSM-DTC) 

SOSM control has proven in several studies and research 
applications its effectiveness in minimizing chattering effect 
which is mainly caused by the presence of a discontinuous 
control term containing the sign function [13-15]. To 
ameliorate the SOSM-DTC of the DFIG and more and more 
decrease the adverse effect caused by the sign function, in this 
work we suggest to employ a hybrid approach of second order 
sliding mode and fuzzy logic by replacing this function by an 
inference fuzzy system. 

For the proposed FSOSM-DTC, the universes of discourses 
are first divided into the seven linguistic variables NB, NM, 
NS, EZ, PS, PM, PB, triangular and trapezoidal membership 
functions are chosen to represent the linguistic variables for the 
inputs and outputs of the controllers. 

The fuzzy labels used in this study are negative big (NB), 
negative medium (NM), negative small (NS), equal zero (EZ), 
positive small (PS), positive medium (PM) and positive big 
(PB). 

Figure 3 describes these choices. 

 
Fig. 3. Fuzzy sets and its memberships functions 

V. SIMULATION RESULTS 

In order to evaluate the proposed DTC strategy of the 
DFIG, simulation tests using MATLAB Software have been 
realized and discussed in this section. The DFIG parameters 
used in simulations are as follows: nominal stator power Psn = 
1.5 MW, np = 2, Rs = 0.012 Ω, Rr = 0.021 Ω, Ls = 0.0137 H, Lr 
= 0.0136 H, M = 0.0135 H, Fr = 0.0024 Nm/s, J = 1000 kg.m

2
. 

C-DTC, SOSM-DTC and FSOSMC are evaluated by 
simulations regarding tracking performances, total harmonic 

distortion (THD) of stator current and robustness versus 
variation of machine parameters. 

A. Tracking performances 

This test has the goal to analyze and compare the behavior 
of the three used DTC control methods regarding tracking 
performances. The obtained simulation results are shown by 
figures 4-7. As it’s shown by figures 4-6, electromagnetic 
torque and rotor flux curves for the three used DTC methods 
follows excellently their references. Furthermore, we observe 
that the FSOSM-DTC and SOSM-DTC strategies guarantee 
the decoupling between the d and q axes contrary to the C-
DTC where the coupling trace between them is somewhat 
clear. Otherwise, figure 7 illustrates the harmonic spectrums of 
the stator current for the three DTC control methods. Through 
this figure, it can be noticed that the total harmonic distortion 
(THD) is minimized for the SOSM-DTC method (THD = 
1.31%) when compared to the C-DTC one (THD = 2.22%) and 
the THD is more and more reduced by using fuzzy logic (THD 
= 1.15%). Based on the results above, it can be said that the 
FSOSM-DTC has proven its efficiency in reducing chattering 
phenomenon in addiction to keeping the same advantages of 
the SOSM-DTC scheme. 

B. Test of Robustness 

In order to examine the performances of the three DTC 
control methods regarding robustness against variation of 
machine parameters, these last have been deliberately modified 
as follows: the values of Rs and Rr are multiplied by 2 while the 
values of Ls, Lr and M are divided by 2. The DFIG speed was 
kept equal to its face value. Figures 8-10 illustrate the obtained 
simulation results. These results show clearly that parametric 
variations test augment somewhat the time-response of the 
results obtained with C-DTC method. In addition, these results 
demonstrate that the parametric variations generate a visible 
influence on electromagnetic torque and rotor flux curves and 
that the influence seems more significant for the C-DTC 
compared to the other DTC schemes. Therefore, it can be 
concluded that the new proposed FSOSM-DTC scheme and in 
addition to its efficiency in reducing chattering phenomenon 
has kept the most important advantage of the SMC approach 
which is the robustness. 

VI. CONCLUSION 

In this paper, a new DTC scheme of a doubly fed induction 
generator attached to the electric network through the stator 
part and fed by a back to back inverter by the rotor part has 
been discussed. Firstly, a modeling of a DFIG-based wind 
turbine has been presented. Frequently used in the WTSs, this 
generator presents several benefits such as variable speed 
function and the ability to work in the four quadrants. 
Secondly, a new DTC scheme using SOSM and fuzzy logic is 
synthesized and compared to both C-DTC and SOSM-DTC. In 
term of tracking performances electromagnetic torque and rotor 
flux curves for the three used DTC methods follows excellently 
their references, however a problem of coupling is emerged in 
the C-DTC curves that is removed with the other SOSM-DTC 
methods. Furthermore, the obtained results have approved that 
the FSOSM-DTC works with a lesser chattering effect. A test 
of robustness has also been elaborated in this paper where the 
machine parameters have been deliberately changed. After 
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these variations, a few ripples have been induced on the curves 
of electromagnetic torque and rotor flux but with a significant 
influence with the C-DTC strategy compared to the other DTC 

methods. In light of the obtained results, one can conclude that 
the proposed FSOSM-DTC scheme represents an important 
tool for systems using DFIG such as WTSs. 

         

         
Fig. 4. C-DTC strategy responses (reference tracking test) 

         

         
Fig. 5. SOSM-DTC strategy responses (reference tracking test) 
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Fig. 6. FSOSM-DTC strategy responses (reference tracking test) 

         

 
Fig. 7. THD of one phase stator current for a DFIG 
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Fig. 8. C-DTC strategy responses (robustness test) 

         

Fig. 9. SOSM-DTC strategy responses (robustness test) 

         

Fig. 10. FSOSM-DTC strategy responses (robustness test) 

         
Fig. 11. Error curves (robustness test) 
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