
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Comparison of Digital Signature Algorithm and
Authentication Schemes for H.264 Compressed Video

Ramzi Haddaji
Electrical department

National Engineering School of Monastir, University of
Monastir, Tunisia

Laboratory of Electronic and Microelectronic, University of
Monastir, Tunisia
Monastir, Tunisia

Samia Bouaziz
Electrical department

National Engineering School of Monastir, University of
Monastir, Tunisia

Laboratory of Electronic and Microelectronic, University of
Monastir, Tunisia

Raouf Ouni
Mathematical department

National Engineering School of Monastir, University of
Monastir, Tunisia

Faculty of sciences, Tunis El-Manar University
Tunis, Tunisia

Abdellatif Mtibaa
Electrical department

National Engineering School of Monastir, University of
Monastir, Tunisia

 Laboratory of Electronic and Microelectronic, University
of Monastir, Tunisia

Monastir, Tunisia

Abstract—In this paper we present the advantages of the
elliptic curve cryptography for the implementations of the
electronic signature algorithms “elliptic curve digital signature
algorithm, ECDSA”, compared with “the digital signature
algorithm, DSA”, for the signing and authentication of H.264
compressed videos. Also, we compared the strength and add-time
of these algorithms on a database containing several videos
sequences.

Keywords—Elliptic curve cryptography; H.264; DSA (Digital
signature algorithm); ECDSA (Elliptic Curve Digital Signature
Algorithm); Implementation

I. INTRODUCTION
The media industry has witnessed a phenomenal and

unprecedented explosion in the recent decade.
Communication, technology and media have transcended all
boundaries, and the entire global community seems to have
been brought together into one unified whole. Therefore in
this era of evolving communication, different types of
business related to media such as IPTV, Voice IP and
videoconferencing, have also found solid grounds, these must
be secured to protect privacy and to prevent from hackers [1].

Certain implementation security aspects of video are
authentication, data integrity and confidentiality.

Authentication is the act of verifying a claim of identity.

Data integrity in information security means maintaining
and assuring the accuracy and completeness of data over its
entire life-cycle. This means that data cannot be modified in an
unauthorized or undetected manner.

Confidentiality is the property, that information is not
made available or disclosed to unauthorized individuals,
entities, or processes [2].

The multimedia information including video data has some
special characteristics like high capacity, redundancy and high
correlation among pixels which leads us to choose the type of
video encoding on which we will work. This brings us to use
H.264 given the advantage that provides this type as size
standpoint and video quality [3].

In this paper we focus our work in the authentication
aspect which is verified using the signature algorithms. We
compare the implementation of the most known two signature
algorithms DSA, digital signature algorithm, and ECDSA,
elliptic curve digital signature algorithm [4]-[5].

As this type of data requires memory space, the process of
electronic signature is not used directly on the video but rather
on what we call the hash of this one. A hash function known
also a one-way function is a cryptographic tool which produce
a fixed size fingerprint regardless of the size of the input [4].

The remaining of this paper is organized as follows. In
Sect. 2, we recall properties and give some example of hash
functions. In section 3 and 4, we describe the signature
algorithms DSA and ECDSA. H.264 encoding is briefly
described in section 5. Performance evaluation and
comparative results of our implementation are given in detail
in Sect. 6. Finally, some conclusions are made.

II. HASH FUNCTION
Cryptographic hash function plays an important role in the

world of cryptography. They are employed in many
applications for digital signatures, data integrity, message
authentication, and key derivation. Secure Hash Algorithm
(SHA-1) specifies which generates condensed of message
called message digest. Hash functions takes a message of
variable length as input and produce a fixed length string as
output referred to as hash code or simply hash of the input
message. The basic idea of cryptographic hash function is use

357 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

of hash code as compact and non ambiguous image of
message from which latter cannot be deduced. The term non
ambiguous refers to the fact that the hash code can be as it was
uniquely identifiable with the source message. For this reason
it is also called as digital finger print of the message. The hash
functions [4]- [6] are classified into keyed and unkeyed hash
function; the keyed hash functions are used in the Message
Authentication Code (MAC) whose specification are dictates
two distinct inputs a message and a secret key. The unkeyed
hash function have there categories hash function based on
block ciphers, modular arithmetic and customized hash
function. The hash functions have one-way property; given n
and an input M, computing H (M) =n, must be easy and given
n, it is hard to compute M such that H(M)=n. The type of
attacks are the collision attack (find two message M=M’ with
H(M)=H(M’), the preimage attacks (given a random value y ,
find a message M with H(M)=y) and the second preimage
attack (given a message M , find a message M=M’ with
H(M)=H(M’) [7].

The most common used family of hash functions are SHA
and MD families. The SHA-1 is required for use with the
digital signature algorithm as specified in Digital Signature
Standard (DSS) and whenever a secure hash algorithm is
required. Both the transmitter and intended receiver of a
message in computing and verifying a digital signature uses
the SHA-1 [7]-[8]. It is necessary to ensure the security of
digital signature algorithm, when a message of any length is
input, the SHA produces m bits output called Message Digest
(MD). The MD is then used in the digital signature algorithm.
Signing the MD using the private key rather than the message
often improved efficiency of the process because the MD is
usually much smaller than the message. The same MD should
be obtained by the verifier using the user public key when the
received version of the message is used as input to SHA.

In the recent years much progress has been made in the
design of practical one-way hashing algorithms which is
efficient for implementation by both hardware and software.
Noteworthy work includes the MD family which consist of
three algorithms MD2, MD4, MD5 [9]-[10]-[11]-[12]. In our
work we are interested of MD5 [11]-[12], which is the most
adapted hash function in the authentication and signature of
video data. Let begin by a brief description of MD5 which is
developed by Ron Rivest, a much more detailed description
can be found in RFC 1321 [11]. MD5 works by first padding
the message until it is a multiple of 512 bits long. Padding is
done as follows:

1) Append a '1' bit to the message.
2) Append '0' bits until the message is 64 bits shorter than a

multiple of 512 bits.
3) Append a 64-bit representation of the message's original

length.
The state of MD5 is kept in four 32-bit words, A, B, C,

and D, all of which are initialized to magic constant values.
MD5 processes the message in 512-bit blocks. As we process
the ith block of message, we update Ai-1, Bi-1, Ci-1, and Di-1
to Ai, Bi, Ci, and Di. The output of MD5, a 128 bit value, is
the final state of A, B, C, and D concatenated. For each block
of message, we have four rounds of updates. Each round

updates one of the four 32-bit words A, B, C, or D four times.
(For a total of sixteen updates per block of message.) Initially
on each round, AiAi1, Bi Bi1, etc. Each of the updates is
something similar to Ai Bi+(Ai+F (Bi; Ci; Di)+Mi+Ti <<<
s), where F is a function, Mi is the ith block of the message,
and Ti and s are magic constants. (The symbol <<< means
\rotate left".) At the end of each round, we finish by updating
all of the values one last time, namely: Ai Ai + Ai-1, Bi
Bi + Bi-1, etc.

The maximum security depends on the length of message
digest generated by the hash functions which is limited by the
size of input to the algorithm. It also shows how the
modification is done with satisfying the properties like
compression, preimage resistance, and collision resistance.
The simulation results show that proposed scheme provides
better security than the existing one, in figure 1 we illustrate
the diagram of a general hash function.

Fig. 1. Diagram of the hash function

III. DIGITAL SIGNATURE ALGORITHM
Digital signature is a mechanism by which a message is

authenticated which means proving that a message is
effectively coming from a given sender, much like a physical
signature on a paper document. For instance, let suppose that
Alice wants to digitally sign a message to Bob. To do so, she
uses her private-key to encrypt the message; she then sends
the message along with her public-key (typically, the public
key is attached to the signed message). Since Alice’s public-
key is the only key that can decrypt that message, a successful
decryption constitutes a Digital Signature Verification, and
meaning that there is no doubt that it is Alice’s private key
that encrypted the message [13].

The DSA was proposed in August 1991 by the U.S.
National Institute of Standards and Technology (NIST) and
became a U.S. Federal Information Processing Standard (FIPS
186) in 1993. The FIPS 186 standard is also referred to as the
Digital Signature Standard (DSS). The DSA was the first
digital signature scheme accepted as legally binding by a
government. The algorithm is a variant of the ElGamal

358 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

signature scheme. It exploits small subgroups in ℤ𝑝∗ in order
to decrease the size of signatures. The key generation,
signature generation, and signature verification procedures for
DSA are given next.

DSA key generation. Each entity A does the following:

1. Select a prime q such that 2159 <q< 2160.
2. a 1024-bit prime number p with the property that q |

p-1. (The DSS mandates that p be a prime such that
2^{511+64t} < p < 2^{512+64t} where 0 ≤ t ≤ 8 then
I is a I prime.)

3. Select an element ℎ ∈ ℤ𝑝∗ and compute 𝑔 =
ℎ𝑝−1|𝑞 𝑚𝑜𝑑 𝑝 repeat until g ≥ 1. (g is a generator of
the unique cyclic group of order q ∈ ℤ𝑝∗)

4. Select a random integer x in the interval [1; q-1].
5. Compute y = gxmod p
6. The public key is (p; q; g; y); And the private key is x.

DSA signature generation. To sign a message

 m, A does the following:

1. Select a random integer k in the interval [1; q-1].
2. Compute r = �gkmod p�mod q
3. Compute 𝑘−1mod q
4. Compute s = k−1 {h(m) + xr} mod q where h is the

Hashed message.
5. If s = 0 then go to step 1. (If s = 0, then 𝑠−1 𝑚𝑜𝑑 𝑞 does

not exist; 𝑠−1 is required in step 3 of signature
verification.)

6. The signature for the message m is the pair of integers
(r; s).

DSA signature verification. To verify A's signature

 (r; s) on m , B should:

1. Obtain an authentic copy of A's public key (p; q; g; y).
2. Verify that r and s are integers in the interval [1; q-1].
3. Compute 𝑠−1 𝑚𝑜𝑑 𝑞 and h (m).
4. Compute 𝑢1 = ℎ(𝑚)𝑤 𝑚𝑜𝑑 𝑞 and 𝑢2 = 𝑟𝑤 𝑚𝑜𝑑 𝑞
5. Compute v = �g{u1} g{u2} mod p�mod q.
6. Accept the signature if and only if v = r.
Since r and s are each integers less than q, DSA signatures

are 320 bits in size. The security of the DSA relies on two
distinct but related discrete logarithm problems. One is the
discrete logarithm problem in ℤ𝑝∗ where the number field sieve
algorithm [4] applies; this algorithm has a sub exponential
running time. More precisely, the running time of the
algorithm is O(exp (c + o(1))(ln p)1/3(ln (ln p))2/3) ,
where𝑐 ≅ 1,923 , and ln (n) denotes the natural logarithm
function. If p is a 1024-bit prime, then the precedent
expression represents an infeasible amount of computation;
thus the DSA is currently not vulnerable to this attack. The
second discrete logarithm problem works to the base g given
p, q, g, and y, find x such that 𝑦 ≡ 𝑔𝑥 (𝑚𝑜𝑑 𝑝). For large p
(e.g., 1024-bits), the best algorithm known for this problem is
the Pollard rho-method [4]-[6], and takes about �𝜋 𝑞/2 (2)
steps. If 𝑞 ≈ 2160, then the expression (2) represents an
infeasible amount of computation; thus the DSA is not

vulnerable to this attack. How- ever, note that there are two
primary security parameters for DSA, the size of p and the
size of q. Increasing one without a corresponding increase in
the other will not result in an effective increase in security. In
figure 2, we illustrate the digital signature process.

Fig. 2. Digital signature process

IV. ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM

A. Elliptic Curve Cryptography
The theory of elliptic curves is deep and an enormous

amount of research has been done on elliptic curve
cryptography during the past twenty years or so. Therefore, it
is impossible to present an extensive review of the field here
and only subjects which are the most relevant are discussed in
the following. Interested readers are referred to [14], for
example, for further information.

All elliptic curve cryptosystems are based on an operation
called elliptic curve point multiplication which is defined as Q
= kP where k is an integer and Q and P are points on an
elliptic curve. A point is represented with two coordinates as
(x, y). The reason why elliptic curve point multiplication is
used in cryptosystem is that it is relatively easy to compute but
its inverse operation called elliptic curve discrete logarithm
problem, that is finding k if P and Q are known, is considered
impossible to solve with present computational resources if
parameters are chosen correctly. Thus, elliptic curve discrete
logarithm problem can be compared, for example, to integer
factorization problem which is used in the popular RSA
cryptosystems [4]. There is, however, a notable difference
because sub-exponential algorithms for solving elliptic curve
discrete logarithm problem are not known and, therefore, key
lengths can be shorter than in RSA. Elliptic curve point
multiplication is computed by using two principal operations;
namely, point addition and point doubling. Point addition is
the operation 𝑃3 = 𝑃1 + 𝑃2 where 𝑃𝑖 are points on an elliptic
curve. Point doubling is the operation 𝑃3 = 2P1 . In this
design, point multiplication is computed with the so-called
Montgomery’s ladder. Elliptic curves used in cryptosystems
are defined over finite fields denoted by

GF(q) where q is the number of elements in the field. It is
commonly preferred especially in hardware implementations
to use binary field 𝐺𝐹(2𝑚)s where an element of the field is
presented with m bits. In this design, the field 𝐺𝐹(2163) is
used and it is constructed by using normal basis. Arithmetic
operations are computed as follows:

• Addition a + b is computed with a bitwise exclusive-or
(XOR).

359 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

• Multiplication a × b is computed as presented by
Wang et al. in [15]. This multiplier structure is referred
to as Massey-Omura multiplier in the paper [16].

• Squaring 𝑎2 is simply a cyclical rotation of the bit
vector representing a.

• Finding an inverse element 𝑎−1 such that 𝑎−1𝑎 = 1 is
performed as suggested by Itoh and Tsujii in [17] and it
is called henceforth Itoh-Tsujii inversion. One Itoh-
Tsujii inversion requires 9 multiplications and 162
squarings if m = 163.

Point representation with two coordinates as (x, y) is
referred to as the affine coordinate representation. When
points are represented in affine coordinates, both point
addition and point doubling require inversion in 𝐺𝐹(2𝑚) .
Inversion is by far the most expensive operation and, thus, it is
advantageous to trade inversions for multiplications. This can
be done by representing points with projective coordinates as
(X, Y, Z); that is, with three coordinates. Mappings between
these two representations are performed as (x, y, 1) and (X/Z, Y
/Z). As can be seen, the mapping from affine to projective
coordinates does not require any operations but the mapping
from projective to affine coordinates requires two
multiplications and one inversion. Using projective
coordinates is very advantageous because point additions and
point doublings can be performed without inversions and the
total number of inversions in elliptic curve point
multiplication is therefore one. A very efficient algorithm for
computing (1) on elliptic curves over 𝐺𝐹(2𝑚) was presented
in [18] by Julio Lopez and Ricardo Dahab. The authors of [18]
shows that it suffices to consider only the x-coordinate and the
y-coordinate can be recovered in the end [18]. This leads to a
very efficient algorithm with projective coordinates. Point
addition (𝑋3,𝑍3) = (𝑋1,𝑍1) + (𝑋2,𝑍2) can be computed as
follows:

𝑍3 = (𝑋1𝑍2 + 𝑋2𝑍1)2,𝑋3 = 𝑥𝑍3 + 𝑋1𝑍2𝑋2𝑍1 (2)
where x is the x-coordinate of the base point P. The cost of

point addition is four multiplications, two additions and one
squaring. Point doubling (X3, Z3) = 2(X1, Z1) is even
simpler

𝑋3 = 𝑋14 + 𝑎6𝑍14, 𝑍3=𝑋12𝑍12 (3)
where 𝑎 6 is a fixed curve parameter. Thus, point doubling

costs two multiplications, four squarings and one addition.
The y-coordinate is recovered in the end by

computing 𝑥1 = 𝑋1/𝑍1 and 𝑥2 = 𝑋2/𝑍2 and then by
using the formula:

𝑦1 =
(𝑥1 + 𝑥)((𝑥1 + 𝑥)(𝑥2 + 𝑥) + 𝑥2 + 𝑦)

𝑥
+ 𝑦 (4)

where (x, y) is the base point P. This can be computed with
one inversion, ten multiplications, six additions and one
squaring.

B. ECDSA
ECDSA is a standard of ANSI, IEEE, and NIST, among

others. The following description is based on Johnson and
others’ presentation in [19]. The algorithm operates so that
first the user, who is commonly called Alice or A for short,

generates two keys, private and public, by performing a key
pair generation procedure. Then, she publishes her public key.
Alice signs a message by performing a signature generation
procedure after which she sends both the message and the
attached signature to the receiver who is called Bob, or B for
short. Bob can verify the signature on the message by first
getting Alice’s public key and then by performing the
signature verification procedure. Key pair generation,
signature generation and signature verification are consider in
the following sections.

Key Pair Generation.

Private and public key for an identity A is generated as
follows:

𝑑 ∈𝑅 [1, n − 1] Q = dG (5)
Where 𝑑 ∈𝑅 [1, n − 1] means that d is an integer selected

at random from the interval [1, n − 1]. The integer d is A’s
private key and Q is A’s public key. The computation of (5)
requires generation of one random integer and computation of
one elliptic curve point multiplication.

Signature Generation.

In order to generate a signature for a message M the
identity A computes

 𝑘 ∈𝑅 [1, n − 1] r = [kG]x (mod n)e
 = H(M)s
 = 𝑘−1 (e + dr) (mod n) (6)

A’s signature on M is (r, s). The notation [kG]x denotes the
x-coordinate of the result point of kG . Notice that A uses
his/her private key d in the signature generation. Thus, other
identities cannot produce the same signature without knowing
d. Signing a message requires generation of one random
integer, computation of one elliptic curve point multiplication
and one hashing. In addition, modular inversion, addition and
multiplication are required.

Signature Verification.

Identity B verifies A’s signature (r, s) on the message M
by computing

e = H(M)w
 = 𝑠−1(𝑚𝑜𝑑 𝑛)𝑢1
 = ew (mod n) 𝑢2
 = rw (mod n) v
 = [𝑢1𝐺 + 𝑢2𝑄]𝑥 (mod n) (7)

where Q is A’s public key and thus known by B. If v = r,
B accepts the signature, otherwise (s)he rejects it. Verification
requires one hashing and two elliptic curve point
multiplications which are combined with a single elliptic
curve point addition. Modular inversion and two
multiplications are needed, as well.

V. H.264/AVC COMPRESSED VIDEO
An H.264 video encoder is mainly comprised of motion

estimation, motion compensation, intra frame prediction,
discrete cosine transformation, quantization and entropy
encoding [20]. Figure 3 shown block diagram of H.264
Encoder. The brief overview of H.264 block is as follows.
Encoder has intra prediction mode, which removes spatial

360 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

redundancy from the frame. The feedback path of the decoder
module is an access point, which is used to decode intra
predicted frame correctly. It works on different intra mode to
remove spatial redundant data from the reference frame.

Fig. 3. Diagram block of H.264 encoder

Depending on the H.264 profile, different types of frames
such as I-frames, P-frames and B-frames, may be used by an
encoder. An I-frame, or intra frame, is a self-contained frame
that can be independently decoded without any reference to
other images. The first image in a video sequence is always an
I-frame. I-frames are needed as starting points for new viewers
or resynchronization points if the transmitted bit stream is
damaged. I-frames can be used to implement fast-forward,
rewind and other random access functions. An encoder will
automatically insert I-frames at regular intervals or on demand
if new clients are expected to join in viewing a stream. The
drawback of I-frames is that they consume much more bits,
but on the other hand, they do not generate many artifacts. A
P-frame, which stands for predictive inter frame, makes
references to parts of earlier I and/or P frame(s) to code the
frame. P-frames usually require fewer bits than I-frames, but a
drawback is that they are very sensitive to transmission errors
because of the complex dependency on earlier P and I
reference frames. A B-frame, or bi-predictive inter frame, is a
frame that makes references to both an earlier reference frame
and a future frame.

In the figure.4, we give a sequence example of I, B and P
frames.

Fig. 4. Sequence of I, B and P frames

An H.264 encoder generated up to 50% fewer bits per
second for a sample video sequence than an MPEG-4 encoder
with motion compensation. In figure 5 the H.264 encoder was
at least three times more efficient than an MPEG-4 encoder
with no motion compensation and at least six times more
efficient than Motion JPEG.

Fig. 5. Comparison of Bit rate of different encoders

VI. EXPERIMENTALS RESULTS
In this section we give the results of the comparison we do

between DSA and ECDSA used for the signing of large
number of H.264 video. We use MATLAB on a 64-bit Intel
Core I7-4500U CPU 2.4 GHz, 6 G RAM machine to
implement DSA and ECDSA signatures generation scheme
and to test their performances. Our results are given below.
Experimental results are given in this section to demonstrate
the benefit of using the ECDSA based on the elliptic curve
cryptography. These benefits can being seen in the gain of the
time and the smallest size of the key in the implementation.
We used DSA and ECDSA to sign the hashing output of
some H.264 videos. Here below we give some results of our
experimental results.

A. Comparison of the speed of hash function
We start by selecting the appropriate hash function to use

for the videos signing. For this purpose we have compared the
speed of the implementation of the most commonly used hash
functions. There are several techniques in which are based the
construction of hash functions. For example include the SHA-
1 function. The choice of the hash function for the signature
depends on the nature of the document to be signed. In the
figure.6 we compare the speed of the main existant hash
functions. For the rest and for signing the videos with real
time constraint we used the MD5 function view the advantage
that provides this function with respect to speed.

Fig. 6. Speed of secure hash functions

361 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

B. DSA vs ECDSA
In the table I below given by NIST, we give a comparison

of the key size between DSA and ECDSA for a given level of
security. We can see that the key size is very small in the case
of ECDSA over DSA which can be an advantage in
applications where we have real-time and memory constraints.

TABLE I. COMPARISON OF THE KEY SIZE

Security
(bit) DSA –Size of the key

ECDSA-Size of the key

80

112

128

192

256

1024

2048

3072

7680

15360

160

224

256

384

512

In the figure 7 we illustrate the time to break DSA and
ECDSA depending on the size of the key.

Fig. 7. Comparison of time to break DSA and ECDSA

We also compare the speed and space that requires the
hardware implementation of both electronic signing protocols
in figure 8 below we can see the advantage of using ECDSA.
If we implement our algorithms using VLSI cores, whether in
relation to the space used in number of gates or speed,
ECDSA differs greatly from its rival DSA.

Fig. 8. Hardware comparison of space and time of DSA and ECDSA

Also in the figures 9, 10, 11 and 12, below we show the
difference in the shape of histograms in the case of two H.264
videos using in the first two figure fig.9 and fig.10 the DSA
protocol and the other two figures fig.11 and fig.12 the
protocol ECDSA. We can notice the difference in scope
between the two cases of the presented histograms which is
due to reduced key size.

Fig. 9. Histogram of hashing and signed video 1 with DSA

Fig. 10. Histogram of hashing and signed video 2 with DSA

Fig. 11. Histogram of hashing and signed video 1 with ECDSA

362 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 12. Histogram of hashing and signed video 2 with ECDSA

We also compared the time of the signature process in
second of these two algorithms depending on the size for a
library containing a large number of H.264 videos. The speed
of ECDSA over DSA is clearly denoted in figure 13 despite
the growth in the size of the videos.

Fig. 13. Comparison of timing signing scheme- DSA vs ECDSA

VII. CONCLUSION
In this paper we compare the performance of two famous

methods for electronic signing DSA and ECDSA in order to
sign H.264 videos. We studied their speed, the number of
gates used in the hardware implementation and the
histograms’ distribution of the some signed and hashed videos
by MD5 function in the cases of these two algorithms.

REFERENCES
[1] T. Plevyak, V. Sahin, Next Generation Telecommunications Networks,

Services, And Management (Wiley-Ieee, 2010).
[2] M. Krause, H. F Tipton, Information Security Management Handbook.

(6th ed. Auerbach Publications, CRC Press LLC, 2010).
[3] I. E. Richardson, The H.264 Advanced Video Compression

Standard 2nd Edition (Wiley, 2010).
[4] A. Menezes, P. Van Oorschot, S. Vanstone, Handbook of applied

cryptography, (CRC Press, 1996).
[5] Q. Zhang , Z. Li And C. Song, The Improvement Of Digital Signature

Algorithm Based On Elliptic Curve Cryptography, 2011 Ieee Artificial
Intelligence, Management Science And Electronic Commerce (Aimsec),
Pp-1689 – 1691.

[6] P. Williams, Applied Cryptography (John Wiley & Sons, 1996).
[7] M. Stevens, Attacks on Hash Functions and Applications, Ph.D. Thesis,

Dept. Computer Engineering, University of of Leiden, Netherland, 2012.
[8] FIPS 180-4, Secure Hash Standard (SHS)– Current version of the Secure

Hash Standard (SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512),
2012.

[9] R. L. Rivest, The MD4 Message Digest Algorithm, 1990 CRYPTO
Lecture Notes in Computer Science, vol. 537, Springer, pp. 303–311.

[10] R. L. Rivest, The MD4 Message-Digest Algorithm, Internet Request for
Comments, 1990, RFC 1186; obsoleted by RFC 1320.

[11] R. L. Rivest, The MD5 Message-Digest Algorithm, Internet Request for
Comments, 1992, RFC 1321.)

[12] S. Yu and K. Aoki , Finding Preimages in Full MD5 Faster than
Exhaustive Search, 2009 Advances in Cryptology - EUROCRYPT 2009,
Volume 5479 of the series Lecture Notes in Computer Science pp 134-
15.

[13] M. O. Rabin, Digitalized Signatures, Foundations of Secure
Computation (Richard A. Demillo, David P. Dobkin, Anita K. Jones,
and Richard J. Lipton, eds.), Academic Press, 1978, pp. 155–168.

[14] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F.
Vercauteren, Handbook of Elliptic and Hyperelliptic Curve
Cryptography, Dis. Math.Its App. 1st Edition, (2005).

[15] Y. Wang, Task Parallel Implementation of Matrix Multiplication on
Multi-socket Multi-core Architectures, Algorithms and Architectures for
Parallel Processing, 2015 15th International Conference, ICA3PP 2015,
Zhangjiajie, China, Proceedings, Part III.

[16] A. Reyhani-Masoleh , M. A. Hasan, A new construction of Massey-
Omura parallel multiplier over GF(2m), 2002 IEEE Transactions on
Computers (Volume:51 , Issue: 5) PP-511-520.

[17] R. K. Kodali , C. N. Amanchi ; S. Kumar ; L. Boppana, FPGA
implementation of Itoh-Tsujii inversion algorithm, 2014 Recent
Advances and Innovations in , Engineering (ICRAIE), 2014, pp 1 – 5.

[18] J. López, R. Dahab, Fast Multiplication on Elliptic Curves Over GF(2m)
without precomputation, 2002 Cryptographic Hardware and Embedded
Systems, Volume 1717 of the series Lecture Notes in Computer
Science pp 316-327.

[19] D. Johnson, A. Menezes, S. Vanstone, The Elliptic Curve Digital
Signature Algorithm (ECDSA), 2001 International Journal of
Information Security, Volume 1, Issue 1, pp 36-63.

[20] Itu, H.264: Advanced video coding for generic audiovisual services,
International Telecommunication Union, 2003.

363 | P a g e
www.ijacsa.thesai.org

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Thomas+Plevyak
http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Veli+Sahin
https://books.google.fr/books?id=KgTV8OvjpHwC&pg=PT25&lpg=PT25&dq=IPTV+Voice+IP+video+conferencing+book&source=bl&ots=JLRgm7F47C&sig=YQQZQ0e3s49XeaWim6mNF-n5J2c&hl=en&sa=X&ved=0ahUKEwjJ49LzsNrMAhXBDZoKHUIkBk4Q6AEIHDAA
https://books.google.fr/books?id=KgTV8OvjpHwC&pg=PT25&lpg=PT25&dq=IPTV+Voice+IP+video+conferencing+book&source=bl&ots=JLRgm7F47C&sig=YQQZQ0e3s49XeaWim6mNF-n5J2c&hl=en&sa=X&ved=0ahUKEwjJ49LzsNrMAhXBDZoKHUIkBk4Q6AEIHDAA
http://www.amazon.com/Iain-E.-Richardson/e/B001HCWBAM/ref=dp_byline_cont_book_1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Qiuxia%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhan%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chao%20Song.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5992814
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5992814
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5992814
https://www.schneier.com/books/applied_cryptography/
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://link.springer.com/book/10.1007/978-3-642-01001-9
http://link.springer.com/bookseries/558
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.A.%20Reyhani-Masoleh.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.M.%20A.%20Hasan.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=21690
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ravi%20Kishore%20Kodali.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chandana%20N.%20Amanchi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Shubham%20Kumar.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Lakshmi%20Boppana.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6898117
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6898117
http://link.springer.com/book/10.1007/3-540-48059-5
http://link.springer.com/book/10.1007/3-540-48059-5
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/journal/10207
http://link.springer.com/journal/10207
http://link.springer.com/journal/10207/1/1/page/1

	I. Introduction
	II. Hash Function
	III. Digital Signature Algorithm
	IV. Elliptic Curve Digital Signature Algorithm
	A. Elliptic Curve Cryptography
	B. ECDSA

	V. H.264/AVC Compressed Video
	VI. Experimentals Results
	A. Comparison of the speed of hash function
	B. DSA vs ECDSA

	VII. Conclusion
	References

