
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

ROHDIP: Resource Oriented Heterogeneous Data
Integration Platform

Wael Shehab
Computers & Control Dept.

Faculty of Engineering Tanta Univ.
Tanta, Egypt

Sherin M. ElGokhy
Computers & Control Dept.

Faculty of Engineering Tanta Univ.
Tanta, Egypt

ElSayed Sallam
Computers & Control Dept.

Faculty of Engineering, Tanta Univ.
Tanta, Egypt

Abstract—During the last few years, the revolution of social
networks such as Facebook, Twitter, and Instagram led to a daily
increasing of data that are heterogeneous in their sources, data
models, and platforms. Heterogeneous data sources have many
forms such as the www, deep web, relational databases systems,
No-SQL database systems, hierarchal data systems, semi-
structured files, in which data are usually allocated on different
machines (distributed) and have different data models
(heterogeneous).

Large-scale data integration efforts demonstrate that their
most valuable contribution is implementing a data integration
platform that provides a uniform access to the heterogeneous
data sources, as well as the different versions of data reported by
the same data source over time. Furthermore, the platform must
be able to integrate data from a broad range of data authoring
devices and database management systems. It also should be
accessible by almost types of data querying devices to ensure
globally querying the integration platform from any place on
earth anytime and receiving the query result in any data format.

In this paper, we create a resource oriented heterogeneous
data integration platform (ROHDIP) that facilitates the data
integration process and implements the objectives discussed
above. We use the resource oriented architecture ROA to
support the uniform access by most types of data querying
devices from anywhere and to improve the query response time.

Keywords—Data Integration; Data heterogeneity; SOA; ROA;
Restful; ROHDIP

I. INTRODUCTION
The enduring utilization of information technology raises

data sharing as a challenging problem for many enterprises.
Most enterprise information management systems adopted the
opinion of establishing isolated database management systems
in departments that may be geographically dispersed or have
different business type to improve production, management,
and efficiency. However, these systems are developed using
different software companies at various times, on different
platforms as well, which inevitably will lead to the coexistence
of heterogeneous databases [1]. Heterogeneous data are often
collected from an unknown or an unlimited number of sources
in different formats. Two types of data heterogeneity; namely,
structural heterogeneity and semantic heterogeneity are
counted. In structural heterogeneity, the information systems
store data in several structures. While semantic heterogeneity
concerns with both the data item content and its intended
meaning. The rapidly increasing number of structured, semi-
structured data sources results in a crucial need for uniform and

flexible query interfaces to access data that are distributed on
heterogeneous and autonomous sources [2] [3] [4] [5].

Data integration system allows users to specify what
information is needed without providing detailed instructions
of the methodology followed to obtain that information or even
specifying its location. In order to have the capacity to do so,
data integration system must be able to do the following
process: communication and interaction with data sources,
unifying different queries in requester specifying vocabulary
(ontology) across multiple autonomous, distributed and
heterogeneous data sources, mapping techniques between
requester ontology and the data source ontology, extracting
information from the query with respect to the target data
sources, and finally translating the query results to the
requester vocabulary [4].

Recently, many approaches to data integration were
developed including manual integration, application-based
integration, middleware data integration, physical data
integration and virtual integration. In manual integration
(common user interface), users manage all relevant
information, accessing all the source systems and there is no
unified view exists for the data. Application-based integration
requires the particular applications to achieve all the integration
efforts; therefore, this approach is manageable only in case of a
limited number of applications. The approach that transfers the
integration logic from particular applications to a new
middleware layer is called middleware data integration.
However, this approach does not ensure achieving the practical
requirements. Physical data integration usually creates a new
system that copies the data from different source systems to be
stored and managed independently of the original system. The
most well-known implementation of this approach is called
data warehouse (DW) [6][7] which combines data from
different sources (such as mainframes, databases, flat files).
However, the need for a separate system to handle the vast
volumes of data constitutes demerit of this approach. The final
approach is virtual integration which leaves data in the source
systems and defines a set of views to provide the customer with
a unified view of the whole enterprise. For example, when we
need to query specific data, it will be retrieved only from its
data source [8] [9].

Virtual integration approach has several advantages that
make it one of the most successful data integration approaches.
It succeeds to propagate the data update from the source
system to the integration system with almost zero latency.

104 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Also, virtual integration has no need to copy any data from the
data source to the integration system. Also, it does not need to
unify the distributed data sources. Based on that, this paper is
concerned with proposing an algorithm that adopts the virtual
integration approach.

The rest of this paper is organized as follows: the related
work is discussed in section II. Section III illustrates the
problem statement and presents the proposed framework. The
experimental results are exhibited and analyzed in section IV.
Finally, Section V concludes the paper ideas and suggests
future research ideas.

II. RELATED WORK
Several data integration platforms have been developed to

provide a uniform query interface that has the capability to
query the heterogeneous data sources [10] [11].

Specifically, an extensive wide variety of methods is
proposed to achieve virtual integration approach, each of which
was targeting the same goal but with its autonomous way.
These methods are categorized into two approaches: Global-
As-View (GAV) and Local-As-View (LAV). GAV produces a
top abstract level that constitutes a single mediated schema
described as views (mappings) of all local data sources [12]
[13], while LAV describes the local data sources as views over
a global schema [2] [14]. After that, many approaches have
been derived from LAV and GAV [11] [15] making the best
use of these two modern technologies, such as SOA “Service
Oriented Architecture” that is used in implementing dynamic
and flexible integration systems; namely, Service Oriented
Data Integration systems. Then, various data integration
frameworks based on SOA have been developed in the last few
years such as SODIA architecture [11]. SODIA merges the
data at various, distributed, heterogeneous and autonomous
data sources into a single dynamic view. Service providers
publish their data sources as data access services, which may
be detected instantly at the time they are needed and released
after use. Hence, variations of organization structures, backend
data sources, data structures, or semantics could be managed
and potentially the maintenance cost is reduced.

In 2009, an architecture for "Internet of Things" has been
proposed to connect millions of different devices together
based on service-oriented approach [16]. The architecture hides
the heterogeneity of hardware, software, data formats and
communication protocols. The specifications of the
architecture support open and standardized communication via
web services at all layers. Services abstract all functionality
offered by networked devices. A runtime for the execution of
the composed services was provided.

After that, Sanz et al. proposed an approach to integrate
several technologies, such as the JSF, Spring and Hibernate
frameworks in a multilayer architecture. SOA architecture
provides services to allow collaborative work, using the
independent development of components in different layers.
The approach relies on developing a global software system
where the presentation layers for different end devices are

separated from the business logic layer, whose services are
reused for three types of user interfaces without changing the
code [17].

The challenges of interconnection and communication of
different protocols between heterogeneous systems have been
investigated in 2010 [18]. An integration platform is
constructed to achieve the synchronization and transformation
of data between heterogeneous systems through registering,
mapping the various service components and constructing the
SOA framework of enterprise based on the service component.
The platform uses XML as a middleware for mapping several
data sources into a unified model depending on a set of
mapping transformations. The element of each mapping model
has one service component which indicates the source or
destination of elements. So, a path from a data source to
another data source must exist to define and achieve data
synchronization.

A web service middleware framework that provides an
interface for external clients to enable them to access different
local data sources with a transparent manner has been
developed [19]. It has a module for configuring the middleware
with the information of the heterogeneous data sources. As a
new query is submitted to the middleware, it is routed based on
the registered information at the middleware then the query is
locally wrapped into different forms. In addition, the result of
the query is combined into large XML dataset that is returned
to the client who initiates the query.

Kester et al. succeeded to develop a system that integrates
several drug stores, which are incorporated based on SOA
concepts with web services [20]. The database systems of the
drug stores have been incorporated via a service bus such that
drugs can be queried from all registered geographically
distributed data stores. The nearest geographical location of
drug result can be monitored and tracked.

Each of the previously mentioned systems has its own
desirable features, but all of them suffer from some limitations.
Thus, we propose a new data integration platform called
Resource Oriented Heterogeneous Data Integration Platform
(ROHDIP) to overcome these limitations.

III. METHODOLOGY
The pre-integrated system design is shown in Fig. 1. which

consists of: applications, network connections, and local
databases. Applications are allocated on different machines that
utilize different operating systems (Windows, UNIX,
Linux…etc.). Each application is written in any programming
language (e.g. C#, Java, JS, Ruby …etc.) A network is required
for direct connection between each application and its
corresponding local data source. This network can be LAN,
MAN or WAN. There are several types of local databases each
may have a specific data model with different database
management systems (such as Relational, Object, Tree,
Hierarchy, Flat file). Each application is able only to query its
corresponding DBMS(Database Management System) that is
installed on it.

105 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 1. Pre-Integration App(s)/Data source diagram

The previous architecture suffers from an obvious
shortcoming that each application is restricted to query its local
database only, to defeat this limitation the research attitude
turned to focus on virtual integration approach.

The most challenging issue in the virtual data integration
architecture is the network communication between the
mediated schema and the data sources; see Fig. 2. This issue
was solved by using Service-oriented architecture (SOA), as it
exchanges data across the platform in the standard way through
web services [21]. However, SOA data integration platforms
still have some disadvantages [22] [23]. For example, size
multiplication of the transmitted data leads to a negative impact
on the network traffic and the system performance, especially
when treating a large amount of data. Also, SOA platform
suffers from higher latency and processing delay. Moreover,
not all machines support the SOAP protocol (e.g. mobiles and
embedded systems) as a native protocol. To overcome these
limitations the Restful architecture is used.

Fig. 2. Virtual data integration architecture

REST is a lightweight, easy and better alternative for the
SOAP. Implementing the data exchanges across the platform
using the Restful architecture of web service is more efficient
in terms of both the network bandwidth utilization of the
service requests transmitting over the Internet, as well as the
latency incurred during these requests [22][24].

A. The Proposed Platform: ROHDIP
We propose a platform; namely, Resource Oriented Data

Integration Platform (ROHDIP) that depends on the resource-
oriented architecture (ROA) instead of the SOA architecture.
ROA uses Representational State Transfer (RESTful) service
based on HTTP protocol for communicating local data sources
with mediated schema. ROHDIP is designed as a collection of
collaborative RESTful resources allocated on distributed
machines with different operating systems and constructed
according to the ROA principles as shown in Fig. 3.

B. ROHDIP Architecture
The proposed platform architecture consists of three major

steps: mediated schema creation, Data Source subscription, and
mediated schema querying.

1) Mediated Schema Creation

TABLE I. MEDIATED SCHEMAS METADATA

Mediated
Schema ID

Mediated
Schema
Name

Schema
Definition
(JSON)

Subscribed Data
Sources (JSON)

mdsStudent
s

StudentsV
DB

{"StudentID":""
,"Name":"","M
obile":""}

[{"DataSourceId":"ds2",
"DataSourceName":"En
gineering"}]

mdsStaff StaffVDB
{"StaffD":"","N
ame":"","Mobil
e":""}

{"DataSourceId":"ds3",
"DataSourceName":"Co
mmerce"}]

………. ……….. {………….} …………..

mdSchN mdEmploy
ess

{"EmployeeID"
:"","Name":"","
Mobile":""}

[{"DataSourceId":"ds2",
"DataSourceName":"Me
dicine"},[{"DataSourc
eId":"ds2","DataSource
Name":"Engineering"}]

Every mediated schema “Virtual Database” has its
metadata see TABLE I. The metadata contain: ID, name,
corresponding schema definition in JSON (JavaScript Object
Notation) format and a list of the subscribed data sources of the
mediated schema in JSON format. Fig. 4. illustrates the
mediated schemas metadata in JSON format.

2) Subscribed Data Sources
When a new data source needs to join the ROHDIP, it must

be added to the subscribed data sources metadata; see TABLE
II. The metadata contain ID, URI, name, data model/DBMS,
connection information between the data source and its
wrapper service in JSON format, schema definition in JSON
format, wrapper schema transformation rules in JSON format
and the result data format. The subscribed data sources
metadata in JSON format are also illustrated in Fig. 4.

The wrapper schema transformation rules from the data
source schema to the mediated schema (e.g.
mdsStudents.StudentID = StdentNO, mdsStudents.
StudentName = StdName, StdTel = null) are required as they
enable the mediated schema to map the requested query to the
data source schema semantics. Furthermore, the data source
result format (e.g. JSON, XML, delimited text) is provided to
enable the mediated schema to read the result and convert it to
the requester desired format.

106 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 3. Proposed ROHDIP System Design

Fig. 4. Mediated schemas, Subscribed data sources metadata in JSON format

TABLE II. SUBSCRIBED DATA SOURCES METADATA

DataSo
urceID URI DataSource

Name
DataModel/
DBMS

Connection-
Information

DataDefini
tion Wrapper ResultDat

aFormat

DN1 http://78.110.9.246:9010 Medicine
Relational/S
QL Server

{"ConnectionType":"
OLEDB","Connection
Details":[{"Server":"1
92.168.200.2","DataSo
urce":"studentsDB","U
serName":"studentsAd
min","Password":"123
xx321"}]}

{"StdentN
O":"","Std
Name":"","
StdTel":""}

[{"MediatedSchemaID":"
mdsStudents","MappingR
ules":{"StdentNO":"mds
Students.StudentID","Std
Name":"mdsStudents.Na
me","StdTel":""}}]

JSON

DN2 http://78.110.9.246:9050 Commerce XML {………….} {……….} [{………….}] XML

DNm http://78.110.9.246:9090 Engineering JSON
 {………….} {……….} [{………….}] CSV

3) Mediated Schema “Virtual Database” Query
In order to query the mediated schema from any location

and from any querying device, using the HTTP verb “GET”,
we need to send HTTP request to the mediated schema URI i.e.
http://IntegrationPlatfrom.Innotech.com.eg, in which we have

to fill the requested mediated schema ID HTTP header i.e.
“mdsStudents” and feed the “query” HTTP header with the
desired query string i.e. “select * from mdsStudents”. Upon
receiving the HTTP request; the mediated schema RESTful

107 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

service will check if the mediated schema ID is valid by
examining the mediated schemas metadata.

If the mediated schema is valid, the mediated schema
RESTful service will iterate through all its corresponding
subscribed data sources by getting them from the mediated
schemas metadata. Then, it will read its data model/DBMS,
connection information, data definition, and wrapper details
“mapping rules”. After that, HTTP request will be sent to all
the subscribed data sources wrapper services URI(s) to retrieve
the HTTP request result and append it to the mediated schema
query result JSON data.

Finally, convert the JSON result consolidated from all the
data sources to the requester data format then return it back to
the requester in the body section of the requester query HTTP
response.

IV. RESULTS AND DISCUSSIONS
The proposed platform is evaluated using the KDD’99

dataset, which includes 41 features extracted from DARPA
(Defense Advanced Research Projects Agency) TCP dump in
1998 [25] [7]. The kdd'99 dataset consists of 494,021
connection records. We divide the KDD’99 dataset into six
groups of smaller n-record datasets where n equals 5, 50, 500,
1000, 5000 and 10,000 records. The generated datasets are
distributed over three servers each of which are of type
PowerEdge R220 Rack Server, processor Xeon CPU e3-1220
v3 3.1GHZ, and Ram 24 GB.

We compare the performance of our proposed platform
with SOA data integration framework, in terms of the end-to-
end response time each query takes to retrieve a different
number of rows. The response time is estimated for 5000,
25000, 50000, 75000, 100000 and 125000 rows. The proposed
platform outperforms SOA, considering all the mentioned
retrieved data sizes.

Fig. 5 through 10 illustrate the significant performance
progress of the proposed ROHDIP platform comparing to the
SOA framework regarding different sizes of retrieved query
result. ROHDIP achieves the required integration of data
retrieved from a query with minimum response time compared
to SOA among a different number of data sets. The results
clarify that the gap between ROA and SOA increases as the
query result size increases. The results demonstrate that ROA is
better than SOA in the data integration field.

Fig. 5. Response time of ROHDIP vs. SOA for 5000 rows as a query result

Fig. 6. Response time of ROHDIP vs. SOA for 25000 rows as a query result

Fig. 7. Response time of ROHDIP vs. SOA for 50000 rows as query a result

Fig. 8. Response time of ROHDIP vs. SOA for 75000 rows as a query result

Fig. 9. Response time of ROHDIP vs. SOA for 100000 rows as a query
result

108 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 10. Response time of ROHDIP vs. SOA for 125000 rows as a query
result

V. CONCLUSION AND FUTURE WORK
Data integration is considered as the most urgent data task

due to the daily increasing of data in heterogeneous data
sources. In this paper, Resource Oriented Heterogeneous Data
Integration Platform (ROHDIP) is proposed in order to
integrate data from multiple heterogeneous data sources
providing a unified query interface. The results evidence that
ROA outperforms SOA for any query result size on a variety of
distributed data sources achieving the minimum response time.

We believe that the vision and research contribution
described in this paper will serve large-scale data gathering and
integration studies in the near future.

As mentioned in the paper, the heterogeneous data sources
are distributed and allocated on different machines, so, our
future vision is to apply parallel processing or parallel querying
between the mediated schema RESTful service and the
wrappers RESTful services. Further investigations are needed
concerning the security issues.

ACKNOWLEDGMENT
This paper is supported by iNNOTECH development

corporate which provided us with the suitable devices for this
research.

REFERENCES
[1] Y. Liu and M. Xia, “Research of heterogeneous database integration

based on XML,” ICMET 2010 - 2010 Int. Conf. Mech. Electr. Technol.
Proc., pp. 793–796, 2010.

[2] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati,
“Information Integration: Conceptual modeling and reasoning support,”
3rd IFCIS Int. Conf. Coop. Inf. Syst., pp. 280–289, 1998.

[3] A. Y. Levy, “Logic-based techniques in data integration,” Logic-based
Artif. Intell., pp. 575–595, 2000.

[4] J. A. R. Castillo, A. Silvescu, D. Caragea, J. Pathak, and V. G. Honavar,
“Information extraction and integration from heterogeneous, distributed,
autonomous information sources - A federated ontology-driven query-
centric approach,” Proc. 2003 IEEE Int. Conf. Inf. Reuse Integr. IRI
2003, pp. 183–191, 2003.

[5] J. A. Reinoso-castillo, “Ontology-driven information extraction and
integration from heterogeneous distributed autonomous data sources : A
federated query centric approach,” Architecture, 2002.

[6] P. Ziegler and K. R. Dittrich, “Three Decades of Data Integration — All
Problems Solved? ” 18th IFIP World Comput. Congr. (WCC 2004), vol.
12, pp. 3–12, 2004.

[7] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD process for
extracting useful knowledge from volumes of data,” Commun. ACM,
vol. 39, no. 11, pp. 27–34, 1996.

[8] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H.
Neumann, and S. Hübner, “Ontology-based integration of information-a
survey of existing approaches,” IJCAI Work. Ontol. Inf. Shar., pp. 108–
117, 2001.

[9] S. Abiteboul, O. Benjelloun, and T. Milo, “Web services and data
integration,” Proc. Third Int. Conf. Web Inf. Syst. Eng. 2002. WISE
2002., pp. 3–6, 2002.

[10] G. Elsheikh, M. Y. Elnainay, S. Elshehaby, and M. S. Abougabal,
“SODIM: Service Oriented Data Integration based on MapReduce,”
Alexandria Eng. J., vol. 52, no. 3, pp. 313–318, 2013.

[11] F. Zhu, M. Turner, I. Kotsiopoulos, K. Bennett, M. Russell, D. Budgen,
P. Brereton, J. Keane, P. Layzell, M. Rigby, and J. Xu, “Dynamic Data
Integration Using Web Services,” Int. Conf. Web Serv., 2004.

[12] H. Garcia-Molina and others, “The {TSIMMIS} Approach to Mediation:
Data Models and Languages,” J. Intell. Inf. Syst., vol. 8, no. 2, pp. 117–
132, 1997.

[13] C. Batini, M. Lenzerini, and S. B. Navathe, “A comparative analysis of
methodologies for database schema integration,” ACM Comput. Surv.,
vol. 18, no. 4, pp. 323–364, 1986.

[14] A. Y. Levy, A. Rajaraman, and J. J. Ordille, “Querying Heterogeneous
Information Sources Using Source Descriptions,” Proc. 22th Int. Conf.
Very Large Data Bases, vol. 1, pp. 1–26, 1996.

[15] S. Sathya and M. Victor Jose, “Application of Hadoop MapReduce
technique to Virtual Database system design,” 2011 Int. Conf. Emerg.
Trends Electr. Comput. Technol. ICETECT 2011, pp. 892–896, 2011.

[16] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. M. S. de
Souza, and V. Trifa, “SOA-Based Integration of the Internet of Things in
Enterprise Services,” pp. 968–975, 2009.

[17] A. L. Sanz, M. N. García, and V. F. Batista, “XML based integration of
web, mobile and desktop components in a service oriented architecture,”
Adv. Soft Comput., vol. 50, p. 565, 2009.

[18] S. B. Li, Y. Hu, and Q. S. Xie, “Heterogeneous System Integration
Based on Service Component,” Appl. Mech. Mater., vol. 20–23, pp.
1305–1310, 2010.

[19] X. Wei, “Heterogeneous Database Integration Middleware Based on
Web Services,” Phys. Procedia, vol. 24, pp. 877–882, 2012.

[20] Q. Kester and A. I. Kayode, “Using SOA with Web Services for
effective data integration of Enterprise Pharmaceutical Information
Systems,” pp. 1–8.

[21] P. Version, “Mumbaikar, S., & Padiya, P. (2013). Web services based on
soap and rest principles. International Journal of Scientific and Research
Publications, 3(5). Chicago,” Int. J. Sci. Res. Publ. 3(5). Chicago, vol. 3,
no. 5, 2013.

[22] G. Mulligan and D. Gračanin, “A comparison of soap and rest
implementations of a service based interaction independence middleware
framework,” Proc. - Winter Simul. Conf., pp. 1423–1432, 2009.

[23] K. P. Pavan, A. Sanjay, and P. Zornitza, “Comparing Performance of
Web Service Interaction Styles : SOAP vs. REST,” 2012 Proc. Conf. Inf.
Syst. Appl. Res., pp. 1–24, 2012.

[24] H. Hamad, M. Saad, and R. Abed, “Performance evaluation of restful
web services for mobile devices ,” Int. Arab J. e-Technology, vol. 1, no.
3, pp. 72–78, 2010.

[25] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999
DARPA o � -line intrusion detection evaluation,” Comput. Networks,
vol. 34, no. 4, pp. 579–595, 2000.

109 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Methodology
	A. The Proposed Platform: ROHDIP
	B. ROHDIP Architecture
	1) Mediated Schema Creation
	2) Subscribed Data Sources
	3) Mediated Schema “Virtual Database” Query

	IV. Results and Discussions
	V. Conclusion and Future Work
	Acknowledgment
	References

