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Abstract—Computers and artificial intelligence have 
penetrated in the food industry since last decade, for intellectual 
automatic processing and packaging in general, and in assisting 
for quality inspection of the food itself in particular. The food 
quality assessment task becomes more challenging when it is 
about harmless internal examination of the ingredient, and even 
more when its size is also minute. In this article, a method for 
automatic detection, extraction and classification of raw food item 
is presented using x-ray image data of pine nuts. Image processing 
techniques are employed in developing an efficient method for 
automatic detection and then extraction of individual ingredient, 
from the source x-ray image which comprises bunch of nuts in a 
single frame. For data representation, statistical texture analysis is 
carried out and attributes are calculated from each of the sample 
image on the global level as features. In addition co-occurrence 
matrices are computed from images with four different offsets, 
and hence more features are extracted by using them. To find 
fewer meaningful characteristics, all the calculated features are 
organized in several combinations and then tested. Seventy 
percent of image data is used for training and 15% each for cross-
validation and test purposes. Binary classification is performed 
using two state-of-the-art non-linear classifiers: Artificial Neural 
Network (ANN) and Support Vector Machines (SVM). 
Performance is evaluated in terms of classification accuracy, 
specificity and sensitivity. ANN classifier showed 87.6% accuracy 
with correct recognition rate of healthy nuts and unhealthy nuts 
as 94% and 62% respectively. SVM classifier produced the 
similar accuracy achieving 86.3% specificity and 89.2% sensitivity 
rate. The results obtained are unique itself in terms of ingredient 
and promising relatively. It is also found that feature set size can 
be reduced up to 57% by compromising 3.5% accuracy, in 
combination with any of the tested classifiers. 

Keywords—pine nuts; Image processing; neural networks; 
feature extraction; classification 

I. INTRODUCTION AND BACKGROUND 
In recent times, automatic inspection of product good as 

well as raw ingredients has gained more attention in food 
industry. Efforts have been made for non-destructive 
investigation of key ingredients in agriculture and food 
business. In this context, x-ray imaging has been a preferred 
technique which lets one examine the ingredient internally 
without causing any damage to the ingredient itself. It reveals 
the internal details which allow the presence of worm damage 
and other defects to be determined in a safe way [1-3]. In nuts 
selection, the key objective is to reduce the amount of nuts with 
navel orange worm damage passed to the consumer. For 
inspection of the ingredient, image processing is a potential 

tool for unveiling the hidden damage present inside the 
ingredient, and to highlight the concealed facts. Work has been 
carried out in processing the images of food ingredients for 
identifying the damage present in it [1-4]. However, the efforts 
made to demonstrate the extraction of individual nutmeats - 
Regions of Interest (ROI) - are limited, in particular, where an 
ample image is captured of a large number of ingredients by 
the x-ray source. In a real time scenario, it is unlikely to 
activate x-ray source for each individual ingredient, instead, a 
batch of ingredients can be captured. We demonstrate 
development of an image processing method which is capable 
of identifying and extracting image samples of each individual 
ingredient that passes under the x-ray source, while discarding 
any external object simultaneously. 

Afterward, converting image samples into significant 
features which hold discriminative properties of the target class 
is also a vital task. Extensive work has been carried out for 
classification of agriculture products as well as food 
ingredients by the use of several kinds of features extracted 
from their images. Keagy et al. [4] made use of statistical and 
histogram features for damage detection in pistachio nuts. 
Guyer et al. [5] used spectral imaging for defect detection in 
cherries. Park et al. [6] proposed content-based image 
classification using texture properties and diagonal moment. In 
extracting significant features for quality inspection of 
ingredients related to food and agriculture industry, more 
attention has paid towards texture analysis of images. 
Considering nuts as food ingredient for quality assessment and 
sorting, pistachio has been widely used in previous studies [7-
11]. Hazelnuts and almonds are also studied; however, pine 
nuts are rarely reported. One of the reasons is its high cost 
around the globe which leads to its limited consumption in the 
food industry. In addition, its size is small which limits it to be 
graded efficiently and autonomously. We used pine nuts as raw 
food ingredient to develop a machine vision system for its 
automated quality inspection using x-ray imaging. 

In a classification task, the success rate highly depends 
upon the suitable selection classifier as well. A classifier 
identifies objects as one of the target classes by using the 
features extracted from them. Many classification techniques 
have been used for quality assessment of goods in food and 
agriculture industry. Among them, Artificial Neural Network 
(ANN) has shown potential for resolving problems in 
estimating a mathematical relationship where some inputs and 
their corresponding target outputs are known [12-14]. 
Extensive work has been carried out employing this technique 
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by using several kinds of features including statistical, spectral, 
texture and color features [15-23]. Support Vector Machine 
(SVM) is another state of the art technique, used in binary 
classification problems [24-25]. It has the capability to separate 
the linear as well as non-linear data by estimating a hyper plane 
between classes. SVM classifier has been employed in several 
different applications [26-30]. 

In this work, the aim of the study is to propose a machine 
vision system which is initially capable of the extracting image 
of each unit ingredient (from source image which encompasses 
the large number of ingredient), and then classify it as healthy 
or unhealthy (damaged/diseased). We used raw pine nuts for 
Quality inspection. The technical goals of the study include 
developing a method for real-time extraction of unit ingredient 
(individual nut image) by processing the captured image by an 
x-ray scanner which is possibly mounted above the feeding belt 
containing non-overlapped nuts in a serial manner. Then 
estimation of fewer meaningful features to be extracted from 
each image sample which show a significant contribution to 
classification, and propose an appropriate classifier model to 
efficiently grade the sample ingredient as one of the target 
class. Figure 1 shows the in-line inspection scenario for quality 
classification of raw pine nuts. 

The rest of the paper is scheduled as: Section 2 describes 
the image acquisition and the method for individual ingredient 
extraction. Section 3 includes the features choice and their 
combinations for classification. Classifiers' detail is presented 
in section 4. The parameters of performance evaluation and the 
results are discussed in sections 5 and 6 respectively. 

II. MATERIAL AND METHODS 

A. X-ray Imaging 
Raw pine nuts (Unprocessed) are obtained as samples. For 

the x-ray imaging, we considered an x-ray image reader 
machine: FCR (Fuji Computed Radiography) PRIMA (Model: 
CR-IR 391RU) of FUJIFILM Corporation [31]. It is the 
Computed Radiography Machine primarily used for medical 
imaging. With the intension of developing an extraction 

method (extraction of invidual nutmeats from the captured x-
ray image) only, and due to the limited resources; this imaging 
solution is adopted on an experimental basis. The reading 
capability of the device is 10 pixels /mm and processing 
capacity is up to 29 IPs (Imaging Plates) per hour. The imaging 
plate of type ST-VI is used with dimension 35×35 cm. A 24 
bit, 1760×1760 output image in JPEG (Joint Photographic 
Experts Group) format is generated using the FCR PRIMA 
Console workstation. A sample output image with pine raw 
nuts laid on the image plate is shown in Fig. 2. Later, each 
sample was carefully marked, manually internally examined 
and then labeled as healthy or unhealthy. 

B. Pre-processing 
The x-ray output image is a wider image containing a large 

number of raw pine nuts. In the Fig. 1, It is apparent that the 
background intensity is not constant rather there are vertical 
background stripes in the image with higher light intensity. The 
problem occurs due to crude environmental illumination 
conditions. We obtained such an image due to limited 
resources, however, it is assumed that for a practical scenario, 
non-overlapped nuts are laid on the feeding belt, and an X-ray 
source is mounted on top which captures the image of a batch 
of nuts (see Fig. 1). For pre-processing and independent 
nutmeat region extraction from the captured image, few useful 
image processing techniques are employed discussed in the 
following. 

The obtained digital x-ray image (Fig. 1) is a 24 bit RGB 
image. It is converted to grayscale image by eradicating the 
hue and saturation information, while holding the luminance 
[32]. Considering the real-time setup with proper source as 
indicated in Fig. 1, we show the sample image with few 
ingredients as shown in Fig. 3a. Figure 3b represents the 
inverted intensity version. Next, to separate regions of interest 
from background, the grayscale image is converted to binary 
image with white color (pixel intensity~255) as the region and 
black (pixel intensity~0) as background pixel based on global 
thresholding, where the threshold was selected by trial and 
error for the current database (see Fig. 3c).

 
Fig. 1. Proposed schematic setup for selection of nuts with the aid of in-line quality assessment system 
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Fig. 2. Sample digital x-ray output image of an image plate containing pine 
nuts 

For all the detected regions in Fig. 3c, the centroids, and the 
bounding boxes are calculated [32]. Bounding box contains the 
global coordinates of the top left corner of the region and the 
rectangular size of the region. These rectangular dimensions 
are estimated by using the binary image (fig. 3c) with the help 
of edge detection along the horizontal as well as the vertical 
axes. Centroids (global coordinates of central pixel of the 
region) are estimated for each region by calculating the mean 
of global coordinates of pixels belonging to the region along 
the horizontal and the vertical axes. Figure 3d shows all the 
detected regions with their corresponding centroids marked on 

them. There are many tiny regions detected which are not our 
ROIs. To skip them, a median filter mask of size 5×5 is 
applied. These false regions act as salt and pepper noise, and so 
many of them were disappeared after applying the median 
filter. As an additional benefit of this filter, the boundaries of 
true regions became sharper as shown in Fig. 3e. 

C. True Nutmeat Region Estimation and Extraction 
Finally, to detect the correct nutmeat regions only, we 

approximated the size of a single average pine nut image. So 
an area-based threshold is used; A=An±15%, where An is the 
estimated normal nut image area. A region was marked as the 
true region if it satisfies the threshold criteria or otherwise 
discarded. The resultant regions with their corresponding 
centroids can be seen in Fig. 3f. 

Figure 3g shows the true nutmeat regions with both 
corresponding centroids and the bounding boxes. Since the 
bounding boxes represent the global rectangular measurement 
of the region, each ingredient is extracted (cropped) from the 
original image (Fig. 3a) with the help of its corresponding 
bounding box information. Finally, each individually extracted 
pine nut sample is shown in Fig. 3 (at the bottom). It is worth 
mentioning here that each ingredient image is the part of 
original source x-ray image, and not of the processed image. 
The processing was done for detection of only real ingredient, 
and the efficient estimation of their size for successful 
cropping. 

As mentioned earlier, the individual ingredients were 
manually inspected and labeled as binary label; 0 for healthy, 
and 1 for unhealthy. Figure 4 shows few image samples 
representing each of target categories. 

 
Fig. 3. Image processing steps: from captured collective image to individual nut sample image (a) A sample sub-image (b) negative transformed image (c) binary 
image after the region of interest based thresholding (d) region detection with marked centroids (e) Regions detection after applying a 5×5 median filter mask (f) 
Regions detection after applying area threshold (g) True nutmeat region extraction (by cropping) from source image by using respective bounding boxes
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Fig. 4. X-ray image samples of Healthy and Unhealthy pine nuts 

III. FEATURE SELECTION 
Depending on the nature of task, attention has been paid in 

mining the meaningful and significant information from the 
images. The aim is to estimate and compute the properties 
which hold the discriminating characteristics of the image 
sample representing the target category. 

Regarding quality inspection using images, texture analysis 
have been extensively exercised as discussed in the 
introduction section. For this quality assessment task, we chose 
the features providing the multilevel statistical and texture 
statistical properties of the sample images. 

A. Global statistical features 
We calculated a set of statistical features on the global level 

from each of the sample image. For an image I with highest 
pixel intensity N, these features are calculated by using the 
mathematical expressions summarized in Tab. 1. Minimum, 
maximum, and median are the first order features and represent 
the corresponding pixel intensities in the image. Mean 
represents the average pixel intensity and the standard 
deviation is the measure of average contrast. Variance is 
calculated as the square of standard deviation. These features 
are mathematically represented in Tab. 1. 

B. Texture statistical features on global level 
Next, four characteristics are calculated on global level 

which represents the texture statistical analysis of image 
presented in Tab. 2. Smoothness represents the measure of 
relative softness of the intensity in a region, ranging between 0 
and 1. A constant intensity image corresponds to zero 
smoothness. Third moment determines the skewness of 
histogram of the image. Uniformity is the measure opposite to 
smoothness; hence a constant intensity image corresponds to 
maximum uniformity. Entropy is the statistical measure of 
randomness. Mathematical expressions for calculation of these 
features are represented in Tab. 1. 

C. Texture statistical features from co-occurrence matrices 
In addition to global level characteristics, we extracted 

features from Gray-Level Co-occurrence Matrices (GLCMs). 
A Co-occurrence matrix is largely used to measure the texture 
of an image [33]. The size of this matrix depends on the 
number of gray levels present in the image. The elements in the 
GLCM depend on the position operator, which is described by 
a vector containing direction and distance parameters (also 
called offset). We calculated four GLCMs from each of sample 
images using four position operators shown in Fig. 5. 

 
Fig. 5. Position operator to calculate Gray Level Co-occurrence Matrix 
(GLCM) with angles and offsets 

A GLCM for an image I of size m×n is calculated as 
follows 
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where Δx and Δy represent the horizontal and vertical 
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From each ingredient image sample, four GLCMs are 
calculated. Next using each GLCM, following four features: 
contrast, correlation, energy, and homogeneity, are calculated 
respectively as; 
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Where i and j represent pixel intensities and cij is their 
count of co-occurrences according to the specified position 
operator. 

D. Features Organization 
Concretely, from each image sample, we calculated global 

statistical features, and statistical texture features on global 
level as well as from co-occurrence matrices. To assess the 
significance of different features in classifying the unseen data, 
we organized these features into six different combinations. 
These combinations of features are shown in Tab. 2. 

Figure 6 shows the flow chart of the entire system 
including image processing, feature extraction, and 
classification phases. 

IV. CLASSIFIER CHOICE 
As discussed earlier in the introduction section, the 

selection of appropriate classifier for a particular task is a vital 
part. ANN has become a state of the art choice as nonlinear 
classifier in recent times due to available improved computing 
and parallel processing capabilities. We opted two state-of-the-
art non-linear classifiers: ANN and SVM for this classification 
task. The specifications and application details for each of the 
classifiers are described in the following subsections. 

A. Artificial Neural Network 
Artificial neural networks are the computing systems, 

composed of large number of highly inter-connected units 
(called neurons) that emulate the structure and operation of 
biological nervous system. There are many types and 
architectures of neural networks, fundamentally depending on 
their learning mechanisms. Multilayer Perceptrons (MLPs), 
also called Multilayer Feed Forward Neural network (MFNN) 
has an architecture comprised of an input layer, one or more 
hidden layers and an output layer. Typically, a MFNN with one 
hidden layer is sufficient to map any kind of linear or non-
linear approximation. An example of three-layer neural 
network architecture is shown in Fig. 7. An MLP operates in 
two phases: learning and recall. For the learning of MLP,

TABLE II. STATISTICAL AND TEXTURE STATISTICAL FEATURE EXTRACTED FROM X-RAY IMAGE SAMPLES ON GLOBAL LEVEL 

 Properties Feature Set 1 Feature 
Set 2 Feature Set 3 Feature Set 4 Feature Set 5 Feature Set 6 

Global 
Statistical 
Features 

Minimum   ×  ×  
Maximum   ×  ×  
Median   ×  ×  
Variance   ×  ×  
Mean ×  × × ×  
Standard Deviation ×  × × ×  

Global 
Texture 
Statistical 
Features 

Smoothness ×   × × × 
Third Moment ×   × × × 
Uniformity ×   × × × 
Entropy ×   × × × 

Textures 
Statistical 
Features 
from 
GLCMs 

Features from GLCM 
(calculated at 0°)  × × × × × 

Features from GLCM 
(calculated at 45°)  × × × × × 

Features from GLCM 
(calculated at 90°)  × × × ×  

Features from GLCM 
(calculated at 135°)  × × × ×  

 Total Features 06 16 22 22 26 12 

 Feature Set Characteristics 
Global texture 
statistical 
features 

GLCM 
texture 
features 

Global statistical 
and GLCM 
texture features 

All Texture 
statistical 
features 

Global and 
GLCM Statistical 
& texture features 

Fewer Texture 
statistical 
features 
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Fig. 6. Flow chart of proposed quality inspection system 

special training algorithms have developed based on the 
learning rules similar to learning mechanisms of biological 
systems. By using the training data having inputs and 
corresponding targets, the weights of the classifier associated 
with the inputs are updated iteratively by the learning 
algorithm to approximate the target behavior. Back 
Propagation (BP) algorithm is typically used to update the 
weights, by minimizing the error function [12]. There are many 
types of BP algorithm available, and it is desired to select one 
which best fit the data. We employed the Levenberg-Marquardt 
(LM) algorithm for the learning [34]. It was designed to come 
up to second order training speed without computing the 

Hessian matrix. The Hessian matrix can be calculated as 
H=JTJ, and the gradient can be computed as G=JTe. Where J is 
the Jacobian matrix, which contains the first derivatives of 
network error, and e is the network errors vector. 

The iterative update in the weights incorporated by the LM 
algorithm is calculated as 

1 I

T

j j T

J ew w
J J α+ = −

+    (6) 
Where w represents the network weights, α is the learning 

parameter and I  is the identity matrix. A large value of α 
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corresponds to smaller step size in gradient descent 
approximation and vice versa. It was fixed as 0.9. 

For the network training, the above procedure is followed. 
We selected an MLP with one hidden layer. To estimate the 
optimized number of hidden layer neurons, we used the cross-
validation data. For each of organized feature set as described 
in Tab. 2, the size of hidden layer is varied, and network 
performance is repeatedly observed against cross-validation 
error. The network configuration with the best cross-validation 
outcome is selected for classification of test data. Table 3 
represents the estimated MLP architectures for different feature 
sets. The number of epochs for training was limited to 100. It 
was approximated after performing several training sessions. 

B. Support Vector Machines 
Support Vector Machines (SVM) is a widely used 

technique which involves supervised learning for binary 
classification. In this technique, a learning algorithm estimates 
a plane which separates the data between different classes. 
SVM have been employed both for linear and non-linear 
classification problems. It is worth repeating basic concepts of 
SVM classifier here. For the training data (x1, y1), (x2, y2), 
……,(xn, yn) with xi as feature vector of ith sample and yi as the 
corresponding target class, a linear SVM hyper plane fulfills 
the following conditions; 

1 1
1 1

i i

i i

x w b for y
x w b for y

⋅ + ≥ = +
⋅ + ≤− = −

  (7) 

Where w represents the weight vector associated with xi 
and b represents the bias value. 

In the case of two classes which are linearly non-separable, 
a suitable function (kernel) is used to transform the input 
feature space X into another feature space L (L = ƒ{X}), where 
it is possible to separate the classes linearly. Figure 8a shows 
linearly separable data with the hyper planes separating the 
classes with different margins. Non-separable data can be 
mapped by a mapping function to higher feature space, and can 
be separated by a linear hyper plane as shown in Fig. 8b [35]. 

For the purpose of visualization, we applied Principal 
Component Analysis (PCA) [36]. PCA is primarily used for 
data representation in a lower dimension. The first principal 
component holds maximum variance among features. The 
second principal component holds the second highest variance 
and so on. We used first two principal components to produce 
the features representing data samples (holds ~70 % of the 
variance of original data). It was observed that the data is not 
separable in original feature space (the data plots can be seen in 
figures referred in results section). To classify the data with 
SVM, we transformed the input feature space to another 
feature space using Gaussian kernel function given as: 

2

2( , ) exp
2

i
i

x xK x x
σ

 −
= − 

 

 

       (8) 
Where σ is the scaling factor in kernel function 

 
Fig. 7. A typical three layered artificial neural network architecture 

Training data is used to train the SVM classifier. After 
training, the classifier is optimized by using the cross 
validation data. Two variables were selected to optimize the 
classifier's performance on cross-validation data: scaling factor 
of the kernel function "σ", and "C" to control the soft margin 
between classes and the hyper plane. We geometrically varied 
the values for these parameters such that each value for σ is 
tested in combination with each value of C. Following is the 
batch represents the options to select the value of these 
parameters; 

Batch = {.01 .02 .05 .08 .1 .2 .4 .6 .8 1 1.2 1.5 1.8 2 5 10 15 20 
30 40 50 70 80 100}          (9) 

The classifier is optimized by using the cross-validation 
data, in the following three ways independently: 

TABLE III. OPTIMIZED ARTIFICIAL NEURAL NETWORK ARCHITECTURES 
ESTIMATED FOR DIFFERENT SET OF FEATURES 

 Artificial Neural Network Architectures 

Feature set Input layer – Hidden layer – Output layer 

1 6–9–1 

2 16–12-1 

3 22-15-1 

4 22-15-1 

5 26-20-1 

6 12-14-1 
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Fig. 8. (a) Left: Example of a linear discriminant analysis using SVM 
algorithm. Three hyperplanes are shown: π1 does not separate the two classes, 
π2 separates the two classes with a small margin and π3 corresponds to the best 
separating hyperplane. Right: Illustration of canonical hyperplanes (black 
dashed lines), the support vectors in magenta color and the distance between 
support vectors and best separating hyperplane ξ. (b) Left: Samples which are 
not linearly separable. Right: Non-linear data mapped to another feature space 
using the function Ф where linear separation is achievable 

• Achieving overall best classification accuracy 
regardless of individual class accuracy 

• Achieving the maximum sensitivity regardless of 
specificity or classification accuracy 

• Achieving best trade-off between specificity and 
sensitivity while prioritizing the sensitivity 

Later with each of the optimized classifier's model, test data 
is classified and results are recorded. The parameters accuracy, 
sensitivity and specificity are defined in the following section. 

V. PERFORMANCE EVALUATION 
Since this is a binary classification task: the data is labeled 

as one of two categories: image sample of healthy nut (referred 
as Negative example) and image sample of unhealthy nut 
(referred as Positive examples). 77 percent of the database is 
composed of negative examples (631 samples), while the rest 
23% (187 samples) of images belong to positive examples. To 
be used with the classifier, the data of each class is divided as: 
70% for training purpose, 15% for cross validation and 15% 
for test purpose. Training data is used to train the classifier, 
cross validation data is dedicated to optimize the classifier, and 
results are calculated on test (unseen) data. To ensure the 
generalized performance of classifiers, they were trained using 
randomly selected data. For each set of input features, we 
rotated the data five times in all three divisions: training, 
validation and test data. Finally an average of five outcomes of 
test data is calculated and presented as classification results. 

The performance is evaluated regarding parameters defined 
as; 

Accuracy: the proportion of true results (both true positives 
and true negatives) in the total samples. 

Specificity: (or true negative ratio) probability of ingredient 
recognized as healthy, given that the ingredient was healthy 

Sensitivity: (or true positive ratio) probability of ingredient 
recognized as unhealthy, given that the ingredient was 
unhealthy 

These are calculated as: 

100%TP TNAccuracy
TP TN FP FN

+
= ×

+ + +   (10) 

100%TPSpecificity
TP FN

= ×
+    (11) 

100%TNSensitivity
TN FP

= ×
+   (12) 

Where 

TP is equal to total number of true positives: the sample is 
an Unhealthy nut AND the classifier correctly classifies it as 
Unhealthy 

FN is the total number of false negatives: the sample is an 
Unhealthy nut BUT the classifier incorrectly classifies it as 
Healthy nut 

TN is the total number of true negatives: the sample is a 
Healthy nut AND the classifier correctly classifies it as Healthy 
nut 

FP is the total number of false positives: the sample is a 
Healthy nut BUT the classifier correctly classifies it as 
Unhealthy nut 

VI. RESULTS AND DISCUSSION 
The two classifiers after being optimized by using the cross 

validation data were used to classify the test data. Their 
performance is evaluated and discussed in the following 
section. 

A. Artificial Neural Network 
Initially, ANN classifier is used for performance evaluation 

by using each of the organized set of features. At first, global 
texture statistical features (set 1) are fed to ANN, and results 
are produced. On average, the network demonstrated 81.8% 
classification accuracy, with 94.26% correct recognition of 
healthy nuts. However, the sensitivity rate was less than 50%, 
which is insufficient. Next, feature set 2 is fed at input layer of 
its corresponding estimated ANN architecture. The network 
showed a slight improvement in accuracy, less than 1%. On the 
contrary, recognition of unhealthy nuts is improved by 13.4%, 
and so the accuracy was compromised by comparatively lower 
specificity rate of 89.9%. Texture features from GLCMs (set 2) 
showed improved performance in recognizing unhealthy nuts, 
which is desired, but at the same time the size of this feature set 
- 2.6 times larger than set 1 - is noticeable. Next, the 
combination of global statistical features and texture features 
from GLCMs (set 3) is used in order to seek improved network 
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performance. The network with these features showed 
enhanced performance than previous outcomes. It showed 
59.8% and 92% specificity and sensitivity rate respectively. 
Hence this combination of features has increased the 
classification accuracy - 83.7% - but still unsuccessful in 
achieving a significantly good recognition rate for bad nuts. 
Feature set 4, which primarily projects the texture statistical 
characteristics of images and sounds a comprehensively 
superior choice of features, is then used with ANN. As a result, 
overall 84.5% accuracy is achieved and 93.28% healthy nuts 
were correctly identified. Unexpectedly, the sensitivity rate is 
even lower than the last outcome (since texture statistical 
features (set 1) seem having more significant information than 
simple statistical properties (set 3)). Next, we selected feature 
set 5 (contains all kinds of features extracted from test data) 
and fed to its corresponding estimated (trained and optimized) 
ANN architecture. The classification accuracy produced by the 
network using all the features was 87.6%, with 94.46% correct 
recognition of healthy nuts. 62% of unhealthy nuts were 
correctly recognized which was the highest percentage of its 
kind so far. Hence using feature set 5, the network 
outperformed all previous outcomes on each evaluation 
parameter. 

The key task in such a binary classification problems is to 
achieve the good recognition rate for unhealthy nuts while a 
minor rejection rate of healthy nuts is acceptable. It can be 
noticed by and large that taking into account the enlarging in 
feature set on size and information, the progress in 
classification accuracy is relatively not promising. Keeping this 
in mind, we tried to estimate a smaller feature set which yet is 
capable of providing the comparable results as obtained earlier 
with improved computational efficiency. It can be fairly 
expected that a small number of significant features may reflect 
comparable classification results. For this purpose, we selected 
eight texture statistical features from GLCMs calculated at an 
angle of 0° and 45°, and, also, four on the global level. These 
are combined and formed as the feature set 6, which is then fed 
to the network of its corresponding estimated architecture (see 
Tab. 3), and results are calculated. The network demonstrated 
the classification accuracy of 83.9%, as 3.74% less than 
reported using feature set 5. 90.7 percent specificity rate is 

achieved which is 3.72% Less than that of obtained by set 5. 
On the contrary, the true positive rate (sensitivity) is closer, 
with a difference of 1.32%. 

In general, ANN classifier showed good recognition rate 
for healthy nuts, but the overall accuracy is poor due to meager 
performance of the network toward identifying the unhealthy 
nuts. It is observed that the classifier showed comparable 
results by feature sets 5 and 6. Hence a trade is perceivable 
between accuracy and the computational pace. Consequently 
by using feature set 6 (having less than 50% of information as 
compared to set 5), the computational efficiency can doubled 
in terms of feature extraction, and as a whole resulting in more 
computationally efficient network with small architecture. In 
this case, less than 2% sensitivity, 3.7% of specificity rate and 
overall 3.7% accuracy is compromised. Region Operative 
Characteristic (ROC) curves plotted for test data and total data 
with different choice of feature sets are shown in Fig. 9. 

B. Support Vector Machine 
Next we present the performance evaluation of SVM 

classifier by using different features (as given in Tab. 2) on the 
test data. As mentioned in section 4.2, the classifier was 
optimized on cross-validation data in three ways: for best 
classification accuracy, for best sensitivity, and for best trade-
off between Specificity and sensitivity. Note that the SVM 
classifier was trained using training data, optimized on 
validation data with the appropriate choice of σ (the scaling 
factor in Gaussian radial basis function kernel) and C (estimate 
of the soft margin between the classes), and later tested by 
using the test data. During optimization process using cross-
validation data, it was first optimized for overall accuracy so as 
to estimate the General performance of the classifier. Secondly, 
it was optimized to achieve highest sensitivity rate (considering 
the fact that recognition rate for the unhealthy nut is most 
important). Finally, it was optimized to achieve maximum 
sensitivity rate while maintaining a possibly fair specificity 
rate. These three-way optimizations were achieved by varying 
the parameters σ and C. The vector having choices of each of 
these parameters is given in (9). Individually, we employed the 
feature combinations (sets) given in Tab. 2, and calculated the 
results by using the test data as well as total data. 

 
Fig. 9. Receiver Operative Characteristic (ROC) curves produced by artificial neural network classifier for test data as well as total data using different feature sets 
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TABLE IV. CLASSIFICATION RESULTS OF TEST DATA PRODUCED BY DIFFERENT MODELS OF SUPPORT VECTOR MACHINE CLASSIFIER, ESTIMATED AND 
OPTIMIZED USING CROSS-VALIDATION DATA FOR ACHIEVING (A) BEST ACCURACY (B) HIGHEST SENSITIVITY RATE (C) BEST TRADE-OFF BETWEEN SPECIFICITY 

AND SENSITIVITY 

 Support Vector Machines 
A B C 

Feature 
Set 

Acc. 
(%) 

Spec. 
(%) 

Sens. 
(%) 

Acc. 
(%) 

Spec. 
(%) 

Sens. 
(%) 

Acc. 
(%) 

Spec. 
(%) 

Sen. 
(%) 

1 75.6 83.7 58.7 45.5 32.6 89.3 77.4 80.3 71.4 
2 78.2 85.3 63.2 50.4 36.8 96.4 78.8 81.1 73.8 
3 82.5 87.1 72.6 53.6 40 100 81.9 82.3 80.1 
4 85.1 89.6 75.5 56.1 43.1 100 83.7 84.2 82.1 
5 88.9 94.3 77.6 54.5 41 100 87 86.3 89.3 
6 84.1 88.8 74.1 57.7 45.3 100 83.7 83.2 85.7 

As stated in section 4.2, to visualize the data separation 
performed by the classifier hyper plane, we applied PCA to 
each of feature sets. From each of feature sets, after applying 
PCA, first two principal components were used as features to 
represent each example. These features were then used with 
their corresponding optimized SVM classifier model. The 
hyperplanes separating the classes, estimated by the classifier 
optimized for overall best accuracy, are shown in Fig. 10 for 
different choice of features sets. Similarly, Fig. 11 represents 
the data separation with hyperplanes created by the classifier 
optimized for achieving maximum sensitivity rate. The 
classifier optimized for achieving best trade-off between 
recognition rate for healthy and unhealthy nuts, separated the 
data by the hyperplanes shown in Fig. 12 for different feature 
sets. The results produced by SVM classifier for the test data 
are summarized in Tab. 4. Considering all-purpose 
performance, the classifier produced best results with the 
choice of feature set 5. The classification accuracy equal to 
88.9% is achieved having 94.3% and 77.6% correct recognition 
rate for healthy and unhealthy nuts respectively. On the 
contrary, if the focus is dedicated towards achieving highest 
sensitivity rate i.e. by using the optimized classifier for 
achieving maximum sensitivity, 100% unhealthy nuts can be 
identified. However, with this model more than 50% of healthy 
nuts are discarded, which are a huge figure and not a choice. 
Hence, it is necessary to optimize the classifier fair enough for 
both the target classes, while being generous towards achieving 
sensitivity rate. So the best result of SVM classifier considering 
both the true negative and the true positive rate is achieved 
when it is optimized for estimating best trade-off between 
specificity and sensitivity. Using feature set 5, 89.28% 
Unhealthy nuts were correctly identified while 86.3% healthy 
nuts were correctly spotted. Figure 13 presents the test data 
results calculated by three-way optimized classifier. 

Comparing the two classifiers regarding individual 
evaluation parameters, ANN showed good performance in 
recognizing healthy nuts while SVM demonstrated the true 
positive ratio relatively better than that of produced by ANN. 
The finest performance was achieved with the choice of all 

extracted features (set 5) for both the classifiers. The relative 
improvement in accuracy was higher in the SVM case while 
choosing different features sets. The feature set 6 was 
estimated containing fewer significant features, to estimate a 
computationally efficient classifier. SVM proved to be the 
better choice as a classifier with this set showing 25% higher 
accuracy for recognizing unhealthy nuts, although the overall 
accuracy is similar for both classifiers. The comparative results 
for ANN and SVM with the best trade-off model is given in 
Tab. 5. 

As discussed in the introduction section, pine nuts are 
rarely reported as the ingredient for quality inspection task. In 
contrast, pistachio is generally used in studies where nuts are 
used as ingredients for the quality assessment task. A 
comparison of results from studies where nuts are inspected as 
the ingredient is presented in Tab. 6. The table also presents the 
results of our previous study with pine nuts where a similar but 
much smaller database of x-ray images was used [37]. 

VII. CONCLUSION 
In this article, binary classification of pine nuts using x-ray 

Images were presented. X-ray images were obtained by using a 
commercial x-ray machine on an experimental basis, and later 
each nut image was labeled by careful manual inspection. 
Image processing techniques were employed to develop a 
method which is capable to individually identify and extract 
the nuts when captured while moving on feeding belt. For 
features, statistical texture properties were calculated from 
image samples on the global level as well from co-occurrence 
matrices. Features were organized in different combinations to 
estimate their effectiveness for classification. Two state of the 
art non-linear classifier: ANN and SVM were used for 
classification. Classifiers were trained on training data, and 
optimized using cross validation data. The results were 
calculated on test data in different scenarios with different 
variants of features. On the whole, SVM performed better by 
achieving higher recognition rate for unhealthy nuts, while 
showing similar level of overall accuracy as demonstrated by 
ANN classifier. 
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Fig. 10. Classification results of test set data as well as total data by using different feature sets, produced by Support Vector Machine (SVM) model, (trained using 
training data and) optimized by achieving highest accuracy on cross validation data, C = 2, σ = 2 
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Fig. 11. Classification results of test set data as well as total data by using different feature sets, produced by Support Vector Machine model (trained using training 
data and) optimized by achieving highest sensitivity rate on cross validation data, C = 0.1, σ = 1 
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Fig. 12. Classification results of test set data as well as total data by using different feature sets, produced by Support Vector Machine model (trained using training 
data and) optimized by achieving best trade-off between specificity and sensitivity rate on cross validation data, C = 25, σ = 10 
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Fig. 13. Comparative test data results produced by SVM models optimized on cross validation data for best accuracy, best sensitivity, and best trade-off. 

TABLE V. TEST SET RESULTS OBTAINED USING ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE (WITH BEST TRADE-OFF OPTIMIZATION) 

 Artificial Neural Network Support Vector Machine 

Feature Set Accuracy (%) Specificity (%) Sensitivity (%) Accuracy (%) Specificity (%) Sensitivity (%) 

1 81.8 94.3 42.2 77.4 80.3 71.4 

2 82.1 89.9 55.6 78.8 81.2 73.8 

3 83.8 92.2 59.8 81.9 82.3 80.1 

4 84.5 93.3 51.4 83.7 84.2 82.1 

5 87.6 94.5 62.2 87 86.3 89.3 

6 83.9 90.7 60.8 83.7 83.2 85.7 

TABLE VI. RELATIVE COMPARISON OF RESULTS WITH OTHER INGREDIENT STUDIES 

Study Ingredient Features Classifier Accuracy (%) Specificity (%) Sensitivity (%) 

[4] Pistachio nuts 
Statistical 
features from 
Histogram 

-- 89 99 50 

[7] Pistachio nuts 
Histograms and 
global statistical 
features 

Neural network 88 85.4 90.4 

[8] Pistachio nuts Statistical  
features 

Distance 
measure 86 92 80 

[37] 

Pine nuts 
(smaller 
database < 100 
samples) 

Histogram and 
Texture 
statistical 
features 

Logistic 
regression 98.3 99.1 97.6 

Our  
results 

Pine nuts 
(818 samples) 

Texture and 
statistical 
features 

ANN 87.6 94.5 62.2 

SVM 87 86.3 89.3 
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