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Abstract—This paper presents a novel high speed clustering
scheme for high-dimensional data stream. Data stream clustering
has gained importance in different applications, for example,
network monitoring, intrusion detection, and real-time sensing.
High dimensional stream data is inherently more complex when
used for clustering because the evolving nature of the stream data
and high dimensionality make it non-trivial. In order to tackle
this problem, projected subspace within the high dimensions and
limited window sized data per unit of time are used for clustering
purpose. We propose a High Speed and Dimensions data stream
clustering scheme (HSDStream) which employs exponential mov-
ing averages to reduce the size of the memory and speed up
the processing of projected subspace data stream. It works in
three steps: i) initialization, ii) real-time maintenance of core and
outlier micro-clusters, and iii) on-demand offline generation of
the final clusters. The proposed algorithm is tested against high
dimensional density-based projected clustering (HDDStream) for
cluster purity, memory usage, and the cluster sensitivity. Experi-
mental results are obtained for corrected KDD intrusion detection
dataset. These results show that HSDStream outperforms the
HDDStream in all performance metrics, especially, the memory
usage and the processing speed.

Keywords—Evolving data stream; high dimensionality; pro-
jected clustering; density-based clustering; micro-clustering

I. I NTRODUCTION

The exponential growth in data mining and clustering is
an apparent result of the Internet penetration and the use of
the network applications. Network applications have become
an integral part of our daily life, whether it is related to the
academic, research, health care, finance, business, or public
service domains.
Data sources are monotonically increasing from past few
decades. Additionally, the technological developments in data
sensing systems (sensor networks) have resulted in a real-time
data with large number of attributes. The large volume of the
data together with its high dimensionality has motivated the
research in the area of high dimensional data mining and explo-
ration. Data stream is a form of data that continuously evolves
reflecting the real-time variation in volume, dimensionality,
and correlation. In recent years, a large amount of streaming
data, such as network flows, wireless sensor networks data and
the multimedia streams have been generated. Analyzing and
mining of real-time streaming data have become a hot research
topic [1], [2], [3]. Discovery of the patterns hidden in the
streaming data imposes great challenges for cluster formation,
especially in high dimensional data. By definition, a cluster

is a collection of objects which are similar between them
and are dissimilar to the objects belonging to other clusters.
Data stream clustering algorithms are used to get important
information from these streams in real-time. These algorithms
search for the clusters that contain streaming objects with
a certain degree of similarity across all dimensions. Stream
clustering algorithms have special challenges that do not face
most other clustering techniques. Storage and time limits are
critical for clustering algorithms to perform a fast single-
pass over that stream data. In addition to this, the evolving
nature of the stream, requires the clustering algorithm to be
highly adaptive to the new patterns. Generally, there are two
types of stream clustering algorithms: full dimensional and
projected or preferred dimension streaming algorithms. Clus-
tering applications in various domains often have very high-
dimensional data; the dimension of the data being in the tens,
hundreds or thousands, for example, in network streaming, web
mining and bioinformatics, respectively. It is often require to
focus on a certain subset of dimensions rather than the full
dimension space because it requires less memory and render
fast processing. In addition to the high dimensionality, real-
time high-speed evolution makes it more intractable. Clustering
such high-dimensional high-speed datasets is a contemporary
challenge. Clustering algorithms must avoid the curse of
dimensionality but at the same time should be computationally
efficient. Some applications that generate data streams include:
telecommunication (call records), network operation centers
(log information from network entities), financial market (stock
exchange), and day to day business (credit card, automated
teller machine (ATM) transactions, etc). In a high dimensional
dataset, among many features some attributes can be expected
to be irrelevant for any given object of interest. Irrelevant
attributes can obscure clusters that are clearly visible when we
consider only the relevant subspace of the dataset. Therefore,
clusters may be meaningfully defined by some of the available
attributes only. The irrelevant attributes interfere with the
efforts to find targeted clusters. This problem is become more
intensive in streaming data, because it requires a single scan of
the data to find the useful attributes for describing a potential
cluster for the current object. Moreover, streams are impulsive
and the discovered clusters might also evolve over time. High
dimensional streaming data clustering is more challenging than
the high density or high dimensional data. Among various
challenges in clustering high dimensional streaming data [4],
following two are the focuses of this paper:
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• Processing speed: Data streams arrive continuously,
which requires fast and real-time response. The clus-
tering algorithm needs to have processing speed
(which comes from low complexity) such that it can
handle the speed of data streams in the limited time.

• Memory usage: Large data streams are generated
rapidly which need an unlimited memory. Therefore,
the clustering algorithm must be optimized for realistic
memory constraints.

In this paper, we introduce a novel tuple structure to summarize
the high speed high dimensional data stream. This structure not
only speed up the process but also requires less memory. Our
clustering technique also modifies weights in some definitions
of HDDStream, namely, the micro-cluster variance, projected
dimensionality, projected distance, and projected radius. In
terms of experimental results, we compare our scheme with
HDDStream for cluster purity, memory usage, and cluster’s
sensitivity.
Notations:
Vectors and matrices are represented by bold letters, other
notations are explained below:
R Set of real numbers
N Set of natural numbers
C Dataset
N Window size
ǫ Radius threshold
D Dataset used in initialization phases
α Exponential weighted average constant
β Outlier threshold
µ Number of points threshold
ξ Variance threshold
ψj jth preferred dimension
π Projected dimensionality threshold

II. RELATED WORK

In the last few years many research works have been done
on high-dimensional data clustering and evolving data streams
clustering. There are extensive research works on clustering
algorithms for static datasets [5], [6], [4] where some of them
have been further extended for evolving data streams. The
clusters are formed based on a Euclidean distance function
like k-means algorithm [7].k-mean clustering splits then d-
dimensional points intok cluster (k < n). One of the well-
known extensions ofk-means on data streams is presented
by Aggarwal et al. [8]. They propose an algorithm called
CluStream based onk-means for clustering evolving data
streams. CluStream introduces an online-offline method for
clustering data streams. CluStream clustering idea is adopted
in the majority of data stream clustering algorithms. Aggarwal
et al. extended their work in HPStream [9], which intro-
duces the projected clustering to data streams. In projected
clustering high dimensional stream data is partitioned based
on the preferred dimensions instead of full the dimensional
space. Cao et al. [10] use the density-based clustering without
projected dimensions in DenStream algorithm. For streaming
data, although a considerable research has tackled the full-
space clustering, relatively limited work deals with the sub-
space clustering. These few researches include [9] HPStream,
[11] HDDStream, and [12] SubCMM. A more comprehen-
sive review and classifications are given in survey [13]. In

[11], authors propose a density-based projected clustering
scheme for high dimensional data streams called HDDStream.
HDDStream works in three phases; an initial phase, in which
initial set of core micro-clusters is formed, then online core
and outlier clusters’ maintenance with projected clustering, and
finally, an on-demand offline clustering phase. Compared with
the HPStream which requires the fixed number of clusters, the
number of clusters in HDDStream is variably adjusted over
time, and the clusters can be of arbitrary shape. SubCMM
suggests a different way for evaluating stream subspace clus-
tering algorithms by making use of available offline subspace
clustering algorithms with the streaming environment to handle
the errors caused by emerging, moving, or splitting subspace
clusters. A recent, similarity-based Data Stream Classifier
(SimC)[14] introduces an insertion/removal policy that adapts
evolving data tendency and maintains a representative, small
set of clusters. It uses instance based learning techniques to
form adaptive clustering algorithm. In [1] clustering method
based on a multi-agent system that uses a decentralized
bottom-up self-organizing strategy to group similar data points
is presented. It uses bio-inspired flocking model to eliminate
the need of offline clustering. In [15], authors present a cluster-
ing algorithm for stream data with uncertain attributes has been
presented in . This scheme works only for low dimensional
streaming data. Liu [16] develop HSWStream algorithm. It
is a data stream clustering algorithm based on exponential
histogram over sliding windows with projected dimensions.
Another density-based algorithm D-Stream [17] maps each
input data into a grid, computes the density of each grid, and
forms the clusters using these grids. In [18], authors propose a
scalable algorithm to trace clusters in a high-dimensional data
stream. The proposed scheme transforms the problem of multi-
dimensional clustering into that of one-dimensional clustering
along with a frequent item-set mining technique. This scheme
achieves the scalability on the number of dimensions while
sacrificing the accuracy of identified clusters. Bellas et al.
[19] present an online variant of mixture of probabilistic
principal component analyzers (MPPCA) to model and cluster
the high dimensional high speed data. But to do so, it is
necessary to add a classification step at the end of the online
MPPCA algorithm to provide the expected clustering. MuDi-
Stream [20] is a hybrid grid-based multi-density clustering
algorithm with online-offline phases. In the online phase, it
keeps summary information of evolving multi-density data
stream in the form of core micro-clusters. The offline phase
generates the final clusters using an adapted density-based
clustering algorithm. The grid-based method is used as an
outlier buffer to handle both noises and multi-density data in
order to reduce the merging time of clustering. MuDi-Stream
is not suitable for high-dimensional data since the number
of empty grids increases which requires longer processing
time. SE-Stream [21] is a standard-deviation based projected
clustering method to support high dimensional data streams. It
forms clusters within subgroups of dimensions and can detect
change in the clustering structure during the progression of
data streams. SED-Stream [22] is an extension of SE-Stream,
in which some selected dimensions are used to represent the
clusters to increase the quality of the output clustering. SED-
Stream projects any cluster to its discriminative dimensions
that are highly relevant to the cluster itself but distinguished
from the other clusters. SED-Stream is better than its previous
version, SE-Stream, in terms of purity and f-measure. Both SE-
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Streamand SED-Stream use fading cluster structure (5−tuple)
of the form similar to in section III definition0 with two extra
elements.
This paper presents High Speed and Dimensions data stream
clustering scheme (HSDStream) which introduces a novel
tuple structure to summarize the high speed high dimensional
data stream. This structure not only speed up the process
but also requires less memory. Our clustering technique also
modifies weights in some definitions of HDDStream, namely,
the micro-cluster variance, projected dimensionality, projected
distance, and projected radius. In terms of experimental results,
we compare our scheme with HDDStream for cluster purity,
memory usage, and cluster’s sensitivity.

III. PROBLEM FORMULATION

In general, data stream is modeled as an infinite se-
ries of points {p1,p2, ...,pi, ...} arriving at discrete time
{t1, t2, ...ti, ...}. Each pointpi is a vector of dimensiond such
thatpi = {pi,1, pi,2, ..., pi,d}.

An important characteristic of data streams is that we
cannot store all data points. A usual way to overcome this
problem is to summarize the data through an appropriate
summary structure, often called micro-cluster. A micro-cluster
summarizes the time and dimensionality limited stream data in
the form of a tuple. When aging is also under consideration, the
temporal extension of micro clusters [9] is employed. Recent
research works [9], [11] use the following definition of micro-
cluster:
Definition 0. (Micro-clustermc)
A micro-cluster at timet for a set of d-dimensional data
points C = {p0,p1, ...,pN−1} arriving at discrete time
t0, t1, ..., tN−1, is summarized as (2d+ 1) size tuplemc(t) =
{CF1(t),CF2(t),W (t)}, whereCF1(t) andCF2(t) ared
dimensional vectors, defined as:

• CF1(t) is the d-dimensional vector of weighted
sum of points{p1,p2, ...,pi, ...} along each dimen-
sion, such that for dimensionj we haveCF1j =
∑N−1

i=0 pi,jf(t − ti), where N is the size of time
window, pi,j is the ith point in time window and
f(t− ti) is the weight of theith point.

• CF2(t) is the d-dimensional vector of weighted sum
of the squares of the points{p1,p2, ...,pi, ...} along
each dimension, such that for dimensionj we have
CF2j =

∑N−1
i=0 p2i,jf(t− ti), whereN is the size of

time window,pi,j is theith point in time window and
f(t− ti) is the weight of theith point.

• W (t) is the sum of the weights of data points, math-
ematically,W (t) =

∑N−1
i=0 f(t− ti).

In data streams, since we are more interested in the data
within a certain recent time window instead of all historical
data, an aging effect has been used for weighted function
W (t). Recent works [9], [11] have used conventional expo-
nential fading functionf(t) = 2−λt, whereλ is the decay
rate. By using fading functionf(t) we need to maintain a
memory buffer of time window size for each cluster, because,
whenever a new point arrives we need to shift the previous data
in the buffer of fixed size. We want to highlight an important

p0,j p1,j p2,j pN 1,j

2
(0)

2
(1)

2
(2)

2
(N 1)

×

Time

Data

stream

pi,j

CF1j(t)

Fig. 1. Practical approach to update micro-cluster tuple

point here that the online update of the tuples [9], [11] of
the form mc(t) = {CF1(t) + p,CF2(t) + p2,W (t) + 1}
is not practically feasible because it leads to monotonically
increasing weighted sum data. A practical approach for up-
dating the tuple is shown in Fig. 1. It is obvious that for a
fixed size memory shift register, when a new point arrives the
old point is discarded. The correct mathematical expression for
online update, then, becomes,mc(t) = {CF1(t)−CF1N−1+
p,CF2(t) −CF2N−1 + p2,W (t) − f(t− tN−1) + 1}, such
that for dimensionj we haveCF1N−1,j = pN−1,jf(t−tN−1)
andCF2N−1,j = p2N−1,jf(t− tN−1).

We define micro-cluster as follows:

Definition 1. (Micro-clustermc) We redefine the micro-cluster
as a set of pointsC = {p0,p1, ...,pN−1} arriving at discrete
time pointst0, t1, ..., tN−1. Themc is summarized as (2d+1)
size tuplemc(t) = {EA1(t),EA2(t),W (t)}, whereEA1(t)
andEA2(t) ared dimensional vectors, defined as:

• EA1(t) is the d-dimensional vector of exponential
weighted moving average of points{p1,p2, ...,pi, ...}
along each dimension, such that for dimensionj we
haveEA1j(t) = αpj(t)+(1−α)EA1j(t−1), where
α = 2/(1 + N) is a smoothing factor controlled by
the size of time window; andpj(t) is the latest point
in time window.

• EA2(t) is the d-dimensional vector of exponential
weighted average of points{p1,p2, ...,pi, ...} along
each dimension, such that for dimensionj we have
EA2j(t) = αp2j(t) + (1 − α)EA2j(t− 1).

• W (t) is the sum of the of data points at timet.

In order to formalize aging effect of data we introduce
exponential moving average of data stream within a specified
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Fig. 2. Exponential moving average based update of micro-cluster tuple

time window. We use exponential weighted moving average in
the tuple as decreasing exponential function. Note that, now the
calculation ofEA1(t) or EA2(t) does not require storage of
past values, and only one addition and two multiplications with
one memory register (of the size of dimensionj) are required
to update the tuple at any time instance. Design implementation
of our micro-cluster update is shown in Fig. 2.

Data stream contains high dimensional data where each
dimension has its own importance. In order to collate the
similar points in data stream we use variance along each
dimension. The lower the variance the higher the correlation
among the points in particular dimension. We use variance
as a metric to limit the number of dimensions to preferred
dimensions only.

Definition 2. (Preferred Dimension) A dimensionj is said to
be a preferred dimension ifV arj(mc) < ξ, whereξ is the
variance threshold andV arj(mc) is the variance ofmc along
dimensionj, defined as:

V arj(mc) = EA2j(t)− (EA1j(t))
2 (1)

The preferred dimension helps gather the data points which
have preferred dimensions less than a pre-defined threshold.
Intuitively, it indicates the similarity across dimensions con-
trolled by the variance threshold (ξ). In conjunction with
preferred dimension, we define the preferred dimension vector.

Definition 3. (Preferred Dimension Vector) Every micro-
cluster has a preferred dimension vector defined as:

Ψ(mc) = {ψ1, ψ2, ..., ψd} (2)

with

ψj =

{

̺, V arj(mc) < ξ;
1, otherwise. (3)

whereξ ∈ R, and̺ ∈ R is a constant̺ ≫ 1. The number
of elements in preferred dimension vector gives the projected
dimensionality of the micro-cluster. The term ’projected’ dif-
ferentiates the micro-cluster defined over s projected subspace
of the feature space instead of the whole feature space.

Definition 4. (Projected Dimensionality) Letp ∈ C andξ ∈ R.
The number of dimensionsj with V arj(mc) < ξ is called
projected dimensionality ofmc and denoted by PDIM(mc).

Weighting the dimensions inversely proportional to their
variance is not useful because we are only interested in
distinguishing between dimensions with low variance and all

other dimensions. Therefore, we use only two-valued weight
vector. It can be easily determined from the preferred dimen-
sion vector by counting the number of dimensions with the
normalization factor̺ . The intuition of calculating projected
dimensionality is to find projected core micro-cluster, i.e.,
the clusters with some subspace of dimensions instead of all
dimensions.

Definition 5. (Projected Radius) Letmc be a micro-cluster,
ξ ∈ R, and̺ ∈ R is a constant̺ ≫ 1. The projected radius
of mc is given by:

rΨ(mc) =

√

√

√

√

d
∑

j=1

ψj

̺
(EA2j(t)− (EA1j(t))2) (4)

where̺ normalizes the variance along each dimension. This
is the projected radius that takes into account the preferred
dimensions of the micro-cluster.

Definition 6. (Projected Distance) Letp ∈ D and mc be
a projected micro-cluster with dimension preference vector
Ψ(mc). The projected distance betweenp andmc is given
by:

distproj(p,mc) =

√

√

√

√

d
∑

j=1

ψj

ξ
(pj − centermc

j )2 (5)

wherecentermc is the center of micro-clustermc and is given
by centermc = EA1(t).

Now we introduce the notion of core-projectedmc which
is an essential component of density based clustering. A core-
projectedmc is amc that contains at leastµ number of points
within a projected radius ofǫ with projected dimensionality
less than a thresholdπ.

Definition 7. (Core Projected Micro-cluster) Letǫ, ξ ∈ R and
π, µ ∈ N. A micro-clustermc is called a core projectedmc
if the preference dimensionality ofmc is at mostπ and it
contains at leastµ points within its projected radiusǫ, formally:

COREproj(mc) ⇐⇒

(rΨ(mc) < ǫ) ∧ (W (t) > µ) ∧ (PDIM < π). (6)

In other words, a micro-clustermc is a core projectedmc iff :

(1) rΨ(mc) < ǫ

(2) W (t) > µ

(3) PDIM < π

There might be micro-clusters that do not fulfill the above
constraints either because their associated number of points
is smaller thanµ or because their projected dimensionality
exceedsπ. These micro-clusters are treated as outliers.

Definition 8. (Outlier Micro-cluster) Letǫ, ξ ∈ R andπ, µ ∈
N. A micro-clustermc is called a outliermc, if its projected
dimensionality is at leastπ and its projected radius andǫ-
Neighbors are at mostǫ andµ, respectively, formally:

outlier(mc) ⇐⇒

(PDIM > π) ∧ (rΨ(mc) < ǫ) ∧ (W (t) < µ). (7)
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In order to keep update the micro-clusters, i.e., to check
for possible conversion of core micro-cluster to outlier micro-
cluster and vice versa, we introduce an outlier threshold (0 <
β < 1) such that an outlier micro-cluster becomes a potential
core micro-cluster ifW > βµ in addition to the conditions in
(6) . Similarly, a core micro-cluster becomes a potential outlier
micro-cluster ifW < βµ in addition to the conditions in (7).
The micro-cluster can be easily maintained online when a new
point arrives in a cluster and othermc need time degradation.

Remark. (Online maintenance) The micro-clustermc defined
in definition 1 holds simple additive property that facilitates
the online maintenance.

• If a point p arrives at timet, then the updated tuple is
given bymc(t) = {αp + (1 − α)EA1(t − 1), αp2 +
(1 − α)EA2(t− 1),W (t− 1) + 1}.

• If no point adds in a micro-cluster at timet, then the
updated tuple is given bymc(t) = {(1− α)EA1(t−
1), (1− α)EA2(t − 1),W (t− 1)}.

IV. T HE HSDSTREAM ALGORITHM

HSDStream algorithm can be divided into three parts: 1)
initialization to produce a set of representative core micro-
cluster (core-mc) from an initial chunk of data points, 2) online
maintenance of core-mc and outlier micro-cluster (outlier-mc),
and, 3) the on-demand offline generation of the final clusters.

A. Initialization

In order to get initial set of micro-clusters from a fixed
size of data points, we apply density-based projected clustering
algorithm, a variant of PreDeCon algorithm [23], which is
designed to work for fixed size of high dimensional data.
Let D be a set of initial chunk of d-dimensional data points
(D ⊆ R

d). For each pointp ∈ D, we find a set ofǫ−neighbors
Nǫ(p), whereǫ is the radius threshold. In addition to this, we
find the neighbors ofp with projected distance equal to or less
than theǫ, namely,NΨ(p)

ǫ (p).

Definition 9. (Projected Distance of a Point) Letp, q ∈ D.
The projected distance of a pointp with any pointq is given
by:

distp(p, q) =

√

√

√

√

d
∑

i=1

ψi(p)

̺
(di(p)− di(q))

2 (8)

where di(p) is the ith dimension of pointp. Note that, in
generaldistp(p, q) 6= distp(q, p) because of the projected
dimension vectors of pointp andq. In order to get symmetrical
distance betweenp andq we use maximum ofdistp(p, q) and
distp(q, p).

A projected core pointo ∈ D can be defined with the same
intuition of projected micro-cluster in definition 7.

COREproj(o) ⇐⇒ PDIM (Nǫ(o)) ≤ π∧|NΨ(p)
ǫ (o)| ≥ µ (9)

The initialization function in algorithm 1 line 5 runs the
algorithm for the creation of initial set ofmc. It starts by
inserting all points in the setNǫ(o) into a queue. For each
point in the queue, it computes all directly projected weighted
reachable points and inserts those points into the queue which

Cluster

If p is

core
Projected weighted

neighbors of p

Filter out all

points already

in cluster or in

core queue

Core queue

All points in projected weighted neighbors of o

Yes

If No: then this is a

border point of

cluster

If Yes: then it goes

to cluster and its

neighbor undergo

further processing

Yes/No

Fig. 3. Generation of initial set of micro-clusters

are still unclassified. This process repeats until the queue
is empty and the cluster is computed. The flow chart of
algorithm is shown in Fig. 3. Remove all those points belong
to calculated cluster from datasetD and repeat the process for
another core point. This process remains continue till all the
core points are exhausted.

B. Real-time Maintenance of Micro-clusters

In order to find out the clusters in an evolving real-time
data stream, we maintain two groups of micro-clusters, namely,
core-mc and outlier-mc in real-time. All the micro-clusters are
maintained in a separate memory space. A new point might be
assigned to core-mc, outlier-mc, or it may start new outlier-mc
depends upon various factor. Sequential process of merging a
new pointp is described below:

1) When a new point arrives, it first becomes the candidate
of core-mc (algorithm 1, line 13). The projected dimen-
sionality of each core-mc has been evaluated before and
after adding this pointp (algorithm 2, line 4). After that,
projected distance ofp is calculated with those core-mc
which still satisfy the projected dimensionality constraint,
i.e., after the addition of pointp (algorithm 2, line 6).
Then, we choose one core-mc which has smallest pro-
jected distance fromp (algorithm 2, line 9). Finally, the
projected radius of chosen core-mc (p included) has been
evaluated and checked for upper bound(ǫ) (algorithm 2,
line 11). If it satisfies, then pointp is assigned to that
core-mc (algorithm 2, line 12 using update tuple function
in algorithm 4), else it becomes candidate of outlier-mc
list.

2) When a new point becomes a candidate for an outlier-
mc, the projected distance ofp with each outlier-mc is
evaluated (algorithm 3, line 4). The closest distant outlier-
mc is chosen in line 6. The pointp becomes the member
of that outlier-mc if the projected radius is less than or
equal to the radius threshold (ǫ) (algorithm 3, line 9). In
order to get long term effect we check the possibility of
outlier-mc to core-mc conversion after certain number of
points (window sizeN ).

3) If point p cannot be added in core-mc or outlier-mc
(algorithm 3, line 14) then a new outlier-mc is created
with this point being the first element. It may become the
seed of future core-mc.
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Algorithm 1 HSDStream main
1: Initialization
2: initial parametersπ, ξ, ǫ,N
3: datastream = {p1,p2, ...,pi, ...}
4: initialBuffer = readData(numOfIntialPoints)
5: core mc = initialization fn(initialBuffer)
6: for i = 1 to numOfMc do
7: mcTuple = createMcTuples(core mc)

{It creates mcTuple = {EA1(t),EA2(t), W (t)}, an
numOfMc× (2d + 1) matrix}

8: end for
9: while Stream has data pointsdo

10: windowBuffer = readData(N)
11: for i = 1 to N do
12: pi = windowBuffer(i) // i-th point from windowBuffer
13: [trial core,mcTuple] = addpToCoreMc(pi,mcTuple)
14: if trial core == 1 then
15: Degrade all outlierTuples
16: else
17: [trial outlier, outlierTuple] =

addpToOutlierMc(pi, outlierTuple)
18: end if
19: if trial core == 0 && trial outlier == 0 then
20: newOutlierMc = createOutlierMc(pi)
21: update outlierTuple list
22: end if
23: end for

{core-mc to outlier-mc conversion}
24: [movedMcTuples, remainingMcTuples] =

moveMcTuples(mcTuples)
{outlier-mc to core-mc conversion}

25: [movedOutlierTuples, remainingOutlierTuples] =
moveOutlierTuples(outlierTuples)

26: updatedMcTuples = remainingMcTuples +
movedOutlierTuples

27: updatedOutlierTuples = remainingOutlierTuples +
movedMcTuples

28: end while

Algorithm 2 Add data point to core-mc
1: addpToCoreMc(p,mcTuples)
2: for i = 1 to numOfTuples do
3: updatedTuples = updateTuple fn(p,mcTuple(i))
4: Calculate updated PDIM // using definition 4
5: if PDIM ≤ π then
6: Calculate projected distance // using definition 6
7: end if
8: end for
9: core mc closest = min(projectedDistances)

10: Calculate projected radiusrΨ(core mc closest) // using definition 5
11: if rΨ(core mc closest) < ǫ then
12: mcTuple = updateTuple fn(p,mcTuple)
13: Update all other mcTuples with one degradation
14: return trial core = 1
15: else
16: Degrade all mcTuples
17: return trial core = 0
18: end if

C. Clusters Generation: Offline

The real-time maintained micro-clusters capture the density
area and the projected dimensionality of data streams. How-
ever, in order to get meaningful clusters, we need to apply
some clustering algorithm to get the final result. When a clus-
tering request arrives, a variant of PreDeCon algorithm [23] is
applied on the set of real-time maintained core-mc(s) to get the
final result of clustering. In density-based PreDeCon, a core
point starts a micro-cluster, all the directly connected points
and the chain of core points which satisfyǫ−neighborhood

Algorithm 3 Add data point to outlier-mc
1: addpToCoreMc(p,oulierTuples)
2: for i = 1 to numOfOutlierTuples do
3: updatedTuples = updateTuple fn(p,mcTuple(i))
4: Calculate projected distance // using definition 6
5: end for
6: core mc closest = min(projectedDistances)
7: Calculate projected radiusrΨ(outlier mc closest) // using definition 5
8: if rΨ(outlier mc closest) < ǫ then
9: outlierTuple = updateTuple fn(p, outlierTuple)

10: Update all other outlierTuples with one degradation
11: return trial outlier = 1
12: else
13: Degrade all outlierTuples
14: return trial outlier = 0
15: end if

Algorithm 4 UpdateTuple function
1: updateTuple fn(p, Tuple)
2: EA1(t − 1) = Tuple(1 : d)
3: EA2(t − 1) = Tuple(d+ 1 : 2d)
4: W (t− 1) = Tuple(end)
5: EA1(t) = αp+ (1− α)EA1(t− 1)
6: EA2(t) = αp2 + (1 − α)EA2(t − 1)
7: W (t) = W (t− 1) + 1
8: newTuple = {EA1(t),EA2(t),W (t)}

criteria and maximum dimensionalityπ become the member
of that cluster. During offline on-demand clustering phase,
each core-mc acts as core point. Each core-mc is regarded
as a virtual point located at the center of core-mc. We use the
concept of density connectivity to determine the final clusters,
i.e., all the density-connected core-mc(s) form a cluster.

V. D ISCUSSION

In this section we highlight issues and challenges in the
development of high dimensional data stream clustering in
Internet traffic monitoring. We maintain the density with
ǫ−neighborhood and minimum number of pointsµ in a core-
mc. When an identical burst of data (in case of attack on
network) arrives, outlier-mc(s) are diminished and only one
core-mc remains there. In this case, an important entity of
core-mc formation i.e., projected dimensionality cannot work
because, now PDIM = d and it no longer satisfies the condition
PDIM ≤ π. In order to overcome this problem we introduce
another condition ORed with the condition PDIM ≤ π to
maintain one core-mc containing exactly similar data. The
new condition isW (t)/N > 90% , i.e., if the data points
window contains more than90% points, then no need to check
PDIM because the majority of identical data points indicates
some abnormal activity on the network being monitored.
During real-time maintenance, when a new point arrives and
it becomes a part of only one micro-cluster, then, all the other
micro-clusters undergo one time degradation. For each existing
core-mc, if no new point is merged into it, then the weight of
core-mc will decay gradually. If the weight is belowβµ, then
it means that core-mc has become an outlier-mc, it should be
deleted and its memory space should be released for new core-
mc. Similarly, if the weight is aboveβµ then it means that the
outlier-mc has become a core-mc, it should be deleted and
its memory space should be released. Therefore, we need to
check the weight of each micro-cluster periodically. We use a
fixed time period to perform this check at every time window
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interval (N ). In this way any outlier-mc automatically vanishes
if no point merges in it duringN time units.

VI. EXPERIMENTAL EVALUATION

We compare our proposed HSDStream algorithm with
HDDStream [11] which is the recent projected clustering
algorithm for high dimensional data streams. We use corrected
KDD (Knowledge Discovery and Data mining) 1999 [24]
Computer Network Intrusion detection dataset which is typ-
ically used for the evaluation of stream clustering algorithms.
Both algorithms are implemented in MATLAB and run on Intel
i5 Dual Core 2.0GHz with 2 GB RAM.

A. Dataset

To evaluate the performance of clustering algorithm we
use KDD 1999 Network Intrusion detection dataset. This
is the dataset used for The Third International Knowledge
Discovery and Data Mining Tools Competition, which was
held in conjunction with KDD-99 The Fifth International
Conference on Knowledge Discovery and Data Mining. It has
been reported that original dataset contains bugs, therefore,
we use the corrected dataset available online at http://kdd.
ics.uci.edu/databases/kddcup99/kddcup99.html. KDD-CUP’99
Network Intrusion Detection stream dataset which has been
used earlier [8], [9], [10], [11] to evaluate CluSTREAM,
HPStream, DenStream, HDDStream, respectively. This dataset
corresponds to the important problem of automatic and real-
time detection of network attacks and consists of a series of
transmission control protocol (TCP) connection records from
two weeks of local area network (LAN) traffic managed by
MIT Lincoln Labs. Each record can either corresponds to a
normal connection, or an intrusion. Most of the connections
in this data set are normal, but occasionally there could be a
burst of attacks at certain times. In this dataset, attacks fall
into four main categories:

• DOS: denial-of-service e.g., syn flood

• R2L: unauthorized access from a remote machine,
e.g., guessing password

• U2R: unauthorized access to local superuser (root)
privileges, e.g., various “buffer overflow” attacks

• Probing: surveillance and other probing, e.g., port
scanning

The attack-types are further classified into one of 24 types,
such as back, bufferoverflow, ftp write, guesspasswd, imap,
ipsweep, spy, and so on. It is obvious that each specific attack
type can be treated as a sub-cluster. Also, this data set contains
totally 494020 connection records, and each connection record
has 42 attributes or dimensions that belongs to one of the
continuous (35) or symbolic type (7). In the performance
analysis of proposed algorithm we use all 35 continuous
attributes.

B. Cluster Quality Evaluation

Traditional full dimensional clustering algorithms, for ex-
ample, [8] used the sum of square distances (SSQ) to evaluate
the clustering quality. However, SSQ is not a good measure
in evaluating projected clustering [9] because it is a full

TABLE I. PARAMETER VALUES

Parameter Value
N 200
π 30
µ 10
β 0.2
ξ 0.002

initialPoints 1000
ǫ 10
H 1

dimensional measure, and full dimensional measures are not
very useful for measuring the quality of a projected clustering
algorithm. So, as in [9] and [11], we evaluate the clustering
quality by the average purity of clusters, which examines the
purity of the clusters with respect to the true cluster (class)
labels. The purity is defined as the average percentage of the
dominant class label in each cluster [10]. Let there areK
number of cluster in a cluster setK at query time such that
k ∈ K = {1, 2, ...,K}.

purity(K) =

∑K

k=1
|Pd

k
|

|Pk|

K
(10)

where|P d
k | is the number of points with dominant class label in

clusterk and|Pk| is the number of points in clusterk. Intuition
behind the cluster purity is to measure the actual capture of
distinct groups of data points which are known to the given
dataset. The time span in which we measure the purity is called
Horizon window H . It is measured in the number of time
windowsN . In the performance analysisH = 1 otherwise
stated.
Fig. 4-8 show the cluster purity of HDDStream and HS-
DStream. In network streaming data, normal traffic packets
(or points) are random in nature at any particular time in-
terval, however, a network attack is characterized by bursts
of correlated data packets. Therefore, we cannot fit normal
traffic packets in a single cluster. We can fine tune the design
parameters (α, β, ξ, N ) to capture the known types of attacks
or even the unknown abnormal traffic patterns. We can see that
cluster purity can take values from 0 to 1. Cluster purity for
normal network traffic usually varies from 0.5 to 1. It can
go below 0.5 if we have more than50% data points with
more than20% dimensions outside the standard deviation of
cluster in a certain time window. Intuitively, cluster purity is
low if the cluster contains uncorrelated data or in other words,
the normal data traffic. High purity (or purity 1) corresponds
to highly correlated data as a result of some network attack.
In Fig. 4, smurf attack can be seen between34 − 57 time
units (forN = 200) which corresponds to data points7795 to
11489 in the KDD network intrusion database. The network
is again undersmurf attack from 211 to 249 time units.
During the time interval from250 to 365 we encounter with
several attacks (back, ipsweep, nmap, andneptune) along with
correlated normal data so that we can see cluster purity is
equal to 1 for this time interval.Satanattacks the network
from 453 to 455 time units, followed bysmurf attack which
continues till the end of simulations at495 time units. It can be
observed that HDDStream has the same purity graph pattern as
HSDStream but with considerably low magnitude. This is due
to the large number of core-mc(s) in HDDStream and the fact
that percentage purity is inversely proportional to the number
of clusters (10). The average cluster purity for HSDStream
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Fig. 4. Cluster purity with default values of parameters

is 92.57% as compared to the61.18% of HDDStream. Next
we illustrate: Why HSDStream has fewer number of clusters
compared to HDDStream. Since the velocity of points is same
for both schemes, it implies that HSDStream has more points
per cluster than the HDDStream. For HSDStream, mean value
of points in a windowN is given by

EA1(n) =α(1 − α)pn−n
n + α(1 − α)n−n−1pn−1 (11)

+ α(1 − α)n−n−2pn−2 + . . .+ α(1− α)np0

where α = 2/(1+N). Let N = 200 andn = {0, 1, 2, ...199}
with 0 being the first point and199 is the latest point in a
buffer window. Similarly, the mean value of points in window
N is given by

CF1(n)

W
=
2−λ(n−n

N
)

W
pn +

2−λ(n−n−1

N
)

W
pn−1

+
2−λ(n−n−2)

W
pn−2 + . . .+

2−λ( n

N
)

W
p0

Substituting the values of parameters, we getEA1(199) =
0.01p199 + 0.009p198 + 0.0098p197 + ... + 0.0014p0 and
CF1/W = 0.0054p199 + 0.0054p198 + 0.0054p197 + ... +
0.0046p0. Thus, for the same point HSDStream gives larger
mean value than HDDStream. From equation (5), it is obvious
that higher values of mean (center) result in smaller projected
distance, hence larger number of points per cluster and fewer
number of clusters.�
Fig. 5 depicts the cluster purity for default values of param-
eters in bar graph. It can be noticed that HSDStream and
HDDStream are equally good in detecting the attacked points
but the cluster purity for normal traffic is low in HDDStream
because of large number of clusters (low density clusters).
Fig. 6 shows the cluster purity withN = 100. By decreasing
the window size we actually increase the granularity and can
capture smaller attacks. The price for this granularity is the
more processing for the same amount of data. Again the
average value of cluster purity for HSDStream is significantly
larger than the HDDStream:95.23 versus67.31. Fig. 7 and
Fig. 8 show the cluster purities forN = 300 andN = 400,
respectively. We notice that the changing window size has
minimal effect on the average cluster purity.
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Fig. 5. Cluster purity with default values of parameters
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C. Memory Usage

We measure the memory usage as a number of micro-
clusters in HDDStream and HDSStream. During the period
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Fig. 8. Cluster purity withN = 400
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Fig. 9. Number of clusters with default values of parameters

of highly correlated normal data or the network attack, there
is only one core-mc containing all the correlated points and
no outlier cluster exists. It can be seen from the Figs. 10,
11, 12, and 13 that the total number of clusters is reduced to
one during network attacks. When we compare these figures
with different window sizes, we can see that there is a gradual
increase of number of clusters with increasing number of
window size. HSDStream outperforms the HDDStream in
terms of memory usage for all window sizes, which is due
to our reduced memory sized tuple and high density micro-
clusters. Theoretically, the online update ofCF1j requires
N number of memory registers (one for each point’sjth

dimension), whereas,EA1j needs only one memory register,
as shown in Fig. 1 and Fig. 2, respectively.

D. Sensitivity and Delay Analysis

In sensitivity analysis, we show how sensitive the clustering
quality is in relevance to the outlier thresholdβ, and the
processing time with different window sizes. In Fig. 15 we
see that cluster purity improves with increasing values of
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Fig. 10. Number of clusters with default values of parameters with zoom in
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Fig. 11. Number of clusters withN = 100
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Fig. 12. Number of clusters withN = 300

outlier threshold. Outlier threshold controls the limit of the
number of points that make it eligible to become core-mc
or outlier-mc. After the end of each window size, all micro-
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clusters are examine for their eligibility as core or outlier.
For small values ofβ, a cluster remains its current state
for the larger time duration making cluster pollute for larger
duration. Whereas with high values ofβ the cluster changes
its state more quickly (as soon as it violate the condition
NumOfPoints > or < βµ) leaving the cluster more pure.
Fig. 16 shows an important result that we can decease the
memory usage by increasing the outlier threshold. Higher
values of β help remove the outlier points thus reducing
the unnecessary core-mc(s). Since the core-mc(s) are small
proportion of total number of clusters as shown in Fig. 10,
therefore, the total number of clusters do not exhibit significant
improvement in Fig. 17. However, the memory usage argument
remains still valid because core-mc(s) are highly dense and
utilize large proportion of memory.
Finally, we examine the processing time of HDDStream and
HSDStream for different window sizes in Fig. 18. This pro-
cessing time includes the time for the initialization phase and
the data collection for the plotting purpose. It can be seen
that HSDStream outperforms the HDDStream for all window
sizes. This verifies the efficiency of our micro-cluster design
in definition 1 where we need only two multipliers and one
adder as compared to the conventional micro-cluster defined in
definition0 which requiresN number of multipliers andN−1
number of adders with⌊log2(N)⌋ stages delay. For example
if N = 6, then in order to add6 numbers, we need5 adders
which incur3 stages delay as shown in Fig. 14.

VII. C ONCLUSION

This paper presents a clustering algorithm for high-
dimensional high-density streaming data. We propose a new
structure of micro-cluster’s tuples. This structure uses expo-
nential weighted averages to reduce the memory usage and
decrease the computational complexity. We have compared
our scheme with HDDStream with KDD network intrusion
detection dataset. The results show that HSDStream give
significant improvement over HDDStream in terms of cluster
purity, memory usage, and the processing time.
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