
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 9, 2016 

Optimization of Dynamic Virtual Machine 
Consolidation in Cloud Computing Data Centers

Alireza Najari1,* 

Department of Computer Engineering 
Ahvaz Branch, Islamic Azad University 

Ahvaz, Iran 
Department of Computer Engineering 

Khouzestan Science and Research Branch Islamic Azad University 
Ahvaz, Iran

Seyed EnayatOllah Alavi2 

Department of Computer Engineering 
Shahid Chamran University of Ahvaz 

Ahvaz, Iran 

Mohammad Reza Noorimehr3 

Department of Computer Engineering 
Ahvaz Branch, Islamic Azad University 

Ahvaz, Iran 
 

 
Abstract—The present study aims at recognizing the problem 

of dynamic virtual machine (VM) Consolidation using 
virtualization, live migration of VMs from underloaded and 
overloaded hosts and switching idle nodes to the sleep mode as a 
very effective approach for utilizing resources and accessing 
energy efficient cloud computing data centres. The challenge in 
the present study is to reduce energy consumption thus 
guarantee   Service Level Agreement (SLA) at its highest level. 
The proposed algorithm predicts CPU utilization in near future 
using Time-Series method as well as Simple Exponential 
Smoothing (SES) technique, and takes appropriate action based 
on the current and predicted CPU utilization and comparison of 
their values with the dynamic upper and lower thresholds. The 
four phases in this algorithm include identification of overloaded 
hosts, identification of underloaded hosts, selection of VMs for 
migration and identification of appropriate hosts as the 
migration destination. The study proposes solutions along with 
dynamic upper and lower thresholds in regard with the first two 
phases. By comparing current and predicted CPU utilizations 
with these thresholds, overloaded and underloaded hosts are 
accurately identified to let migration happen only from the hosts 
which are currently as well as in near future overloaded and 
underloaded. The authors have   used Maximum Correlation 
(MC) VM selection policy in the third phase, and attempted in 
phase four such that hosts with moderate loads, i.e. not 
overloaded hosts, liable to overloading and underloaded, are 
selected as the migration destination. The simulation results from 
the Clouds framework demonstrate an average reduction of 
83.25, 25.23 percent and 61.1 in the number of VM migrations, 
energy consumption and SLA violations (SLAV), respectively. 

Keywords—Cloud Computing; Dynamic Consolidation; Energy 
Consumption; Virtualization; Service Level Agreement 

I. INTRODUCTION 
According to the definition provided by NIST [1] "cloud 

computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable 
computing resources (e.g., networks, servers, storage, 

applications and services). It can be rapidly provisioned and 
released with minimal management effort or service provider 
interaction". Infrastructure as a Service (IaaS) is among the 
services provided by cloud computing that offers processing 
resources to users as services. The clients rent the equipment 
from infrastructure providers as a service and only pay for the 
amount of service they really consume [2, 3]. 

The ever-increasing growth and wide applications of cloud 
computing, as well as the extensive usage of cloud services in 
all scopes, have caused a growing trend in energy consumption 
of cloud computing data centres. Therefore, the operational 
costs in these centres are intensively increasing due to the 
electric energy used [4]. 

According to the reports published by Microsoft [5], the 
consumed energy used by physical resources can account for 
45 percent of the operational costs in a data centre. This 
amount has multiplied in the last five years [6]. Therefore, to 
maintain their business and to remain in the market 
competition, service providers need to minimize energy 
consumption to cut the excessive operational costs in a way 
that the integrity and quality of service remain intact [7]. 
Hence, two challenging tasks in IaaS are management and 
optimized allocation of resources, to the extent that the success 
of cloud services heavily relies on this issue. 

The present study recognizes the problem of dynamic 
virtual machine Consolidation using virtualization, live 
migration of VMs from underloaded and overloaded hosts and 
switching idle nodes to the sleep mode, as a very effective 
approach for utilizing resources and accessing energy efficient 
cloud computing data centres [8-11]. 

The challenges faced are the consolidation of VMs and 
their allocation and placement on physical service providers in 
a way that they minimized energy consumption in the entire 
data centre and the number of active hosts as well as SLA 
violation, which is a contract between the clients and the 
providers. Many studies [11-13] have reported that fully idle 
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hosts consume as much as 70 percent of the energy used in 
maximum utilization mode. Therefore, approaches should be 
taken to minimize the number of underloaded hosts; transfer 
hosted VMs to other hosts and switch idle hosts to the sleep 
mode to further decrease energy consumption. 

Live VM migration technique transfers a VM from one 
host to another without any interruptions with the minimum 
downtime [6, 14-16]. As authors have pointed out in [11, 15], 
every VM migration process can cause performance 
degradation, which can roughly be considered 10 percent of 
CPU utilization. This finding indicates that each VM migration 
can lead to SLA violation and unnecessary VM migrations 
may impose extra management costs and consequently extra 
energy consumption. Therefore, it is necessary to minimize the 
number of VM migrations and therefore minimize SLA 
violation and energy consumption as well. 

In most research studies conducted in this area [6, 8, 17-
21], the necessary decisions are made based on current 
utilization of hosts and VMs are immediately migrated from 
hosts which researchers currently identify them as overloaded 
[8, 15]. The proposed algorithm in the present work attempts to 
predict CPU utilization using Time-Series Method and SES 
technique and identifies a VM as overloaded or underloaded 
based on current and predicted utilization values and their 
comparison with dynamic upper and lower thresholds. The rest 
of the paper is structured as follows: it presents Related Work 
in Section 2 and explains the proposed algorithm in Section 3. 
Then it provides the results from simulating the proposed 
algorithm in Section 4, along with their analysis and 
evaluation. Ultimately, in Section 5, the paper discusses 
conclusions and suggestions for future works. 

II. RELATED WORK 
Beloglazov and Buyya [8] proposed Mean Absolute 

Deviation (MAD) and Interquartile Range (IQR) methods to 
determine the dynamic upper threshold. In their study, they 
considered a host as overloaded if the current utilization was 
greater than the upper threshold. They suggested LR and LRR 
methods to forecast future loads on the host. This approach 
recognizes a host as overloaded if its predicted utilization is 
100 percent or higher. 

To solve the consolidation problem, in addition to VMs 
energy consumption, authors in [21] also investigated energy 
consumption in intercommunication networks at data centres. 
The generated solutions using the genetic algorithm (GA) were 
significantly better than those of the first-fit decreasing 
algorithm. However, the computation time in GA was linearly 
proportional to the number of VMs and hosts. 

Gao et al. [18] used Multi-Objective Ant Colony 
Optimization (MOCO) algorithm for resource allocation with 
energy efficiency and resource wastage as the two objectives. 
They used a modification of ant colony algorithm (ACO) in 
which pheromone updates, definition and accumulation were 
modified to suit multi-objective problems better. Ultimately, 
the ACO-based method outperformed GA algorithm. 

By continuing the work in [21], authors presented a Hybrid 
GA (HGA) in [21] for solving the consolidation problem. They 

used an infeasible solution repairing procedure, in which by 
gradual resolving of constraint violations it converts an 
infeasible solution to a feasible one, along with a local 
optimization procedure which quickly improved the solutions. 
As compared with GA, HGA yielded more promising results 
and was able to find local optimums more efficiently in a new 
search space. However, the workload in HGA increased after 
implementing the two procedures. 

Singh and Shaw [15] employed a load forecast model to 
determine the necessity of migration and identify appropriate 
destination hosts. They utilized a dynamic upper threshold and 
incorporated Time-Series prediction method and Dynamic 
Exponential Smoothing (DES) and SES techniques. According 
to their algorithm, a host is considered overloaded if the values 
of current and predicted CPU utilizations exceed the upper 
threshold. 

In [6], authors presented a novel selection policy called 
MP, in which they used the dynamic upper and lower 
thresholds as well as a variable to determine the degree of 
resource satisfaction. They suggested a new placement policy 
called MCC, which relocates a migratable VM to a host with 
minimum correlation to the VM. 

Arianyan et al. [17] proposed a holistic resource 
management procedure and a heuristic intelligent technology 
method based on multi-criteria decision-making method to 
determine underloaded hosts for placement of migratable VMs. 
They presented a multi-criteria method known as Technique 
for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) by focusing their work on methods for determining 
the time to consider a host as underloaded and by finding a 
new location for placement of the VMs selected among 
underloaded and overloaded hosts. 

Joseph et al. [19] introduced a Parallel GA model known as 
Family GA (FGA) with the aim to generate an optimized 
mapping between the set of hosts and VMs. This model divides 
the entire population into a number of families on which it 
performs genetic operations to overcome the GA limitations. 
They used a self-adjusting mutation operator to prevent 
premature convergence of the individuals in the population, 
which makes the probability of mutation dynamic. 

In [22], the authors attempted to solve the consolidation 
problem by presenting a type of self-adjusting mutation 
operator as well as considering current and future resource 
demands and based on the k-Nearest Neighbor (K-NN) 
regression/prediction model. They proposed the K-NN model 
in their previous study [23]. 

III. THE PROPOSED ALGORITHM 
Since the problem of dynamic consolidation of VMs in 

cloud computing data centres is wide extent, it is broken down 
into the four following phases [4]: 

• Phase 1: Identification of overloaded hosts. 

• Phase 2: Identification of underloaded hosts. 

• Phase 3: Selection of VMs to migrate from overloaded 
hosts. 
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• Phase 4: Determining appropriate destinations for 
migration. 

This study presents algorithms and approaches for each of 
the phases: 

A. Phase 1: Identification of Overloaded Hosts 
In this phase, similar to [15], the researchers identified a 

host as overloaded if it is currently and in near future 
overloaded; however, unlike [15], they used the Time-Series 
Prediction method as well as SES techniques to predict CPU 
utilization in near future. The reader may refer to [24-26] for 
further information on this topic. Moreover, the study proposed 
a more optimized, efficient equation for determining dynamic 
upper threshold. It is noteworthy that the study used DES 
method for obtaining the best results in [15], therefore, it 
compared our proposed algorithm with these best results from 
[15]. 

 
In the first phase of the proposed algorithm, a host is 

received as input, and depending on the status of the current 
and predicted CPU utilizations, the researchers categorized it in 
one of the three lists. Similar to [15], they used the two flags 
flagF and flagP. True values of flagF and FlagP for a host 

indicate an overload in near future and at the present, 
respectively. 

The basis of the decision-making in this phase is on the 
upper threshold. this paper proposed Equation (1) for 
Calculation of dynamic upper threshold. This Equation is 
inspired by the method presented in [8] and by employing 
Median Absolute Deviation (MAD) method [8]. 

 UpperThreshold=1 — MAD (1) 

If the current utilization is greater than the upper threshold, 
the researchers consider the host as overloaded and they set 
flagP to True (Step 6, Phase 1). [15] and [8] used 10 and 12 
data values from the CPU utilization history, respectively, to 
predict a host overload. Our study considered 12 history values 
according to our investigations. If this value is lower than 12 
and the value of flagP is True, we place the host in the 
OverUtilizedHosts list, and the algorithm terminates; 
otherwise, it continues operation (Step 7, Phase 1). 

As it was noted earlier, CPU utilization in near future is 
predicted and calculated using SES method (Step 8, Phase 1). 
Predicted values higher than the upper threshold mean a host 
overload in near future will occur; therefore, the researchers set 
flagF to True (Step 9, Phase 1). 

Similar to [15], the study considered three different 
categories for overloaded hosts. The first category includes 
currently overloaded hosts (True values for flagP), but are 
predicted not to remain overloaded in near future (False values 
for flagF). The researchers added such hosts to the current 
Over Utilized Hosts list. Since these hosts will not be overload 
in future and to decrease unnecessary migrations, VMs will not 
migrate from this category of hosts (Step 10, Phase 1). 

The second category includes hosts which are not currently 
overloaded (False values for flagP), but the study predicts that 
they will overload in near future (True values for flagF). The 
researchers will add such hosts to the predicted Over Utilized 
Hosts list. Since these hosts are not currently overloaded, VMs 
will not migrate from them (Step 11, Phase 1). Third category 
includes hosts which are currently and in near future 
overloaded (True values for both flagP and flagF). The 
researchers added such hosts to the over Utilized Hosts list, and 
some of their hosted VMs are selected and migrated to 
decrease their load (Step 12, Phase 1). 

Among the categories mentioned above, the VMs hosted on 
the third category are certainly considered overloaded, and 
some of them will migrate from the host to normalize its load. 

B. Phase 2: Identification of Underloaded Hosts 
In this phase, the following algorithm is presented to 

identify the underloaded hosts. In the second phase of the 
proposed algorithm, the researchers received a list of hosts as 
the input and a list of underloaded hosts is returned. Decision 
making in this phase is performed based on the lower 
threshold. If current CPU utilization of the host is below the 
lower threshold, the host is considered currently underloaded, 
and similarly, if the predicted CPU utilization of the host in 
near future is below the lower threshold, the host is known as 
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underloaded in near future. Inspired by the dynamic upper  

 
threshold method in [8] and using the MAD method, the study 
proposed an optimized equation for determining the dynamic 
lower threshold. The study requires at least 10 data values from 
CPU utilization history for predicting an underloaded host. 

In this Paper, With 10 or more data values, the dynamic 
lower threshold is calculated according to (2); otherwise, the 
lower threshold assumes a constant value of 0.25 (Step 6, 
Phase 2). 

 LowerThreshold = 0.25 + MAD (2) 

CPU utilization in near future is predicted and calculated 
using SES method (Step 8, Phase 2). Before identification of 
an underloaded host, the researchers investigated two 
conditions. First, CPU utilization of the host should be larger 
than zero, and second, no VMs should be in the process of 
migrating from and to the host (Step 9, Phase 2). If they met 
conditions, then they will do the investigation to find that if the 
data length of the host utilization history is lower than 10 and if 
the current CPU utilization of the host is below the lower 
threshold. If the conditions hold true, given that the sufficient 
data for prediction of CPU utilization are not available, and the 
host is currently underloaded, it is added to the list of 
underloaded hosts and program control flow makes a jump to 
Step 2 of Phase 2 (Step 10, Phase 2). 

If the condition in Step 10 is not met, Step 11 will evaluate 
current and predicted CPU utilizations of the respective host. If 
both values are below the lower threshold, the host is 
considered currently and in near future as underloaded and 
hence should be added the list of underloaded hosts. The 
control program flow then jumps to the beginning of the loop 
to check the conditions for the next host. 

C. Phase 3: Selection of  VMs to migrate from overloaded 
hosts 
In this phase, unlike [15], in which the proposed minimum 

utilization (MU) policy of [8] was used, our proposed 
algorithm employs maximum correlation (MC) policy 
introduced in [8] due to its superior performance. The main 
idea behind MC policy was presented by [27]. The basis of this 
fact is that the more the correlation between the resource 
consumptions by the running applications on the host, the 
higher the possibility of overloading. According to this theory, 
the researchers will select the VMs on a host which have the 
maximum correlation with other VMs in consumption of 
processing resources for migration [8]. 

D. Phase 4: Identification of appropriate destinations for 
migration 
In this phase, to identify the appropriate destinations of 

migration, the work in [15] is optimized by excluding 
underloaded hosts from the list of migration destinations. In 
[15], the researchers exclude only the three categories 
mentioned above including overloaded and prone to overload 
hosts from the list of appropriate hosts as destinations of 
migration, and efforts were made to select underloaded hosts 
and hosts with moderate loads as the destination of migration. 
In our study, in addition to excluding the overloaded and/or 
prone to overload hosts, underloaded hosts were also excluded 
from the list of appropriate destinations for migration. 
According to the made decisions, the effort was to select the 
VMs among those with moderate loads. This way, selection of 
destination hosts was optimized, the number VM migrations 
dropped significantly and they prevented from the underloaded 
machines to remain switched on, which could be turned off to 
significantly decrease energy consumption in the data centre. 

IV. SIMULATION RESULTS AND ASSESSMENT OF THE 
PROPOSED ALGORITHM 

This section provides a simulation of the algorithm and its 
assessment. Then it compares proposed algorithm with MAD-
MU algorithm in [8] the proposed algorithm in [15] and the 
results were analyzed and examined. Clouds framework [28] 
was used to simulate the proposed algorithm. 

A. Experiment Settings 
In the present study, a data centre with 800 heterogeneous 

physical hosts was simulated using Clouds framework. Half of 
the hosts are HP ProLiant ML110 G4 (Intel Xeon 3040, two 
cores × 1860 MHz, 4 GB) and the other half are HP ProLiant 
ML110 G5 (Intel Xeon 3075, two cores × 2660 MHz, 4 GB). 
The data centre includes 4 types of single-core virtual 
machines: High-CPU Medium Instance: 2500 MIPS, 0.85 GB; 
Extra Large Instance: 2000 MIPS, 3.75 GB; Small Instance: 
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1000 MIPS, 1.7 GB and Micro Instance: 500 MIPS, 0.633 GB. 
The proposed algorithm aims to improve the proposed 
algorithms in [8, 15]. Therefore, to be able to carry out a 
performance comparison, settings similar to those of [8] and 
[15] were applied to our proposed algorithm. 

B. Workload Data 
Since most of the reviewed studies used the workload data 

from the CoMon project, which is a monitoring infrastructure 
associated with PlanetLab, we also used the same data in our 
study for assessing the proposed algorithm and for its 
omparison with its counterpart algorithms. For more realistic 
results, a CPU utilization dataset was used, the data of which 
were measured in 5-minute time intervals and were collected 
from more than thousands of operational VMs in over 500 
locations around the world. To carry out a reasonable and 
appropriate comparison, the researchers used a workload data 
collected from 10 days in March and April 2011. These data 
are available in the Clouds framework at the moment. 

C. Performance Metrics 
Six parameters were used to assess and compare the 

proposed algorithm with those of other studies. These metrics 
included the number of VM migrations from overloaded and 
underloaded hosts, the total energy consumption of physical 
resources, performance degradation due to VM Migration 
(PDM) [8], SLA Violation Time per Active Host (SLATAH) 
[8], which can be defined as the percentage of the period when 
the host experiences a CPU utilization of 100%, the researchers 
calculated the combined metric SLAV by multiplying PDM 
with SLATAH [8] and indicated the duration in which the 
allocated resources to the host is lower than the required 
amount, ESV combined metric which is calculated by 
multiplication of total energy consumption with SLA violation 
[8] and is used to measure the simultaneous improvements in 
both metrics and indicates the trade-off between them. 

D. Simulation Results 
Figs. 1 to 6 demonstrate simulation results of the compared 

algorithms in for different metrics, and a detailed discussion is 
presented for each metric as follows. From now on, the study 
will refer to the proposed MAD-MU algorithm in [8] and the 
proposed Shaw and Singh Algorithm in [15] as MM and SSA 
for brevity respectively. Since our proposed algorithm is a 
modification to optimize SSA, we will call it Optimized SSA, 
and refer to it as OSSA for brevity. 

Authors of [8] implemented MM which is currently in 
Clouds framework and it employs MAD technique to 
determine the upper threshold, and MU method to select the 
VMs for migration. SSA, which depends on MM to select VMs 
for migration as well as determining the upper threshold, used 
DES for its best CPU utilization prediction in future. Our 
proposed algorithm attempts to optimize SSA using the 
presented methods in Section III. 

A comparison between MM, SSA and OSSA is 
demonstrated in Fig. 1 regarding the number of VM 
migrations. OSSA achieved 86.83, and 79.65 percent decreases 
as compared with MM and SSA, respectively. Increased 
accuracy in calculation of the upper threshold and 
consequently increased accuracy in identification of 

overloaded hosts is among the reasons for the significant 
reduction in the number of migrations in OSSA algorithm as 
compared with the other two. Therefore, migrations only take 
place on the VMs which are more accurately identified as 
overloaded. Another reason for the reductions are the 
presentation of a new algorithm for identification of 
underloaded hosts. Through this, underloaded hosts are more 
accurately identified and the entire hosted VMs are more 
accurately migrated. As the third reason, by optimizing the 
procedure of finding appropriate destinations of migration, 
unnecessary VM migrations to inappropriate hosts are 
eliminated to a great extent. 

 
Fig. 1. Comparison of Number of VM Migrations metric against workload 

Fig. 2 demonstrates a comparison between MM, SSA and 
OSSA from the energy consumption perspective. OSSA 
achieved 32.25 and, 18.2 percent decreases as compared with 
MM and SSA, respectively. 

The main reason for these significant reductions is that 
OSSA uses a lower threshold for optimized selection of hosts 
with low utilization levels to prevent energy dissipation by 
switching them off. Another reason for this improvement is the 
use of an optimized upper threshold by OSSA which leads to 
more efficient and effective utilization of processing resources 
on the hosts by VMs. This improvement gives the opportunity 
to switch more hosts off to further decrease energy 
consumption. 

 
Fig. 2. Comparison of Energy Consumption metric against workload 

Fig. 3. Demonstrates a comparison between MM, SSA, and 
OSSA on PDM metric. OSSA achieved 71.37 and 61.83 
percent decreases as compared with MM and SSA, 
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respectively. The main reason for these significant reductions 
is the significant decrease in the number of migration in OSSA 
as compared with the other two algorithms. 

 
Fig. 3. Comparison of PDM metric against workload 

Fig. 4 shows a comparison between MM, SSA and OSSA 
from the SLATAH metric point of view. As can be seen from 
this figure, OSSA demonstrated a poor performance in most 
cases as compared with the other two algorithms. The main 
reason for the poor performance can be associated with the 
attempts made by OSSA to achieve maximum host utilizations. 
However, since SLAV metric is calculated by a multiplication 
of PDM with SLATAH metrics, poor SLATAH performances 
may be neglected against the good PDM performances. 

 
Fig. 4. Comparison of SLATAH metric against workload 

A comparison between MM, SSA and OSSA with respect 
to SLAV metric is given in Fig. 5. OSSA achieved 68.06 and 
54.13 percent decreases as compared with MM and SSA. This 
significant improvement, which is a result of the significant 
decrease in PDM metric, confirms that the poor performance of 
SLATAH metric in OSSA could in effect be neglected. 

Fig. 6 demonstrates a comparison between MM, SSA and 
OSSA with respect to the combined ESV metric. OSSA 
achieved 77.49 and 60.47 percent decreases as compared with 
MM and SSA. Considering that ESV is calculated from 
multiplication of the two metrics of energy consumption and 
SLAV, therefore, the reason for this significant decrease is 
improvements in both mentioned metrics. There is a good 
trade-off between the two metrics in OSSA. 

 
Fig. 5. Comparison of SLA Violation metric against workload 

V. CONCLUSION AND FUTURE WORKS 
This study investigated 4 phases of dynamic virtual 

machine consolidation problem, and for each, presented proper 
solutions. Also proposed an optimized equation for calculating 
the dynamic upper threshold and utilized maximum CPU 
capacity. SLA violation was decreased by eliminating 
unnecessary migrations, since migrations only took place on 
actually overloaded hosts. Use of maximum host processing 
power while maintaining SLA violation in an acceptable level 
led to increased number of VMs on the hosts, which 
consequently resulted in better conditions for switching off idle 
hosts and for decreasing energy consumption. 

The study presented an optimized algorithm for 
identification of underloaded hosts and proposed an equation 
for calculation of the dynamic lower threshold. Using this 
threshold, VMs were migrated from underloaded hosts more 
accurately, allowing them to be switched off. This way, the 
researchers eliminated unnecessary migrations and decreased 
SLA violation, and on the other hand, optimized switch offs 
resulted in decreased energy consumption in the entire data 
centre. 

 
Fig. 6. Comparison of ESV metric against workload 

To determine appropriate hosts as the migration 
destination, all hosts who were considered currently and in 
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near future overloaded, as well as underloaded hosts, were 
excluded from the list of migration destinations. The list helped 
to migrate VMs to destinations of higher quality, and by 
prevention of unnecessary migrations, SLA violation was 
decreased. By employing this policy, underloaded hosts were 
excluded from the list of appropriate destinations of migration, 
hence preventing VM migrations to this category of hosts. 
Therefore, opportunities to switch off hosts were protected, 
leading to further decreases in energy consumption. 

OSSA, as compared with MM and SSA, were able to 
respectively achieve 86.83 and 79.65 percent decreases in the 
metric of number of migrations. It also can achieve 32.25 and 
18.25 percent decreases in energy consumption metric, 71.37 
and 61.83 percent decreases in PDM metric, 68.06 and 54.13 
percent decreases in SLA violation metric, and 77.49 and 60.47 
percent decreases in ESV metric. It also achieved a good trade-
off between energy consumption and SLA violation. 

It is suggested for future works to further investigate the 
poor performance of the proposed algorithm in SLATAH 
metric, since achieving improved SLA metrics leads to 
increases in the quality of the proposed algorithm. The 
performance of the proposed algorithm in real infrastructures 
are yet to known. Therefore, for a real world performance 
evaluation, use of software packages such as OpenStack are 
suggested. 
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