(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

A Novel High Dimensionaland High Speed
Data StreamsAlgorithm: HSDStream

Irshad Ahmed Irfan Ah

Departmenbf ComputerScience
National University of Computerand
EmergingSciences|slamabadPakistan

Abstract—This paper presents a novel high speed clustering
scheme for high-dimensional data stream. Data stream clustering
has gained importance in different applications, for example,
network monitoring, intrusion detection, and real-time sensing.
High dimensional stream data is inherently more complex when
used for clustering because the evolving nature of the stream data
and high dimensionality make it non-trivial. In order to tackle
this problem, projected subspace within the high dimensions and
limited window sized data per unit of time are used for clustering
purpose. We propose a High Speed and Dimensions data stream
clustering scheme (HSDStream) which employs exponential mov-
ing averages to reduce the size of the memory and speed up
the processing of projected subspace data stream. It works in
three steps: i) initialization, ii) real-time maintenance of core and
outlier micro-clusters, and iii) on-demand offline generation of
the final clusters. The proposed algorithm is tested against high
dimensional density-based projected clustering (HDDStream) for
cluster purity, memory usage, and the cluster sensitivity. Experi-
mental results are obtained for corrected KDD intrusion detection
dataset. These results show that HSDStream outperforms the
HDDStream in all performance metrics, especially, the memory
usage and the processing speed.

Keywords—Evolving data stream; high dimensionality; pro-
jected clustering; density-based clustering; micro-clustering

The exponential growth in data mining and clustering i
an apparent result of the Internet penetration and the use
the network applications. Network applications have becom
an integral part of our daily life, whether it is related to the

INTRODUCTION
S

academic, research, health care, finance, business, or pub

service domains.
Data sources are monotonically increasing from past fe
decades. Additionally, the technological developments in dat

sensing systems (sensor networks) have resulted in a real—tirﬁg
data with large number of attributes. The large volume of the”
data together with its high dimensionality has motivated the
research in the area of high dimensional data mining and explg
ration. Data stream is a form of data that continuously evolve%:

reflecting the real-time variation in volume, dimensionality,

and correlation. In recent years, a large amount of streamin

data, such as network flows, wireless sensor networks data a
the multimedia streams have been generated. Analyzing a

mining of real-time streaming data have become a hot researja

topic [1], [2], [3]. Discovery of the patterns hidden in the
streaming data imposes great challenges for cluster formatio
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is a collection of objects which are similar between them
and are dissimilar to the objects belonging to other clusters.
Data stream clustering algorithms are used to get important
information from these streams in real-time. These algorithms
search for the clusters that contain streaming objects with
a certain degree of similarity across all dimensions. Stream
clustering algorithms have special challenges that do not face
most other clustering techniques. Storage and time limits are
critical for clustering algorithms to perform a fast single-
pass over that stream data. In addition to this, the evolving
nature of the stream, requires the clustering algorithm to be
highly adaptive to the new patterns. Generally, there are two
types of stream clustering algorithms: full dimensional and
projected or preferred dimension streaming algorithms. Clus-
tering applications in various domains often have very high-
dimensional data; the dimension of the data being in the tens,
hundreds or thousands, for example, in network streaming, web
mining and bioinformatics, respectively. It is often require to
focus on a certain subset of dimensions rather than the full
dimension space because it requires less memory and render
fast processing. In addition to the high dimensionality, real-
time high-speed evolution makes it more intractable. Clustering
such high-dimensional high-speed datasets is a contemporary
challenge. Clustering algorithms must avoid the curse of
dimensionality but at the same time should be computationally
efficient. Some applications that generate data streams include:

g?lecommunication (call records), network operation centers

og information from network entities), financial market (stock
exchange), and day to day business (credit card, automated
ﬁe&ler machine (ATM) transactions, etc). In a high dimensional

ataset, among many features some attributes can be expected

V\t}o be irrelevant for any given object of interest. Irrelevant

gttributes can obscure clusters that are clearly visible when we
nsider only the relevant subspace of the dataset. Therefore,
usters may be meaningfully defined by some of the available
ttributes only. The irrelevant attributes interfere with the
fforts to find targeted clusters. This problem is become more
tensive in streaming data, because it requires a single scan of
e data to find the useful attributes for describing a potential
luster for the current object. Moreover, streams are impulsive
&ld the discovered clusters might also evolve over time. High
mensional streaming data clustering is more challenging than
e high density or high dimensional data. Among various
challenges in clustering high dimensional streaming data [4],
F]ollowing two are the focuses of this paper:

al
e

especially in high dimensional data. By definition, a cluster
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e Processing speed: Data streams arrive continuouslyl1], authors propose a density-based projected clustering
which requires fast and real-time response. The clusscheme for high dimensional data streams called HDDStream.
tering algorithm needs to have processing speediDDStream works in three phases; an initial phase, in which
(which comes from low complexity) such that it can initial set of core micro-clusters is formed, then online core
handle the speed of data streams in the limited time.and outlier clusters’ maintenance with projected clustering, and

. finally, an on-demand offline clustering phase. Compared with

¢ 'V'efglofy #Sﬁge' Iaarge dﬁ“? sdtreams argrhgen?rateﬂfe HPStream which requires the fixed number of clusters, the
{ﬁpl ly‘;" Ic nlee 'tﬁn un '”:'lge mt?mori;-f erelprt?’number of clusters in HDDStream is variably adjusted over

€ clustering algorithm must be optimized for realistiC 16 -~ and the clusters can be of arbitrary shape. SubCMM
memory constraints. suggests a different way for evaluating stream subspace clus-

In this paper, we introduce a novel tuple structure to summarizEring algorithms by making use of available offline subspace
the high speed high dimensional data stream. This structure ngtustering algorithms with the streaming environment to handle
only speed up the process but also requires less memory. Ol €rrors caused by emerging, moving, or splitting subspace
clustering technique also modifies weights in some definition§!USters. A recent, similarity-based Data Stream Classifier
of HDDStream, namely, the micro-cluster variance, projectedSIMC)[14] introduces an insertion/removal policy that adapts
dimensionality, projected distance, and projected radius. |§Vvolving data tendency _and maintains a representative, small
terms of experimental results, we compare our scheme witfet of clusters. It uses instance based learning techniques to

HDDStream for cluster purity, memory usage, and cIuster’{]Orm adaptive clus_tering algorithm. In [1] clustering methqd
ased on a multi-agent system that uses a decentralized

sensitivity. e - .
Notations bottom-up self-organizing strategy to group similar data points
Vectors and matrices are represented by bold letters, othét Presented. It uses bio-inspired flocking model to eliminate
notations are explained below: _the need_ of offline clustering. In [15], auth_ors present a cluster-
R  Set of real numbers ing algorithm for stream data with uncertain attributes has been
N  Set of natural numbers presented in . This scheme works only for low dimensional
C Dataset streaming data. Liu [16] develop HSWStream algorithm. It
N  Window size is a data stream clustering algorithm based on exponential
¢ Radius threshold histogram over sliding windows with projected dimensions.
D Dataset used in initialization phases Another density-based algorithm D-Stream [17] maps each
a  Exponential weighted average constant input data into a grid_, computes _the density of each grid, and
B Outlier threshold forms the clusters using these grids. In [18], authors propose a
1 Number of points threshold scalable algorithm to trace clusters in a high-dimensional data
¢ Variance threshold s’gream._The propos_ed s_cheme transform_s the problem of m_ulti-
¢; j'" preferred dimension dimensional clustering into that of one-dimensional clustering
7 Projected dimensionality threshold along with a frequent item-set mining technique. This scheme

achieves the scalability on the number of dimensions while
sacrificing the accuracy of identified clusters. Bellas et al.
[19] present an online variant of mixture of probabilistic
In the last few years many research works have been dorgincipal component analyzers (MPPCA) to model and cluster
on high-dimensional data clustering and evolving data streamthe high dimensional high speed data. But to do so, it is
clustering. There are extensive research works on clusteringecessary to add a classification step at the end of the online
algorithms for static datasets [5], [6], [4] where some of themMPPCA algorithm to provide the expected clustering. MuDi-
have been further extended for evolving data streams. Th&tream [20] is a hybrid grid-based multi-density clustering
clusters are formed based on a Euclidean distance functicgorithm with online-offline phases. In the online phase, it
like k-means algorithm [7]k-mean clustering splits the d-  keeps summary information of evolving multi-density data
dimensional points intd cluster ¢ < n). One of the well- stream in the form of core micro-clusters. The offline phase
known extensions ok-means on data streams is presentedyenerates the final clusters using an adapted density-based
by Aggarwal et al. [8]. They propose an algorithm calledclustering algorithm. The grid-based method is used as an
CluStream based ok-means for clustering evolving data outlier buffer to handle both noises and multi-density data in
streams. CluStream introduces an online-offine method foorder to reduce the merging time of clustering. MuDi-Stream
clustering data streams. CluStream clustering idea is adoptesl not suitable for high-dimensional data since the number
in the majority of data stream clustering algorithms. Aggarwalof empty grids increases which requires longer processing
et al. extended their work in HPStream [9], which intro- time. SE-Stream [21] is a standard-deviation based projected
duces the projected clustering to data streams. In projectedustering method to support high dimensional data streams. It
clustering high dimensional stream data is partitioned basefbrms clusters within subgroups of dimensions and can detect
on the preferred dimensions instead of full the dimensionathange in the clustering structure during the progression of
space. Cao et al. [10] use the density-based clustering withodtata streams. SED-Stream [22] is an extension of SE-Stream,
projected dimensions in DenStream algorithm. For streamingn which some selected dimensions are used to represent the
data, although a considerable research has tackled the fultfusters to increase the quality of the output clustering. SED-
space clustering, relatively limited work deals with the sub-Stream projects any cluster to its discriminative dimensions
space clustering. These few researches include [9] HPStreanmat are highly relevant to the cluster itself but distinguished
[11] HDDStream, and [12] SubCMM. A more comprehen-from the other clusters. SED-Stream is better than its previous
sive review and classifications are given in survey [13]. Inversion, SE-Stream, in terms of purity and f-measure. Both SE-
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Streamand SED-Stream use fading cluster structéret(uple)
of the form similar to in section Il definitiod with two extra
elements.

This paper presents High Speed and Dimensions data stream ______ [ [ [ [
clustering scheme (HSDStream) which introduces a novel Data Poj | P1j | P2y P-1
tuple structure to summarize the high speed high dimensional stream
data stream. This structure not only speed up the process Pij x
but also requires less memory. Our clustering technique also
modifies weights in some definitions of HDDStream, namely,
the micro-cluster variance, projected dimensionality, projected
distance, and projected radius. In terms of experimental results,
we compare our scheme with HDDStream for cluster purity,
memory usage, and cluster’s sensitivity.

Time—»

N0 [ gD [ 5A@ | s 2 AN1)

IIl. PROBLEM FORMULATION

In general, data stream is modeled as an infinite se-
ries of points {pi,p2,...,p:, ...} arriving at discrete time
{t1,t2,...t;, ...}. Each pointp; is a vector of dimension such

thatp; = {pi1,pi2, s Pid}- CF1(t)
]

An important characteristic of data streams is that we
cannot store all data points. A usual way to overcome this
problem is to summarize the data through an appropriate
summary structure, often called micro-cluster. A micro-cluster
summarizes the time and dimensionality limited stream data iffig. 1. Practical approach to update micro-cluster tuple
the form of a tuple. When aging is also under consideration, the
temporal extension of micro clusters [9] is employed. Recent

research works [9], [11] use the following definition of micro- POINt here that the online update of the tugples [9], [11] of
cluster: the form me(t) = {CF1(t) + p, CF2(t) + p*, W(¢t) + 1}

Definition 0. (Micro-clustermc) is not practically feasible because it leads to monotonically
A micro-cluster at timet for a set of d-dimensional data ncreasing weighted sum data. A practical approach for up-
points C = {po.p1,...pn_1} arriving at discrete time dating the tuple is shown in Fig. 1. It is obvious that for a
tott. 1, 0 summarized a2( + 1) size tupleme(t) —  fixed size memory shift register, when a new point arrives the
{(’JFEL({) CFﬁ(t) W (1)}, whereCF1(f) and CF2(t) ared old point is discarded. The correct mathematical expression for
dimensional vectors, defined as: online update, then, becomese¢(t) = {CF1(t)—CF1y_;+
p, CF2(t) = CF2y_1 + p*, W (t) — f(t —ty-1) + 1}, such
e CF1(t) is the d-dimensional vector of weighted thatfor dimensiory we haveCFly_1,; = pn—1,;f(t—tn-1)
sum of points{py, po, ..., pi, ...} along each dimen- andCF2y_y; =p%_, ;f(t —tn_1).
sion, such that for dimensiop we haveCF'l; = We define micro-cluster as follows:
Yoico DPijf(t —t;), where N is the size of time _ ) , )
window, p; ; is the i** point in time window and Definition 1. (Micro-clustermc) We redefine the micro-cluster
F(t—t) isﬂjthe weight of the™ point. as a set of point§ = {po, p1,...,Pn_1} arriving at discrete
’ time pointstg, t1, ..., ty_1. Themec is summarized a2 + 1)
e CF2(t) is the d-dimensional vector of weighted sum size tuplemc(t) = {EA1(t), EA2(¢), W (¢)}, whereEA1(t)
of the squares of the poin{p, p2,...,ps,...} along  andEA2(t) ared dimensional vectors, defined as:

each dimension, such that for dimensiprwe have . . . .
CF2; = Zi]\:olp?,jf(t —t,), whereN is the size of o EAIL(¢) is the d-dimensional vector of exponential

weighted moving average of poinfp1, p2, ..., Pi, --- }

time window,p; ; is thei"" point in time window and along each dimension, such that for dimensjowe

N : h o
J(t = t:) is the weight of the™ point have EAL (1) = ap, (t)+ (1 —a) EAL,(t — 1), where

e T¥(¢t) is the sum of the weights of data points, math- a = 2/(1+ N) is a smoothing factor controlled by
ematically, W (t) = Z?\fol f(t—t). the size of time window; ang,(¢) is the latest point

in time window.

In data streams, since we are more interested in the data
within a certain recent time window instead of all historical

data, an aging effect has been used for weighted function

EA2(t) is the d-dimensional vector of exponential
weighted average of pointsps, ps, ..., pi, ...} along
each dimension, such that for dimensiprwe have

W (t). Recent works [9], [11] have used conventional expo- PR B (4
nential fading functionf(t) = 2**, where \ is the decay EA2;(t) = ap;(t) + (1 — ) EA2;(t — 1).
rate. By using fading functiory(¢) we need to maintain a e W(t) is the sum of the of data points at time

memory buffer of time window size for each cluster, because,
whenever a new point arrives we need to shift the previous data In order to formalize aging effect of data we introduce
in the buffer of fixed size. We want to highlight an important exponential moving average of data stream within a specified
383|Page
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other dimensions. Therefore, we use only two-valued weight
EAL() vector. It can be easily determined from the preferred dimen-
pt) sion vector by counting the number of dimensions with the
normalization factorp. The intuition of calculating projected
dimensionality is to find projected core micro-cluster, i.e.,
a the clusters with some subspace of dimensions instead of all
dimensions.

Definition 5. (Projected Radius) Letwc be a micro-cluster,
£ € R, andp € R is a constanp > 1. The projected radius
of mc is given by:

d
Fig. 2. Exponential moving average based update of micro-clusgee t ry (mc) — Z ﬁ (EAZj(t) _ (EAlj (t))Q) (4)
: 0
Jj=1

time window. We use exponential weighted moving average itwhere ¢ normalizes the variance along each dimension. This
the tuple as decreasing exponential function. Note that, now thig the projected radius that takes into account the preferred
calculation ofEA1(¢) or EA2(¢) does not require storage of dimensions of the micro-cluster.
past values, and only one addition and two multiplications wit — . .
one memory register (of the size of dimensigrare required "Defintion 6. (Projected Distance) Lep € D and mc be

to update the tuple at any time instance. Design implementatio\ii, projected m|c_ro-cluste_r with dimension prefer_ence vector
of our micro-cluster update is shown in Fig. 2. (mc). The projected distance betwegnand mc is given
Data stream contains high dimensional data where eaclﬂy'
dimension has its own importance. In order to collate the 7
similar points in data stream we use variance along each dist?™ I (p, mc) = Z%(pj — centery')? (5)
Jj=1

dimension. The lower the variance the higher the correlation
among the points in particular dimension. We use variance
as a metric to limit the number of dimensions to preferredwherecenter™c is the center of micro-clustenc and is given

dimensions only. by center™¢ = EAL1(t).
Definition 2. (Preferred Dimension) A dimensighis said to . . . .
be a preferred dimension ¥ ar;(mc) < &, where¢ is the Now we introduce the notion of core-projected: which
variance threshold antar;(mc) is the variance ofnc along IS @n essential component of density based clustering. A core-
dimensionj, defined as: - pl’.Oj.ectedmc.IS amc thqt contains at Ie_a$t number of.pomts
within a projected radius of with projected dimensionality
Varj(me) = EA2;(t) — (EA1,(t))? (1)  less than a threshold.

efinition 7. (Core Projected Micro-cluster) Let¢ € R and
1 € N. A micro-clustermc is called a core projectethc
the preference dimensionality ofic is at mostr and it
contains at least points within its projected radius formally:

The preferred dimension helps gather the data points WhiCH
have preferred dimensions less than a pre-defined thresholﬁl’.
Intuitively, it indicates the similarity across dimensions con-
trolled by the variance threshold)( In conjunction with

preferred dimension, we define the preferred dimension vector. CORE’% (mc) <=
Definition 3. (Preferred Dimension Vector) Every micro- (re(mc) <e) A (W(t) > p) A (PDIM < ). (6)
cluster has a preferred dimension vector defined as: In other words, a micro-clustenc is a core projectedhc iff
| U(me) = {¢1, 2, ..., a} 2) (1) ro(me) < ¢
- {0 s <& @ orne
) ' (3) PoIM <7

where¢ € R, andg € R is a constanb > 1. The number . ) ]

of elements in preferred dimension vector gives the projected There might be micro-clusters that do not fulfill the above
dimensionality of the micro-cluster. The term ’projected’ dif- constraints either because their associated number of points
ferentiates the micro-cluster defined over s projected subspaé® smaller thanu or because their projected dimensionality
of the feature space instead of the whole feature space. exceedsr. These micro-clusters are treated as outliers.

Definition 4. (Projected Dimensionality) Let € C and¢ € R.  Definition 8. (Outlier Micro-cluster) Lete,{ € R and, 1 €
The number of dimensiong with Var;(mc) < ¢ is called N. A m!cro-glus_termc is called a outllemc, if its prolected
projected dimensionality of.c and denoted by BM (mc). dimensionality is at least and its projected radius and
Neighbors are at mostand ., respectively, formally:
Weighting the dimensions inversely proportional to their
variance is not useful because we are only interested in
distinguishing between dimensions with low variance and all (PDIM > 7) A (re(me) <€) A (W(t) < p). (7)

384|Page
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In orderto keep update the micro-clusters, i.e., to check
for possible conversion of core micro-cluster to outlier micro-
cluster and vice versa, we introduce an outlier threshole (

B < 1) such that an outlier micro-cluster becomes a potential
core micro-cluster i’ > Su in addition to the conditions in
(6) . Similarly, a core micro-cluster becomes a potential outlier
micro-cluster if W < Sp in addition to the conditions in (7).
The micro-cluster can be easily maintained online when a new
point arrives in a cluster and othetc need time degradation.

Core-queue

All points in projected weighted e-neighbors of o

Filter out all
points already
in cluster orin

core- queue

Projected weighted
e-neighbors of p

Yes/No
If No: then this is a
border point of
cluster
If Yes: then it goes
to cluster and its
neighbor undergo
further processing

Remark. (Online maintenance) The micro-cluster defined
in definition 1 holds simple additive property that facilitates
the online maintenance.

e If a pointp arrives at time, then the updated tuple is
given byme(t) = {ap + (1 — a)EAL(t — 1), ap® +

(1-—a)EA2(t—1),W({t—-1)+1}.

If no point adds in a micro-cluster at timethen the
updated tuple is given byiwc(t) = {(1 — ) EAL(t —
1), (1 —a)EA2(t — 1), W (t —1)}.

Fig. 3. Generation of initial set of micro-clusters

are still unclassified. This process repeats until the queue
is empty and the cluster is computed. The flow chart of
algorithm is shown in Fig. 3. Remove all those points belong
to calculated cluster from datasBtand repeat the process for

another core point. This process remains continue till all the

HSDStream algorithm can be divided into three parts: 1)°0re points are exhausted.
initialization to produce a set of representative core micro-
cluster (core-mc) from an initial chunk of data points, 2) onlineB. Real-time Maintenance of Micro-clusters
maintenance of core-mc and outlier micro-cluster (outlier-mc), ' : . .
In order to find out the clusters in an evolving real-time

and, 3) the on-demand offline generation of the final clusters. S ;
data stream, we maintain two groups of micro-clusters, namely,
core-mc and outlier-mc in real-time. All the micro-clusters are
maintained in a separate memory space. A new point might be
In order to get initial set of micro-clusters from a fixed assigned to core-mc, outlier-mc, or it may start new outlier-mc
size of data points, we apply density-based projected clusteringepends upon various factor. Sequential process of merging a
algorithm, a variant of PreDeCon algorithm [23], which is new pointp is described below:

IV. THE HSDSIREAM ALGORITHM

A. Initialization

designed to work for fixed size of high dimensional data.
Let D be a set of initial chunk of d-dimensional data points
(D C R9). For each poinp € D, we find a set of—neighbors

Nc(p), wheree is the radius threshold. In addition to this, we
find the neighbors of with projected distance equal to or less

than thee, namely, N/ () (p).

Definition 9. (Projected Distance of a Point) Letq € D.
The projected distance of a poiptwith any pointq is given

by:

Vi

®) (4 (p) - di(e))?

0

d
disty(p.q) = 4| > (8)
i=1

where d;(p) is the it" dimension of pointp. Note that, in
generaldist,(p,q) # dist,(q,p) because of the projected
dimension vectors of pointandg. In order to get symmetrical
distance betweep andq we use maximum oflist,(p, ¢) and

dist,(q,p).

A projected core point € D can be defined with the same
intuition of projected micro-cluster in definition 7.

CORE"™ (0) <= PDIM(N,(0)) < 7 AINEP) (0)] > 1 (9)

The initialization function in algorithm 1 line 5 runs the
algorithm for the creation of initial set ofnc. It starts by
inserting all points in the sel. (o) into a queue. For each
point in the queue, it computes all directly projected weighted

reachable points and inserts those points into the queue which

1) When a new point arrives, it first becomes the candidate
of core-mc (algorithm 1, line 13). The projected dimen-
sionality of each core-mc has been evaluated before and
after adding this poinp (algorithm 2, line 4). After that,
projected distance gb is calculated with those core-mc
which still satisfy the projected dimensionality constraint,
i.e., after the addition of poinp (algorithm 2, line 6).
Then, we choose one core-mc which has smallest pro-
jected distance fromp (algorithm 2, line 9). Finally, the
projected radius of chosen core-mcificluded) has been
evaluated and checked for upper bouiag (algorithm 2,

line 11). If it satisfies, then poinp is assigned to that
core-mc (algorithm 2, line 12 using update tuple function
in algorithm 4), else it becomes candidate of outlier-mc
list.

When a new point becomes a candidate for an outlier-
mc, the projected distance ¢f with each outlier-mc is
evaluated (algorithm 3, line 4). The closest distant outlier-
mc is chosen in line 6. The poiptbecomes the member
of that outlier-mc if the projected radius is less than or
equal to the radius threshold) ((algorithm 3, line 9). In
order to get long term effect we check the possibility of
outlier-mc to core-mc conversion after certain number of
points (window sizeN).

If point p cannot be added in core-mc or outlier-mc
(algorithm 3, line 14) then a new outlier-mc is created
with this point being the first element. It may become the
seed of future core-mc.

2)

3)

385|Page

www.ijacsa.thesai.org



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 9, 2016

Algorithm 1 HSDSteam main

Algorithm 3 Add dag point to outlier-mc

25:
26:
27:

28:

NouhwnE

. Initialization

. initial parametersr, £, e, N

. datastream = {p1, P2, ..., Pi, -}

sinitial Buf fer = readData(numO fIntial Points)

core_mc = initialization_fn(initial Buf fer)

: for i =1 to numOfMc do

mcTuple = create M cT'uples(core_mc)
{It creges mcTuple = {EAL(t),EA2(t),W(t)}, an
numO fMece x (2d + 1) matrix}

: end for
: while Stream has data pointo

windowBuf fer = readData(N)
for i =1to N do
pi = windowBuf fer(i) Il i-th point from windowBuffer
[trial_core, mcTuple] = addpToCoreMc(p;, mcTuple)
if trial_core == 1 then
Degrade all outlierTuples
else
[trial_outlier, outlierTuple] =
addpToOutlier M c(p;, outlierTuple)
end if
if trial_core == 0 && trial_outlier == 0 then
newOQutlier M c = createOutlier Mc(p;)
update outlierTuple list
end if
end for
{core-mc to outlier-mc conversion
[movedM cTuples, remainingM cTuples] =
moveM cTuples(mcTuples)
{outlier-mc to core-mc conversion
[movedOutlierTuples, remainingOutlierTuples] =
moveOutlierTuples(outlierTuples)
updatedM cTuples =
movedOutlierTuples
updatedOutlierTuples =
movedM cTuples
end while

remainingM cTuples  +

remainingOutlierTuples +

Algorithm 2 Add dat point to core-mc

ooNoaRrONE

: addpToCoreMc(p,mcTuples)
: for ¢ = 1 to numO fTuples do

updatedTuples = updateTuple_fn(p, mcTuple(i))
Calculate updated ®m // using definition 4
if PDIM < 7 then

Calculate projected distance // using definition 6
end if

: end for

. core_mec_closest = min(projectedDistances)

: Calculate projected radiusy (core_mc_closest) Il using definition 5
2 if rg (core_mc_closest) < e then

mcTuple = updateTuple_fn(p, mcTuple)
Update all other mcTuples with one degradation
return trial_core =1

el

Degrade all mcTuples
return trial_core =0

s end if

and the chain of core points which satisfy-neighborhood

. Clusters Generation: Offline

: addpToCoreMc(p,oulierTuples)

: for ¢ = 1 to numO fOutlierTuples do
updatedTuples = updateTuple_fn(p, mcTuple(i))
Calculate projected distance // using definition 6

end for

: core_mec_closest = min(projectedDistances)

: Calculate projected radiusy (outlier_mc_closest) Il using definition 5

L if ro (outlier_me_closest) < e then

outlierTuple = updateTuple_fn(p, outlierTuple)

10: Update all other outlierTuples with one degradation

11: return trial_outlier = 1

12: el

13: Degrade all outlierTuples

14: return trial_outlier = 0

15: end if

Algorithm 4 UpdateTuple function

: updateTuple_fn(p, Tuple)

cEAL1(t — 1) = Tuple(1 : d)

:EA2(t — 1) = Tuple(d + 1 : 2d)

W (t — 1) = Tuple(end)

EAl1(t) =ap+ (1 —a)EA1(t —1)

: EA2(t) = ap? + (1 — a)EA2(t — 1)

W) =W(E—1)+1

s newTuple = {EA1(t), EA2(¢t), W ()}

NI WN R

criteria and maximum dimensionality become the member

of that cluster. During offline on-demand clustering phase,
each core-mc acts as core point. Each core-mc is regarded
as a virtual point located at the center of core-mc. We use the
concept of density connectivity to determine the final clusters,
i.e., all the density-connected core-mc(s) form a cluster.

V. DISCUSSION

In this section we highlight issues and challenges in the
development of high dimensional data stream clustering in
Internet traffic monitoring. We maintain the density with
e—neighborhood and minimum number of poinptsn a core-
mc. When an identical burst of data (in case of attack on
network) arrives, outlier-mc(s) are diminished and only one
core-mc remains there. In this case, an important entity of
core-mc formation i.e., projected dimensionality cannot work
because, now®M = d and it no longer satisfies the condition
PpiM < 7. In order to overcome this problem we introduce
another condition ORed with the conditiobi < 7 to
maintain one core-mc containing exactly similar data. The
new condition isW(¢t)/N > 90% , i.e., if the data points
window contains more tha®0% points, then no need to check
PpDim because the majority of identical data points indicates
some abnormal activity on the network being monitored.
During real-time maintenance, when a new point arrives and
it becomes a part of only one micro-cluster, then, all the other
micro-clusters undergo one time degradation. For each existing

The re&time maintained micro-clusters capture the densitycore-mc, if no new point is merged into it, then the weight of
area and the projected dimensionality of data streams. Howeore-mc will decay gradually. If the weight is bela$y:, then

ever, in order to get meaningful clusters, we need to applyt means that core-mc has become an outlier-mc, it should be
some clustering algorithm to get the final result. When a clusdeleted and its memory space should be released for new core-
tering request arrives, a variant of PreDeCon algorithm [23] isnc. Similarly, if the weight is abovgu then it means that the
applied on the set of real-time maintained core-mc(s) to get theutlier-mc has become a core-mc, it should be deleted and
final result of clustering. In density-based PreDeCon, a corés memory space should be released. Therefore, we need to
point starts a micro-cluster, all the directly connected pointsheck the weight of each micro-cluster periodically. We use a

fixed time period to perform this check at every time window
386|Page
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. . . . . TABLE I. PARAMETER VALUES
interval (V). In this way any outlier-mc automatically vanishes
if no point merges in it duringV time units. Paff;lvmetef ZV;(')UE
g 30
VI. EXPERIMENTAL EVALUATION 7 10
8 02
We compare our proposed HSDStream algorithm with e 0.002
HDDStream [11] which is the recent projected clustering fritial Points 1090
algorithm for high dimensional data streams. We use corrected H 1

KDD (Knowledge Discovery and Data mining) 1999 [24]

Computer Network Intrusion detection dataset which is typ-

ically used for the evaluation of stream clustering algorithmsdimensional measure, and full dimensional measures are not
Both algorithms are implemented in MATLAB and run on Intel very useful for measuring the quality of a projected clustering

i5 Dual Core 2.0GHz with 2 GB RAM. algorithm. So, as in [9] and [11], we evaluate the clustering
quality by the average purity of clusters, which examines the
A. Dataset purity of the clusters with respect to the true cluster (class)

To evaluate the performance of clustering alaorithm WeIabels. The purity is defined as the average percentage of the
use KDD 1999 NetF\)/vork Intrusion detectiong da%aset Thisdominant class label in each cluster [10]. Let there &fe
: number of cluster in a cluster st at query time such that

is the dataset used for The Third International Knowledgqf ek ={1,2,. K}
Discovery and Data Mining Tools Competition, which was ol
held in conjunction with KDD-99 The Fifth International K |PY
Conference on Knowledge Discovery and Data Mining. It has writy(K) = 2k [P ] (10)
been reported that original dataset contains bugs, therefore, purtty K

we use the corrected dataset available online at http://kdd. gl ) ) ) .
ics.uci.edu/databases/kddcup99/kddcup99.html. KDD-CUP’9¥/here| ] is the number of points with dominant class label in
Network Intrusion Detection stream dataset which has beeflusterk and|Fy| is the number of points in clustér Intuition
used earlier [8], [9], [10], [11] to evaluate CIUSTREAM, b_eh_md the cluster purity is to measure the actual capture of
HPStream, DenStream, HDDStream, respectively. This datas@iStinct groups of data points which are known to the given
corresponds to the important problem of automatic and readataset. The time span in which we measure the purity is called
time detection of network attacks and consists of a series df0rizon window /7. It is measured in the number of time
transmission control protocol (TCP) connection records fromVindows N. In the performance analysi# = 1 otherwise

two weeks of local area network (LAN) traffic managed by Stated. _

MIT Lincoln Labs. Each record can either corresponds to a9 4-8 show the cluster purity of HDDStream and HS-
normal connection, or an intrusion. Most of the connectiondStréam. In network streaming data, normal traffic packets
in this data set are normal, but occasionally there could be §F Points) are random in nature at any particular time in-
burst of attacks at certain times. In this dataset, attacks faff"val, however, a network aftack is characterized by bursts

into four main categories: of correlated data packets. Therefore, we cannot fit normal
traffic packets in a single cluster. We can fine tune the design
e DOS: denial-of-service e.g., syn flood parametersd, 3, £, N) to capture the known types of attacks

or even the unknown abnormal traffic patterns. We can see that

cluster purity can take values from 0 to 1. Cluster purity for

normal network traffic usually varies from 0.5 to 1. It can

e U2R: unauthorized access to local superuser (rootyo below 0.5 if we have more thas0% data points with
privileges, e.qg., various “buffer overflow” attacks more than20% dimensions outside the standard deviation of

cluster in a certain time window. Intuitively, cluster purity is
€.9., POriqy if the cluster contains uncorrelated data or in other words,
the normal data traffic. High purity (or purity 1) corresponds

The attack-types are further classified into one of 24 typed© highly correlated data as a result of some network attack.
such as back, buffeoverflow, ftp write, guesspasswd, imap, " Fig. 4, smurf attack can be seen betweda — 57 time
ipswe@, spy, and so on. It is obvious that each specific attackNits (for V= 200) which corresponds to data poiritg95 to
type can be treated as a sub-cluster. Also, this data set contaih&!89 in the KDD network intrusion database. The network
totally 494020 connection records, and each connection recofg 29ain undersmurf attack from 211 to 249 time units.
has 42 attributes or dimensions that belongs to one of thPuring the time interval from250 to 365 we encounter with
continuous (35) or symbolic type (7). In the performanceSeveral attacksback ipsweepnmap andneptung along with

analysis of proposed algorithm we use all 35 continuougerrelated normal data so that we can see cluster purity is
attributes. equal to 1 for this time intervalSatanattacks the network

from 453 to 455 time units, followed bysmurf attack which
continues till the end of simulations &5 time units. It can be
observed that HDDStream has the same purity graph pattern as
Traditional full dimensional clustering algorithms, for ex- HSDStream but with considerably low magnitude. This is due
ample, [8] used the sum of square distances (SSQ) to evaluat® the large number of core-mc(s) in HDDStream and the fact
the clustering quality. However, SSQ is not a good measuréhat percentage purity is inversely proportional to the number
in evaluating projected clustering [9] because it is a fullof clusters (10). The average cluster purity for HSDStream
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e R2L: unauthorized access from a remote machine
e.g., guessing password

e Probing: surveillance and other probing,
scanning

B. Cluster Quality Evaluation
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@ ] L
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— — mean
0
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. . . " . . .
50 100 150 200 250 300 350 400 450 500
Time units

o
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. . ) Fig. 5. Cluster purity with default values of parameters
Fig. 4. Cluster purity with default values of parameters

Cluster purity
100
is 92.57% as compared to thé1.18% of HDDStream. Next o ‘ ’ ’] [ I 7
we illustrate: Why HSDStream has fewer number of cluster:
compared to HDDStream. Since the velocity of points is samu 80 1
for both schemes, it implies that HSDStream has more point 0 ]
per cluster than the HDDStream. For HSDStream, mean valu
of points in a windowN is given by z® } 1
2 5 |
EAl(n) =a(l —a)p,™" + ol —a) P (11) 3 4 ]
+a(l=a)" " ?pyo+...+a(l —a)"po 2 |
wherea =2/(1+ N). Let N = 200 andn = {0, 1, 2,...199} 20 1
with 0 being the first point and99 is the latest point in a 10 HDDStream i
buffer window. Similarly, the mean value of points in window | nepsvean)
N is given by % 200 400 600 800 1000
Time units
CF1(n) 277F9) 2-A(P%—)
W W Pn + W Pn—1 Fig. 6. Cluster purity withN = 100
9—An—n=2) 2—A%) _
g Pa-2 F e o 100 Cluster purity 4 4
Substtuting the values of parameters, we ga@a1(199) = of | N
0.01p199 + 0.009p193 + 0.0098p197 + ... + 0.0014py and 80

CF1/W = 0.0054p199 + 0.0054p19s + 0.0054p197 + ... +
0.0046pg. Thus, for the same point HSDStream gives largel
mean value than HDDStream. From equation (5), it is obviou: -

that higher values of mean (center) result in smaller projecte i
distance, hence larger number of points per cluster and fews
number of clusterl )
Fig. 5 depicts the cluster purity for default values of param- 30 1
eters in bar graph. It can be noticed that HSDStream an HDDStream |
HDDStream are equally good in detecting the attacked point — — mean

but the cluster purity for normal traffic is low in HDDStream 10f] _ iobsueam 1
because of large number of clusters (low density clusters ‘ ! ‘ ‘ ‘ ‘

Fig. 6 shows the cluster purity with = 100. By decreasing 0 50 0010 200 WO 30 30
the window size we actually increase the granularity and cai.

capture smaller attacks. The price for this granularity is the o

more processing for the same amount of data. Again th&!9- 7- Cluster purity with\V = 300

average value of cluster purity for HSDStream is significantly
larger than the HDDStrean95.23 versus67.31. Fig. 7 and
Fig. 8 show the cluster purities fa¥ = 300 and N = 400,
respectively. We notice that the changing window size has We measure the memory usage as a number of micro-
minimal effect on the average cluster purity. clusters in HDDStream and HDSStream. During the period
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Fig. 8. Cluster purity withNV = 400 20
core-mc HDDStream
outlier-mc HDDStream
core-mc HSDStream ]
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outlier-me HSDStream f| 2
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£
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0
0 100 200 300 400 500 Fig. 11. Number of clusters wittv = 100
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Fig. 9. Number of clusters with default values of parameters 250
core-mc HDDStream
outlier-mc HDDStream
. core-mc HSDStream
of highly correlated normal data or the network attack, there 2000 outlier-me HSDStream |
is only one core-mc containing all the correlated points anc
no outlier cluster exists. It can be seen from the Figs. 10 ¢
11, 12, and 13 that the total number of clusters is reduced t 3 1s0 1
one during network attacks. When we compare these figure §
with different window sizes, we can see that there is a gradue £
increase of number of clusters with increasing number o g 100 1
window size. HSDStream outperforms the HDDStream in §
terms of memory usage for all window sizes, which is due
to our reduced memory sized tuple and high density micro 50 ]
clusters. Theoretically, the online update ©f'1; requires
N number of memory registers (one for each point*é o A
dimension), whereagy A1; needs only one memory register, 0 50 100 150 200 250 300 350
Time units

as shown in Fig. 1 and Fig. 2, respectively.

: Fig. 12. Number of clust it = 300
D. Sensitivity and Delay Analysis 9 Hmber ot clusters Wi

In sensitivity analysis, we show how sensitive the clustering
quality is in relevance to the outlier threshol and the

outlier threshold. Outlier threshold controls the limit of the

processing time with different window sizes. In Fig. 15 we number of points that make it eligible to become core-mc
see that cluster purity improves with increasing values obr outlier-mc. After the end of each window size, all micro-
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Fig. 13. Number of clusters witt = 400 CF1i(t)

clusters are examine for their eligibility as core or outlier. rig 14 processing time delay in conventional micro-cluster tepdéth
For small values of3, a cluster remains its current state N =6

for the larger time duration making cluster pollute for larger

duration. Whereas with high values gfthe cluster changes

its state more quickly (as soon as it violate the condition HSDStream cluster purity w/ beta=0.2
NumO fPoints > or < ) leaving the cluster more pure. ! ‘ ‘ ‘ V\/‘\
Fig. 16 shows an important result that we can decease tt OBWWWM |
memory usage by increasing the outlier threshold. Highe '
values of 5 help remove the outlier points thus reducing o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
the unnecessary core-mc(s). Since the core-mc(s) are sm 6 1 20 3 40 50 & 70 8 90
proportion of total number of clusters as shown in Fig. 10, N HSDStream cluster purity w/heta=04
therefore, the total number of clusters do not exhibit significan ol W \/ V |
improvementin Fig. 17. However, the memory usage argumer '
remains still valid because core-mc(s) are highly dense an 06r i
utilize large proportion of memory. 0 30 20 20 s 70 8 90
Finally, we examine the processing time of HDDStream anc HSDStream cluster purity w/ beta=0.6
HSDStream for different window sizes in Fig. 18. This pro- 1 ‘ ‘ ‘
cessing time includes the time for the initialization phase anc 08} W .
the data collection for the plotting purpose. It can be seel o6l ]
that HSDStream outperforms the HDDStream for all window 0s ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
sizes. This verifies the efficiency of our micro-cluster design 0 10 20 30 40 5 60 70 80 90
in definition 1 where we need only two multipliers and one ) ‘ HSDStream cluster purity w/ beta=08
adder as compared to the conventional micro-cluster defined |
definition0 which requiresV number of multipliers anaV — 1 08y \,\W i
number of adders withlog,(N)| stages delay. For example 06y 1
if N =6, then in order to adéd numbers, we need adders 0.4 : t t t t t t t

. . . . 0 10 20 30 40 50 60 70 80 90
which incur3 stages delay as shown in Fig. 14. Time units

Fig. 15. Cluster purity for different values
VIlI. CONCLUSION 9 purity o

This paper presents a clustering algorithm for high-
dimensional high-density streaming data. We propose a new _ o _ '
structure of micro-cluster’s tuples. This structure uses expo-[1] ?- F?festl_em, C-IFfIZZLéth and G. S%ezzzno, “A single plc’li_SS 'ﬁé;ggﬂthm

H H orc usterlng evolving ata streams based on swarm intel ige

nential weighted averages to reduce _the memory usage and Mining and Knowledge Discoveryol. 26, no. 1. pp. 1-26, Jan. 2013.
decrease the computational complexity. We have compare(? _ _ _ .

heme with HDDStream with KDD network intrusion 21 K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong, "A survey on
our SC_ . enhanced subspace clusterinéta Mining and Knowledge Discovery
detection dataset. The results show that HSDStream give vol. 26, no. 2, pp. 332-397, Mar. 2013.
S'Qr_"ﬁcam Improvement over HDDStrea;m In terms of cluster (3] c. c. Aggarwal, “A segment-based framework for modeling and mining
purity, memory usage, and the processing time. data streams,Knowledge and Information Systenwel. 30, no. 1, pp.
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