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Abstract—Two models have been developed for simulating 
CO2 emissions from wheat farms: (1) an artificial neural network 
(ANN) model; and (2) a multiple linear regression model (MLR). 
Data were collected from 40 wheat farms in the Canterbury 
region of New Zealand. Investigation of more than 140 various 
factors enabled the selection of eight factors to be employed as 
the independent variables for final the ANN model. The results 
showed the final ANN developed can forecast CO2 emissions 
from wheat production areas under different conditions 
(proportion of wheat cultivated land on the farm, numbers of 
irrigation applications and numbers of cows), the condition of 
machinery (tractor power index (hp/ha) and age of fertilizer 
spreader) and N, P and insecticide inputs on the farms with an 
accuracy of ±11% (± 113 kg CO2/ha). The total CO2 emissions 
from farm inputs were estimated as 1032 kg CO2/ha for wheat 
production. On average, fertilizer use of 52% and fuel use of 
around 20% have the highest CO2 emissions for wheat 
cultivation. The results confirmed the ANN model forecast CO2 
emissions much better than MLR model. 
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I. INTRODUCTION 
Around the world wheat is used as one of the main food 

sources to provide a large proportion of the calories and 
protein needed by human beings [1]. The world wheat 
production forecasted for 2020 varied depending on the 
prediction method used:  746 Mt [2], 840 Mt [3] and 1050 Mt 
[4]. To meet the target 2020 wheat production, the current 
average wheat yield of 2.7 t/ha needed to be increased by 40% 
[5]. The three options available to lift wheat production to 
meet the 2020 target include: expansion of cultivated land, 
intensification of cultivated land and  increases in production 
per ha [6]. 

The use of plant genetics, new pest control methods, and 
more efficient fertilizers have increased farm production over 
the last 30 years [7]. At a global level, it would be too difficult 
to find additional areas for agriculture as most cultivable area 
is already under use. Intensification of the area currently 

cultivated involves adopting more rigorous farm operation 
systems and the application of more chemical inputs 
(pesticides, fertilizers and fuel). It was expected that the 
newly-developed seed varieties would have improved yields 
over the last few decades; but, in many areas, due to the use of 
traditional farming methods by farmers and other technical 
limitations, yields are still lower than the desired production 
[4, 8]. 

Overall, New Zealand agriculture is dominated by high 
farm inputs [9, 10]. Agricultural production is a victim of, and 
contributor to, global warming [10-13]. CO2 contributes 
significantly to greenhouse gases (GHG) [14]. The link among 
production, energy consumption and CO2 emissions in 
agricultural activities is well understood [10, 15-18]. CO2 is 
emitted during different farming activities, such as land use 
changes, application of fertilizers and pesticides, the ignition 
of fossil fuels and plant waste, decay of organic matter and 
microorganisms in the soil [12, 19, 20]. GHGs could change 
the current environmental conditions that have uncontrolled 
impacts on agricultural production. To monitor CO2 emission 
reduction targets, the effects of direct and indirect factors on 
CO2 emissions should be investigated. 

MLR models have been used widely in agricultural 
projects more than other prediction techniques [21, 22]. A 
simple model with a high r2 can be developed through the use 
of sufficient numbers of samples and independent variables. 
Input variables are always maintained in the best model if the  
actual and predicted data are correlated with  a p value of 0.05 
[23]. In the first step, corroboration between CO2 emission 
and each input variable is verified with simple MLR using r2 
as the decision criterion. A MLR model is then established to 
predict CO2 emissions as: 

Y=a0+a1V1+a2V2+ . . . +anVn+ є           [1] 

where a0-an = coefficients of regression, V1-Vn = the 
input variables and є = the error.  The linear model represents 
the links between the independent (input) variables and the 
dependent (output) variable. 
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Artificial neural networks (ANN) have been used recently 
for investigating the connections between input and output 
parameters [24, 25]. Based on an analysis of the already-
entered data, neural networks can find a link among the input 
and outputs, as well as the controlled and uncontrolled 
parameters [26]. To develop an effective ANN model, the 
number and accuracy of the data sampled are key issues, as 
ANNs require enough data to develop suitable connections, 
ANNs cannot develop the correct connections by themselves.  
ANN models are simple applications that can predict or 
classify different data to give with robust results. ANNs can 
estimate nonlinear input-output applications with high 
accuracy, so can play a vital role in simulating complex 
systems [27]. 

The feed-forward multi-layered perception (MLP) 
paradigm is the most common ANN structure used in 
modelling studies. The feed-forward MLP paradigm consists 
of independent variables, hidden layers and an output layer 
trained by the back propagation (BP) learning method. MLPs 
trained by BP are capable of modelling any function, so they 
are widely used for prediction models [28-30]. The neurons 
associated with the first hidden layer analysis, the weighted 
independent variables, use a transfer function to lead to the 
results. The most commonly used transfer functions include: 
logistic, linear, sine, Gaussian and hyperbolic-tangent. The 
results from the first hidden layer are then directed to the 
second hidden layer via weighted connections. Summation of 
the weighted inputs is processed by the neurons in the hidden 
layer using their transfer functions. The neuron outputs 
associated with the output layer are termed called the 
predicted output [22, 25]. 

The mean square error (MSE) between the predicted 
results and the measured data is minimized by adjusting the 
weights. The following relation is used for estimating the 
mean square error for a basic network having one output 

neuron:   
2)(

2
1

i

N

i
i zt

N
MSE −= ∑

      

where zi = predicted outputs associated with the ith 
training pattern, ti = the actual outputs associated with the ith 
training pattern and N = the sample size of the training 
patterns [25]. Furthermore, the root mean square error 
(RMSE) is used to show the errors in the units of the actual 
and predicted data. 

Models with a minimum of input variables are preferable 
for problem solving. Therefore, data reduction is useful if the 
number of input variables is  high and the available sample 
size is limited [25]. 

II. METHOD 
The experiments were conducted on irrigated and dry land 

arable farms totalling 35,300 ha in Canterbury, New Zealand. 

Canterbury is the dominant wheat production region in the 
country and shares almost 90% of wheat cultivation farms and 
wheat yield in New Zealand  [31].  CO2 emissions from wheat 
farms were investigated by considering different energy 
sources such as: fertilizers, pesticides, electricity, fuel and 
machinery. The following relationship was used to calculate 
total CO2 emissions (E). 

E = Σ(Ai Ci)                                                         [2] 

where Σ = summation, Ai = input factor and Ci =  the CO2 
emission conversion coefficient for each factor. 

Different conversion coefficients were used to convert 
farm inputs into CO2 emissions. Selecting accurate conversion 
coefficients was the key point of this study. Apart from farm 
inputs, the impact of around 140 factors comprising both 
technical and social aspects such as the farmers’ social status, 
the properties of tractors and equipment, farm conditions and 
yield, were investigated. 

Except for fuel burning, where carbon dioxide was 
released directly, CO2 was also released indirectly from 
farming activities. The use of most inputs associated with 
agriculture were converted into energy coefficients to obtain 
kg CO2/MJ. Three different sources of data collection were 
included: a survey, a literature review and field measurements. 
This study was based on an analysis called the ‘cradle-to-gate 
analysis’, which meant that the transport and waste disposal 
components of the products’ life cycles were not involved 
after they left the farm gate. 

A limited number of independent variables were selected 
to ensure a practical model. The input variables were reduced 
by applying pre-processing based on correlation analysis, 
followed by principle component analysis (PCA). Analysis of 
various variables associated with the components of PCA led 
to the identification of a cumulative variance with eigenvalues 
greater than 1. Around 140 input variables were applied in the 
final ANN model. The analysis consisted of two steps. In the 
first step (pre-processing), input variables, which had no little 
correlation with each other but had a significant impact on 
CO2 emissions, were selected. In the second step, 16 variables 
that demonstrated high links with CO2 production were 
selected, and included: area of wheat cultivation (ha), 
percentage of wheat cultivation area on farms, number of 
cows, annual rainfall, age of farmers, educational background 
of farmers, irrigation frequency, capacity of tractors (hp), farm 
size (ha), inputs such as N, P, fungicides, and insecticides, age 
of fertilizer spreader,   number of plough passes, number of 
sprayer passes, and age of sprayer.  The PCA process was 
guided to select eight independent variables to be applied as 
independent variables in the ANN model. The eight 
independent variables selected included plough passage 
numbers, the proportion of wheat area on farms, irrigation 
frequency, number of cows, age of fertilizer spreader and farm 
inputs, nitrogen input (kg), insecticide input (kg), phosphate 
input (kg), age of sprayer and tractor power index (hp/ha). The 
selected eight independent variables had a threshold 
cumulative variance of around 72.3%. 

Data were collected from 40 wheat farms. For training 
purposes 30 farms were selected randomly and the remaining 
10 farms were used for model validation. 

A limited number of hidden neurons were enough to 
describe simple nonlinear problems. In contrast, to solve the 
very nonlinear problems associated with large amounts of 
input variables large numbers of neurons were essential to 
predict an output variable with a low margin of error. 
Currently, neuron numbers were selected based mostly on trial 
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and error rather than science [32]. For the purpose of this 
study, the different aspects of the ANN model were optimised 
by using a genetic algorithm-based optimisation to determine 
a satisfactory model structure. A number of trials led to the 
selection of a modular neural network with two hidden layers 
containing two sub-networks (Figure 1). 

For function approximation, the optimised model was 
trained. In the training process, the weight change followed by 
subsequent batch processing was controlled by the learning 
rate. A training process with a higher learning rate would be 
quicker; but the weights may oscillate around the lowest level 
of error, but never reach it [25]. Subsequently, this study used 
a learning rate of 0.01 (low). The learning method adopted 
(Quick Prop) was very fast in reducing flaws when finding 
promising results. Quick Prop adjusted weights by indirectly 
using the second derivative of error. In each trial of Quick 
Prop, weights were revised using following relationship: 
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where Δwm = the existing weight, dm = the average 
derivative of the error for the current epoch (batch) m; and 
∂E/∂wm = the current error gradient for a particular input 
vector [25]. 

This study examined different functions, that included the 
logistic sigmoid, hyperbolic tangent (tanh), sine, Gaussian and 
linear functions. To propose the final model, the hyperbolic 
tangent function was selected for the input layer and the first 
hidden layer; the logistic function was applied for the second 
hidden layer; and the linear function was selected for the 
output layer (Figure 3). These functions can be written as: 
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where tanh (u) = the hyperbolic tangent function, L(u) = 
the logistic function, and u = weighted sum of inputs into a 
neuron [25]. 

III. RESULTS AND DISCUSSION 

A. CO2 Emissions 
The study revealed that an average of 1032 kg CO2/ha, 

was released from each wheat cultivation farm. To achieve a 
wider perspective, farm inputs were divided into five 
categories: electricity, fertilizers, agrichemicals, machinery 
and fuel. As shown in Table 1, fertilizer (mostly nitrogen) was 
ranked highest on the farms studied, with 52% of total CO2 
emissions. 

TABLE I. TOTAL CO2 PRODUCTION FROM DIFFERENT AGRICULTURAL 
INPUTS APPLIED ON WHEAT CULTIVATION FARM (KG CO2/HA) 

 Fertilizer Agrichemicals Electricity Machinery Fuel Total 

Total  539 (52%) 55 (5%) 86 (8%) 149 (14%) 203 
20%) 1032  

B. Model Development 
MLR and ANN models were developed for forecasting 

CO2 emissions from the wheat cultivation farms. 

1) Multiple Linear Regression Model 
MLR demonstrates the linear relationships between the 

input and output variables. In this study the MLR model was 
compared with an ANN for which data from 25% randomly-
selected samples were used for model validation and the 
remaining 75% data were used for model training. The MLR 
model developed was used to estimate, the validation data. 
The MLR model was able to be fitted to the CO2 emission 
data and accounted for around 35% and 70% of the variance 
in the validation and training data, respectively. Figures 1 and 
2 demonstrate the relationships between the forecasted and 
measured CO2 emissions, respectively, for the training and 
validation data. The MSE and RMSE estimated for validation 
data were 6977 and 84 kg CO2/ha, respectively. 

 
Fig. 1. Relationships between the field measurements and model-predicted CO2 emissions (training) based on the MLR model 
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Fig. 2. Relationships between the field measurements and model-predicted CO2 emissions (validation) based on the MLR model 

2) Artificial Neural Network Model 
After trialling different neuron activation functions, 

learning algorithms and network structures, a modular 
network with two hidden layers was developed (Figure 3). 
After the input layer, the modular network was divided into 

two parts. There were 20 neurons in the input layer with two 
and 12 neurons, respectively, for the first and second parts of 
the modular network. The final output (CO2 emissions) was 
produced by combining the results in the output layer. 

 
Fig. 3. Structure of the modular network and the number of neurons in each layer 

Trials (1500) led to the production of the most satisfactory 
ANN model with a scaled MSE of 2.3×10-2 (with inputs and 
outputs ranged between -1 and +1). Compared to MLR, the 
ANN model predicted CO2 emissions effectively 
and accounted for almost 90% of the variance (Figure 5) in the 

validation data. Figures 4 and 5 show the relationship between 
the actual and predicted data for the training and validation of 
the ANN model. The r2 was estimated at 0.82 and 0.89, 
respectively, for training and validation of the ANN model.

 
Fig. 4. Relationships between the field measurements and model-predicted CO2 emissions (training) based on the ANN model 
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Fig. 5. Relationships between the field measurements and model-predicted CO2 emissions (validation) based on the ANN model 

Figures 6 and 7 illustrate the ANN predictions for the 
training and validation data, respectively. The four lines in 
each picture represent the desired output, network output, and 
the high and low boundaries of the confidence intervals. The 
region within which the correct answer was within the 95% 

confidence level, as indicated by the grey area. As Figure 7 
shows, the final model can predict CO2 emissions up to ±113 
kg CO2/ha within the 95% confidence level. The results 
indicated the chance that the predicted errors would be more 
than ±113 kg CO2 /ha was only 5%. 

 
Fig. 6. Predicted, observed and 95% confidence interval for CO2 emissions based on the ANN model (training data) 

 
Fig. 7. Predicted, observed and 95% confidence interval for CO2 emissions based on the ANN model (validation data) 

For the training and validation data, the link between the 
measured and forecasted CO2 emissions for the ANN model 
was much greater compared to that of the MLR model. 

Compared to MLR, the ANN model had a noticeably lower 
RMSE for the validation data (Table 2). 
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TABLE II. MSE AND RMSE OF THE MLR AND ANN MODELS 

 Linear ANN 

 Training Validation Training Validation 
MSE 5635 6977 3641 3307 
RMSE 75 83 60 57 

There were a number of uncontrolled parameters that 
could affect CO2 emissions in agricultural farms, and they 
made the results of these experiments quite interesting. The 
proposed model can predict CO2 emissions in wheat farms 
within tolerable margins of error. There were some fixed 
independent parameters in the proposed model that could not 
be changed: such as farm conditions. Some of the independent 
variables, such as the farmer’s education, would also influence 
the CO2 emission indirectly. This calls for future studies to 
investigate the detailed links between the input parameters and 
CO2 emissions from agricultural farms. 

The ANN model can predict CO2 emissions from farm 
inputs. The model can help farmers   identify the factors with 
more potential to minimise CO2 emissions on their farms. In 
addition, scientists and decision makers can evaluate CO2 
emissions in Canterbury. 

IV. CONCLUSIONS 
In this study an ANN model was developed to forecast 

CO2 emissions from farm inputs using direct and indirect 
factors to predict CO2 emissions from wheat farms. The 
proposed ANN model could forecast CO2 emissions from 
farm inputs depending on each farm’s conditions, such as the 
proportion of wheat cultivation area on farms, frequency of 
irrigation and number of cows, the condition of machinery 
(tractor power index (hp/ha) and age of fertilizer spreader) and 
inputs on the farm (N, P and insecticide use) in Canterbury 
agricultural farms with a margin of error of ±11% (±113 kg 
CO2/ha). As there were numbers of uncontrolled factors in 
agricultural production, the size of error was acceptable. In 
addition, the results showed that the ANN model using 
heterogeneous data can better forecast CO2 emissions than the 
MLR model (Table 2). Using dissimilar inputs, such as farm 
conditions and social factors, would help the relevant agencies 
view the problem from various angles. 

The finding from these experiments indicated the 
capability of an ANN model for forecasting CO2 emissions 
from agricultural inputs by adopting indirect factors. This 
improved model can support decision makers by providing 
information on predicted CO2 emissions from a wide range of 
farm products. Analysis of the results made it clear that it was 
not possible to change some input parameters in the short 
term. However, for the scientific community and decision 
makers, the model would provide useful information to judge 
the best directions for CO2 emission reductions in the future. 

Testing the results for at least five years with larger sample 
sizes would lead a more accurate model for forecasting the 
trend of CO2 emissions in agricultural farms under various 
situations. The outcomes of this research can be recognised as 
a first effort to propose methods appropriate for estimating 
CO2 emissions by considering geographical, social and 
technical parameters together. This proposed approach can be 

replicated to other farm production systems and cropping 
areas. 
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