
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Scheduling in Desktop Grid Systems: Theoretical
Evaluation of Policies & Frameworks

Muhammad Khalid Khan
College of Computing & Information

Science
Pakistan Air Force – Karachi

Institute of Economics &
Technology, Karachi, Pakistan

Dr. Tariq Mahmood
Institute of Business Administration,

Karachi,
Pakistan

Syed Irfan Hyder
Institute of Business Management,

Karachi,
Pakistan

Abstract—Desktop grid systems have already established
their identity in the area of distributed systems. They are well
suited for High Throughput Computing especially for Bag-of-
Tasks applications. In desktop grid systems, idle processing
cycles and memory of millions of users (connected through
internet or through any other communication mechanism) can be
utilized but the workers / hosts machines not under any
centralized administrative control that result in high volatility.
This issue is countered by applying various types of scheduling
policies that not only ensure task assignments to better workers
but also takes care of fault tolerance through replication and
other mechanism. In this paper, we discussed leading desktop
grid systems framework and performed a comparative analysis
of these frameworks. We also presented a theoretical evaluation
of server and client based scheduling policies and identified key
performance indicators to evaluate these policies.

Keywords—desktop grid systems; task scheduling policies; work
fetch policies

I. INTRODUCTION
The advancements in the domain of distributed computing

have opened up new horizons for high-end computing and
storage. Particularly, desktop grid systems have laid down a
much cheaper path towards the same. Desktop grid systems
utilize idle processing cycles and memory of millions of users
connected through Internet, or through any other type of
network. This requires decomposition of computationally
infeasible problems into smaller problems, distribution of
smaller problems to the host / volunteer computers and
aggregation of results from these volunteers to from solutions
to large-scale problems.

Desktop grid systems can be divided into two categories
[48]. When the computers of an enterprise are used to
decrease the turnaround time of a compute intensive
application, it is called enterprise wide desktop grids or simply
desktop grids. The other category is volunteer computing in
which home and enterprise computers take part by
volunteering idle processing cycles to achieve high
throughput.

The desktop grid system infrastructure consists of N
number of desktop machines in which one would be termed as
master and the others would be known as hosts/workers as
shown in Figure 1. Practically a desktop grid system project

has several servers to create tasks, distribute them, record the
tasks and corresponding results, and finally, aggregate the
results of a set of tasks. The tasks and corresponding work
units (evaluating data sets) are distributed by the server to the
hosts (client installed computer), typically through a software
which permits people to participate in the project. Normally,
when a host is idle (i.e., the computer’s screensaver is
running), then it is time to work on the tasks assigned by
server. After finishing the tasks, the results are sent to the
server. In case the computer that is running a client gets busy
again then the client pauses the processing immediately so that
the user can executes its own programs. The client continues
processing the task as soon as the computer becomes idle
again.

Desktop grid system frameworks simplify and automate
various functions performed by master and client. Master is
responsible for user and job management, client management,
tasks management, results verification, security and
performance management. Whereas, the client is responsible
for collection of hardware statistics from machine, requesting
and collecting tasks, task execution, sending back results and
allowing users to set preferences. Some of the more popular
desktop grid systems frameworks are BOINC [44], XtremWeb
[37,45], OurGrid (peer-to-peer) [46], SZTAKI Desktop Grid
[74], and HT Condor [47].

Moreover, the phenomena that has started from the PARC
Worm (Xerox’s initiative to develop worms to enable
distributed computing) [28] has resulted in various successful
implementations such as SETI@home [29,30], GIMPS [31],
Folding@Home [32], FightAidsAtHome [33], Computing
Against Cancer [34], Einstein@home [35]. These projects
have taken up various scientific problems that include
searching for cures of diseases, looking for evidence of
extraterrestrial intelligence, finding Mersenne prime numbers,
and solving several encryption challenges. Apart from the
scientific projects, desktop grid systems have gathered
recognition also at corporate level. The business enterprises
got inspired with the huge success of desktop grid systems. As
there is an abundance of desktop resources in such enterprises,
it seems a cost effective solution to utilize the idle processing
cycles of such systems and achieve high-end computing.
Various such projects were launched by academia [36, 37, 38,
39, 40] and industry [41, 42, 43].

119 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Fig. 1. Infrastructure of Desktop Grid Systems

There is a difference in perspective to scheduling policies
as per the needs of scientists and volunteers. Although these
perspectives are somewhat contradictory to each other but the
scheduling policy should adhere to the needs of both
stakeholders. For example the scientist would like to verify the
results and would not mind investing processing cycles for it,
whereas the volunteer would like to spend more time on actual
processing and would count verification as wastage of
resources. These requirements of scientists and volunteers are
shown in Table 1.

TABLE I. CLASSIFICATION OF SCHEDULING PERSPECTIVES IN DESKTOP
GRID SYSTEMS

Moreover, different scheduling policies are implemented
in a typical desktop grid system that can be broadly
categorized into three categories.

• Server based task scheduling policy takes care of
tasks assignment to server and is based on clients and
tasks preferences (for example size of the job, speed of
the host, particular operating system, amount of disk
space etc). A scoring-based scheduling policy assigns
values to individual parameters to calculate the overall
impact.

• Client based CPU scheduling policy is related to
CPU scheduling of desktop grid application’s tasks
(works on top of the local operating system's
scheduler) and addresses issues such as selection of
particular task for execution from the currently
runnable tasks, and keeping a particular task in
memory from the list of preempted tasks.

• Client based work fetch policy determines when a
client can ask for more work and the amount of work
that can be requested by a client.

Scheduling policies can also be classified as naive or
adaptive. The naive scheduling policies do not consider any
historical knowledge whereas adaptive scheduling policies use
a knowledge-base having historical information and threshold
values. These measures are used to perform scheduling
decision making. Furthermore, the naive scheduling policies
do not consider volunteer’s availability and reliability as
decision making factor as they do not work on historical
information. Hence the task assignments to volunteers remain
arbitrary. Although these policies such as First Come First
Server (FCFS) are easy to design and implement and are used
by many volunteer computing platforms but they do not
guarantee results. One the other side the knowledge base /
adaptive policies consider history and are capable to adapt to
changing circumstances but their decision making criteria is
not comprehensive. These policies limit themselves by
considering hardware threshold, reliability or availability.

Notwithstanding their use, there are certain limitations to
desktop grid systems which include resource management,
scheduling, verification of results, computation time, fault
tolerance, security breaches, connectivity and bandwidth
issues etc. The nodes in a desktop grid system environment
are inherently volatile, can be heterogeneous, are slower than
high-end machines, and the communication mechanism
doesn’t guarantee five nine reliability. The fact that nodes may
fail at any time arises various design and deployment
challenges.

Moreover, the scheduling policies should strive to attain
fault tolerance and result verification. This is done through
various mechanisms such as replication, voting and spot
checking. In replication, similar tasks are assigned to multiple
volunteers to counter the problem of volunteer’s unavailability
that can be categorized into host and CPU unavailability.
Replication coupled with voting is used for result verification.
In voting, results from multiple volunteers being assigned the
same task are compared and the result submitted by the
majority of the volunteers is counted as correct. Spot checking
is done to assess the reliability of the volunteer. In spot
checking, a spot job is submitted to the volunteer whose result
is already known to the server. Fault tolerance has its own
issues; if not done properly the overhead generated by the
fault tolerant mechanism can increase the wastage of
processing cycles. Poor scheduling policies cause wastage of
precious processing cycles that increases the application’s
turnaround time as well.

The paper is organized as follows: in section 2, we have
discussed leading desktop grid system Frameworks. In
sections 3 & 4, we have proposed key performance factors to
evaluate the server based task scheduling policies and client
based work fetch policies respectively. Section 5 concludes
the paper.

II. EVALAUATING DESKTOP GRID SYSTEM FRAMEWORKS
The job of the desktop grid system framework is to

simplify and automate various functions performed by master
and client in a desktop grid system environment. As stated
earlier the desktop grid systems can be divided into desktop
grids and volunteer computing. For desktop grids BOINC

Desktop Grid System Scheduling Perspectives
Policies driven by Scientist's
Perspectives

Policies driven by Volunteer's
Perspectives

Maximize Availability of
Resources

Minimize Validation Latency

Maximize Turnaround Time Maximize Utilization
Maximize Reliability Minimize Resource Wasting
Maximize Throughput

120 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

[44], XtremWeb [45] and OurGrid (peer-to-peer) [46] can be
used. In case of volunteer computing, BOINC is a better
option especially for applications having large number of
tasks. HT Condor [47] can be used equally for both. The
desktop grid framework should be able to address following
queries:

1) How users submit jobs? Can a user submit more than
one job at a time?

2) How tasks are generated of the given job? Will the
tasks be dependent or independent?

3) How the granularity of the tasks is decided? Will the
tasks be coarse or fine grained?

4) How clients register with server? What hardware
parameters are polled from the client?

5) How the tasks are mapped on appropriate clients? How
client’s and task’s preference matched?

6) How many tasks are given to a client at a given time?
Can the number be changed?

7) How results are verified and validated?
8) How results from various clients are summed up to

give user a consolidated result?
9) How fairness is maintained among various jobs while

assigning their tasks to clients?
10) How fairness is achieved among the tasks of various

jobs at client?
11) How fault tolerance is achieved as clients can become

unavailable anytime?
12) How many replica of a task is generated to achieve

fault tolerance?
13) How many platforms are supported by client end?
14) How the client end users are kept motivated to donate

processing cycles?
The above mentioned queries have direct impact on

application’s turnaround time and throughput. These queries
are mostly handled by the server end of the framework. All the
desktop grid systems frameworks are capable of handling
various jobs, multiple clients, pooling of client statistics and
some sort of fault tolerance but most of them decomposes job
into independent tasks. Now we will have a brief discussion
on some popular desktop grids frameworks and will do a
comparative analysis as well.

A. BOINC
BOINC (Berkeley Open Infrastructure for Network

Computing) is an open source platform developed at U.C.
Berkeley in 2002 [44]. Today approximately 60 projects are
using BOINC in a wide range of scientific areas. BOINC
server software is used to create volunteer computing projects.
Each project has its own server and provides a web site.
Volunteer connects to the website to download and install
client software. The client software is available on Windows,
Linux, and Mac OS X platforms. A BOINC project can have
more than one application. BOINC provides flexibility for
distributing data and intelligently matches requirements with
resources. Having installed the BOINC client, volunteers can
attach itself to any project. BOINC client can assign resources
to each project. Attaching a project allows it to run arbitrary

executables so it is the volunteer’s job to assess project’s
authenticity and its scientific merit. BOINC assigns a
numerical value against the volunteer’s contribution to a
project. BOINC uses volunteer’s email to perform cross-
project user identification. BOINC client can also attach itself
to a web service called an account manager rather than
connecting directly to the client. The account manager passes
client’s credentials to sever to receive a list of projects with
which client can connect to.

B. XtremWeb
XtremWeb is open source platform developed by INRIA

[45]. Its successor XWHEP (XtremWeb- HEP) is currently
developed at LAL CNRS. XtremeWeb is a lightweight
Desktop Grid with some advance features such as permit
multi-users, multi-applications and cross domains
deployments. XtremWeb is designed in such a way that it can
be used for desktop grids, volunteer computing and Peer to
Peer distributed systems. The XWHEP/ XtremWeb
architecture consists of servers, clients and workers. Server’s
job is to host centralized services such as scheduler and result
collector. Clients work at user end; users submit applications
to the server for processing. The client allows users to
manage the platform and interact with the infrastructure as and
when required such as job submission, result retrieval etc.
Server schedule the jobs submitted by client on workers.
Workers are installed at processing node to contributed their
computing resources that are aggregated in an XWHEP/
XtremWeb infrastructure. XWHEP improves the security of
XtremWeb by the implementation of user accounts and access
rights. These features extend user interactions over the
platform that includes secure resource usage and application
deployment.

C. OurGrid
OurGrid is an open source middleware designed for peer-

to-peer computational grids [46]. OurGrid enables the use of
idle computing and storage resources over a grid. These
resources are shared in such a way that who have contributed
the most will get the most required. OurGrid provides a secure
platform for the execution of parallel applications having
independent tasks also called Bag-of-Tasks (BoT)
applications. BoT examples may include parameter sweep
simulations, rendering of images and many others. In
OurGrid, each grid site corresponds to a peer in the system.
The problem of free riders (people who are not contributing
their resources but using resources of others) is resolved in
OurGrid by using Network of Favours mechanism. This credit
mechanism ensures that the computing node sharing its
resources will be prioritized over a node that is not sharing the
resources. OurGrid Community, a free-to-join cooperative
grid is also maintained by OurGrid team.

D. HT Condor
HT Condor referred as condor till 2012 is developed at the

University of Wisconsin- Madison to provide high-throughput
distributed batch computing [47]. High throughput computing
refers to the efficient utilization of available computing
resources to provide fault tolerant computational power.
Condor is not only capable of managing dedicated resources
such as clusters but it can also effectively harness idle

121 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

processing cycle of any processing available on the
infrastructure. Condor can process a task on a idle node, it is
also capable of stopping the execution of a running task,
marking a checkpoint and migrating the task to a different
processing node. Condor can redirect the task’s I/O requests
back to the actual machine from where the task is submitted.
As a result, Condor can seamlessly combine all te computing
power of an organization. Condor architecture is comprised of
a single machine serving as the central manager and other
machines that are part of the infrastructure. Condor job is
assign tasks to the available resources. Condor client programs
send periodic updates to the central manager so that the
manager can be updated about the status of the resources and
can make appropriate task assignments.

Apart from framework like BOINC that are free for use,
there are other proprietary frameworks designed for the same.
Organizations such as Distributed.net [49], United Devices
[50] and Entropia [51] have produced proprietary frameworks
(not available for free) for particular industries that can
perform specialized tasks such as searching for new drugs at
pharmaceutical companies. Bayanihan [39] is another open
source framework developed at MIT and is considered as the
first web-based desktop grid system framework.

TABLE II. COMPARISON OF DESKTOP GRID SYSTEMS FRAMEWORKS

E. Comparison of Desktop Grid Systems Frameworks
We present a comparison between different frameworks in

Table 2. Several factors are considered for the comparison
such as software design including architecture and
applications, project completion and application turnaround
time, the potential help available for new user and their
security concern. Overall usage of the framework is also an
important factor.

III. EVALAUATING SERVER BASED TASK SCHEDULING
POLICIES

The desktop grid system server can comprise of many
complex scheduling policies. There are numerous criteria for
job assignment, based on host and job diversity (for example
size of the job and speed of the host relative to an estimated
statistical distribution, disk and memory requirements for the
job to be completed, homogeneous redundancy and host error
rate). A scoring-based scheduling policy uses a linear
combination of these terms to select the best set of jobs that
can be assigned to a given host. We have made two categories
of the task scheduling mechanism proposed earlier. The first
category is Using Tradition Techniques, we have grouped
papers in this category that have proposed scheduling
framework / algorithms based on computing strengths,
behavior or makespan analysis of the host [1, 2, 3, 6, 7, 8, 9,
13, 57, 58, 60, 62, 64, 67, 68, 69, 70]. These papers have also
talked about grouping similar hosts and proposed improved
replication methods [14, 15, 16, 17, 18, 19, 20, 21]. Papers
that incorporated fault tolerance mechanisms [22, 23, 24, 25,
27, 53, 56] are also made part of this category. By using
experimental methodology, these papers suggested improved
results in various contexts however they have only used
traditional problem solving techniques. Our second category is
about Using Predictive Analytics. Papers which have
implemented some sort of statistical [4, 5, 10, 66, 72, 73],
probabilistic [55, 59, 61, 65] or machines learning algorithms /
mechanisms [11, 12, 63, 71] are made part of this category.
Even for fault tolerance, analytical methods are used. These
papers have gathered data from real desktop grid systems or
established test beds to gather data, implemented
aforementioned techniques and presented promising results.

A. Key Performance Factors
We have identified the following key performance factors

for evaluating the performance of task scheduling
mechanisms. Scheduling mechanism that performs most of
below mentioned points is taken as better mechanism. Though
none of these factors are considered collectively in the
literature but few of them can be found in [2, 3, 5, 6, 7, 14, 15,
22, 25, 26].

• Resource Availability

• Makespan Evaluation

• Replication

• Resource Capability

• Sabotage Tolerance

• Group based Design

Frameworks BOINC XtremWe
b

Our
Grid

HT
Condor

Design Architecture Client
Server

Client
Server

Peer to
peer

Central
Broker

Application
Management

Centralize
d

Centralize
d

Decentral
ized

Decentrali
zed

Resource Providers
can act as Resource
Consumers

No Yes Yes Yes

Task Distribution Pull Pull Push Push

Deployment /
Administration
Complexity

Medium /
Low
(client
side)

Low Low Medium

Application
Development /
Porting
Complexity

High /
Medium
(with
wrapper)

Low Low Medium

Support for
Volunteer Desktop
Grids

Yes Yes Yes No

Security Features

Code
signing,
Result
validation

Sandbox
Sandbox
(Virtual
Machine)

Authentic
ation

Web Interface
Yes
(Monitori
ng)

Yes
(Monitori
ng)

Yes
(Monitori
ng, Job
Submissi
on)

No

Number of
Deployments

~100
(~1M
CPUs in
big
projects)

~10 A few ~100

Programming
Language C/C++ Java Java C/C++

Documentation /
Help Good Good Good Very

Good

122 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Resource Availability

Availability of host is a critical factor for scheduling in a
desktop grid system. As hosts are not managed centrally, they
can become unavailable at any time. Scheduling mechanism
must check host availability before assigning a task to any
host. Host unavailability refers to hosts being powered off
whereas CPU unavailability refers to a situation where host is
connected to the server but its CPU is busy in performing
host’s local tasks. The configuration of desktop grid client is
done in such a way that the host’s CPU is only available to
desktop grid when it not executing any local task i.e. when the
CPU is idle. If host is available but the CPU is not available
for processing, the task is suspended and can be resumed on
the same host at a later time.

Makespan Evaluation

Makespan is a life time of a task during its execution from
start to finish. The job of any scheduling mechanism is to
minimize the makespan by assigning tasks to better hosts.
Once a task is assigned to host, its makespan is estimated and
if the actual makespan of the task matches the estimated
makespan than the task assignment to that particular host is
justified. This can also be taken as the “on-time task
completion” and the scheduling mechanism should assign
tasks to hosts having better “on-time task completion” history.

Replication

As the resources are not under centralized administrative
domain, there is a chance that they may become unavailable at
any point in time. The solution to this problem is replication in
which a replica of the assigned task is assigned to some other
host as well. Replication helps is countering volatility but
excessive replication also cause wastage of processing cycles.

Resource Capability

Consideration of host clock rate or memory size to exclude
or prioritize hosts at the time of task scheduling is a common
way of resource allocations. However, only focusing on
resource capabilities and not considering availability and
reliability may result in poor decision making. Resources with
low capabilities may be more reliable and can be available for
more time.

Sabotage Tolerance

There may be hosts in desktop grid systems that try to
submit erroneous results. To identify the saboteurs, spot
checking is performed in which master assigns a task to hosts

whose result is already known to master. Hosts that do not
give correct result are counted as saboteurs and should not be
considered for task assignments. There is also a need to verify
the results computed by these hosts. Voting is one of the
mechanisms and has couple of variants. In majority voting,
results from the majority of the hosts are considered as correct
whereas in n-first voting, results from the n hosts is considered
as correct. Scheduling mechanism should consider this aspect
of fault tolerance.

Group based Design

It has been observed that grouping similar host helps is
scheduling while keeping the cost low. This also facilitate in
establishing various replication strategies. The idea is not to
make decision making for each host but to establish same
policies for similar host arranged in a group. The parameters
of assigning hosts to different groups may vary and may
include availability, reliability, computing strength etc.

Now, we present the comparative evaluation of the task
scheduling mechanisms discussed earlier on the basis of the
key performance factors. Table 3 presents predictive analytics
papers whereas table 4 lists the papers that use traditional
techniques. A better scheduling mechanism will have “Y” in
most of the fields. It is also evident from the evaluation that
considering task dependencies as well as task granularity for
scheduling in desktop grid systems are still open issues.

TABLE III. PERFORMANCE EVALUATION OF SCHEDULING MECHANISMS
BASED ON PREDICTIVE ANALYTICS

Key
Performance
Factors

R
es

ou
rc

e
A

va
ila

bi
lit

y

M
ak

es
pa

n
E

va
lu

at
io

n

R
ep

lic
at

io
n

R
es

ou
rc

e
C

ap
ab

ili
ty

Sa
bo

ta
ge

T

ol
er

an
ce

G
ro

up
 b

as
ed

D

es
ig

n

Reference No.
[4] Y Y N Y N N
[5] N N N N Y N
[10] N Y Y Y N N
[11] N Y Y Y N N
[12] Y Y N Y N N
[54] Y Y N Y N N
[55] Y N N Y Y Y
[59] Y Y Y Y N N
[61] Y N N N Y Y
[63] N Y N N Y N
[65] Y N N N Y N
[66] Y N N Y Y N
[71] Y N N Y N N
[72] Y Y N Y N N
[73] Y N N Y N N

123 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

TABLE IV. PERFORMANCE EVALUATION OF SCHEDULING MECHANISMS
BASED ON TRADITIONAL TECHNIQUES

Key
Performance
Factors

R
es

ou
rc

e
A

va
ila

bi
lit

y

M
ak

es
pa

n
E

va
lu

at
io

n

R
ep

lic
at

io
n

R
es

ou
rc

e
C

ap
ab

ili
ty

Sa
bo

ta
ge

T

ol
er

an
ce

G
ro

up
 b

as
ed

D

es
ig

n

Reference No.

[1] Y Y N Y N Y
[2] Y Y N Y N N
[3] Y Y Y Y N N
[6] N N N N N N
[7] Y Y Y Y N Y
[8] N Y N N N Y
[9] N N Y Y Y N
[13] Y N N N N Y
[14] Y Y Y Y N N
[15] Y N N Y N N
[16] N Y Y Y N Y
[17] Y N Y N N Y
[18] Y Y Y Y N Y
[19] Y N Y Y N Y
[20] Y Y N Y N N
[21] N Y Y N Y N
[22] N N Y N Y N
[23] Y N N Y N N
[24] N Y Y N Y Y
[25] N N N N Y N
[26] Y N Y Y N N
[27] Y Y N Y N N
[53] Y Y Y Y N N
[56] Y Y Y Y Y Y
[57] Y Y N Y N N
[58] Y Y N Y N N
[60] Y N Y N N N
[62] N Y Y N N N
[64] Y N N Y N N
[67] Y Y N N Y Y
[68] N N N Y Y Y
[69] Y N N Y N N
[70] Y Y N Y N N

IV. EVALAUATING CLIENT BASED WORK FETCH POLICIES
Work fetch policies should be designed to fetch a balanced

amount of work for the client according to the clients shared
resources ensuring their optimum utilization. Any imbalance
in the amount of work fetched would either result in wasted
CPU cycles and other resources (RAM, disk) caused by
missed deadlines or less than optimal utilization of the already
scarce shared resources. BOINC Client uses two work fetch
policies buffer none and buffer multiple tasks, also a
number of other variations have been suggested in [7,9]. As
stated earlier, work fetch policies addresses the issues of when
to ask for more work, which project to ask work for and how
much work to ask for. We have discussed the variations of
work fetch policies below:

Buffer None [7]

The policy does not buffer any tasks. It only downloads a
task after returning the result of the previous task.

Download Early [9]

The policy downloads a new task when the client is 95%
done with the task it is processing.

Buffer One Task [9]

The policy buffers one task so the client always has a task
to process, even while it is downloading a new task.

Buffer Multiple Tasks [7]

The policy buffers task for number of days. The amount of
tasks is limited to a number that can possibly be completed
before the tasks’ deadlines.

Hysteresis Work Fetch

Uses hysteresis (making decisions based on past behavior)
and it asks a single project for the entire shortfall rather than
dividing it among projects.

A. Key Performance Factors
We have identified the following key performance factors

for evaluating the performance of various fork fetch policies.
The policy which is aligned to most of the given KPIs is
counted as better policy.

• Tasks buffered

• Continuous internet connectivity

• Chance of having wasted fractions

• Round robin simulation

• Hysteresis

• Utilization Of GPUs

• Utilization Of Multiple Cores

Tasks Buffered

This refers to amount of work that can be buffered by the
client. Clients normally use both buffer multiple tasks and
buffer none policies each having their own pros and cons.
Buffer none ensures the maximum amount of CPU time to the
current task yielding very low missed deadlines but results in
wasted CPU cycles when downloading new tasks or when that
client is available for computation but disconnected from
internet, Buffer Multiple tasks does not keep the shared
resources idle while upload and download operations but may
result in wasted fractions if deadlines for buffered tasks are
not met, missed deadlines is also an undesired effect from
server scheduling point of view which results in poor
reliability of a particular host.

Continuous Internet Connectivity

Buffering no or little amount of work requires continuous
connection with internet as the hosts needs to download new
work as soon as it completes on hand work, hence internet
connectivity is required all the time. This fact becomes a
serious bottleneck with the increase in mobile computing
devices (Laptops, cell phones, tablets) which can available for
computing but may or may not be connected to the internet
during that interval.

124 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Missed Deadlines

Missed deadline occur when a client is not able to
complete the task within its deadline, this results in wasted
fractions and also has a negative impact on hosts reliability.
While buffering multiple tasks the optimum amount of work
to be fetched depends on the future CPU availability which is
unknown but can be measured using traces and other
mechanisms with some degree of accuracy. The influx of the
Green Movement (when computer goes into power saving
mode by disabling all unnecessary programs while the screen
saver is on) has made this task even more difficult.

Round Robin Simulation

The round-robin simulation predicts the amount of time
each processor will be kept busy with the current workload.
This helps in measuring the shortfall of idle instance-seconds
which is a critical factor in deciding the amount of work to be
fetched from attached projects for buffer multiple policies.

Hysteresis

This refers to technique that relies not only on the current
client state but also on the past behavior in making work fetch
decisions.

Utilization of GPUs

With the advent of GPU (Graphics Processing Units), a
new class of volunteers is now available [52]. The GPU based
clients have different architecture as compared to clients based
on CPU. The work fetch policies must also consider the
architecture and limitation of GPUs.

Utilization of Multiple Cores

In a multicore CPU environment, it is important to utilize
all the available cores for computing. Policy executing only
one task at a time work fine as long as the task is
multithreaded and able to run on multiple cores but in the case
of single threaded tasks it becomes a serious drawback.

B. Discussion
The evaluation of work fetch policies on the basis of key

performance factors is given in Table 5 that lists the work
fetch policies on x-axis and key performance factors on y-axis
and summarizes their dependencies (internet connectivity),
degree of efficiency in respective areas (chance of missing
deadlines, round robin simulation, hysteresis, utilization of
GPUs, utilization of Multiple Cores). It can be observed that
variations of work fetch polices that buffer no or one tasks get
excellent scores for meeting deadlines but suffer in other areas
such as handling single threaded tasks on multi core CPUs,
GPU Utilization and their dependency on a continuous
internet connection which proves to be the major drawback
specially now when the number of mobile devices on which
the internet connectivity is sporadic are increasing rapidly.
Buffering multiple tasks perform better in utilizing multicore
CPUs and GPUs, their major advantage being the ability of
work without continuously being connected to the internet.
However misjudged amount of buffered work can lead to poor
utilization of resources by underestimating the amount of
work or missed deadlines by overestimated work fetch.

TABLE V. EVALUATION OF WORK FETCH POLICIES USING KEY
PERFORMANCE FACTORS

Overall picture suggests the hysteresis work fetch gets

good scores comparatively in all evaluation criteria with the
prospect of reducing the chances of missed deadlines as we
continue to find improved methods and heuristics for
predicting the CPU availability for a period of time.

V. CONCLUSION
We have discussed leading desktop grid systems

frameworks and performed a comparative evaluation. We
have also conducted a thorough theoretical and experimental
evaluation of the task scheduling, CPU scheduling and work
fetch policies in desktop grid systems. We have identified that
task scheduling can only be improved by grouping the similar
workers so that relevant resource allocation and replication
policies can be applied. Task dependence and granularity are
still unaddressed areas in task scheduling. We have analyzed
that work fetch policies has direct impact on the task
completion and performance of hysteresis work fetch was
found better on majority of the evaluation parameter as
compared to buffer-one or buffer-none that performs well only
on limited scale.

REFERENCES
[1] Heien, E. M., Anderson, D. P., & Hagihara, K. (2009). Computing low

latency batches with unreliable workers in volunteer computing
environments.Journal of Grid Computing, 7(4), 501-518.

[2] Lee, Y. C., Zomaya, A. Y., & Siegel, H. J. (2010). Robust task
scheduling for volunteer computing systems. The Journal of
Supercomputing, 53(1), 163-181.

[3] Kondo, D., Chien, A. A., & Casanova, H. (2007). Scheduling task
parallel applications for rapid turnaround on enterprise desktop
grids. Journal of Grid Computing, 5(4), 379-405.

[4] Estrada, T., Fuentes, O., & Taufer, M. (2008). A distributed
evolutionary method to design scheduling policies for volunteer
computing. ACM SIGMETRICS Performance Evaluation Review, 36(3),
40-49.

[5] Gao, L., & Malewicz, G. (2007). Toward maximizing the quality of
results of dependent tasks computed unreliably. Theory of Computing
Systems, 41(4), 731-752.

[6] Krawczyk, S., & Bubendorfer, K. (2008, January). Grid resource
allocation: allocation mechanisms and utilisation patterns.
In Proceedings of the sixth Australasian workshop on Grid computing
and e-research-Volume 82 (pp. 73-81). Australian Computer Society,
Inc..

[7] Choi, S., Baik, M., Gil, J., Jung, S., & Hwang, C. (2006). Adaptive
group scheduling mechanism using mobile agents in peer-to-peer grid
computing environment. Applied Intelligence, 25(2), 199-221.

[8] Villela, D. (2010). Minimizing the average completion time for
concurrent Grid applications. Journal of Grid Computing, 8(1), 47-59.

[9] Toth, D., & Finkel, D. (2009). Improving the productivity of volunteer
computing by using the most effective task retrieval policies. Journal of
Grid Computing, 7(4), 519-535.

125 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

[10] Rood, B., & Lewis, M. J. (2010, May). Availability prediction based
replication strategies for grid environments. In Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on (pp. 25-33). IEEE.

[11] Estrada, T., Taufer, M., & Reed, K. (2009, May). Modeling job lifespan
delays in volunteer computing projects. In Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing and the
Grid (pp. 331-338). IEEE Computer Society.

[12] Zhang, J., & Phillips, C. (2009). Job-Scheduling with Resource
Availability Prediction for Volunteer-Based Grid Computing. In London
Communications Symposium, LCS.

[13] Daniel Lazaro, Derrick Kondo and Joan Manuel Marques, “Long-term
availability prediction for groups of volunteer resources,” J. Parallel
Distributed. Computing 72 (2012) 281–296

[14] Kondo, D., Fedak, G., Cappello, F., Chien, A. A., & Casanova, H.
(2006, December). On Resource Volatility in Enterprise Desktop Grids.
In e-Science(p. 78).

[15] Huu, T. T., Koslovski, G., Anhalt, F., Montagnat, J., & Primet, P. V. B.
(2011). Joint elastic cloud and virtual network framework for application
performance-cost optimization. Journal of Grid Computing, 9(1), 27-47.

[16] Schulz, S., Blochinger, W., & Hannak, H. (2009). Capability-aware
information aggregation in peer-to-peer Grids. Journal of Grid
Computing,7(2), 135-167.

[17] Choi, S., Baik, M., Hwang, C., Gil, J., & Yu, H. (2005). Mobile agent
based adaptive scheduling mechanism in peer to peer grid computing. In
Computational Science and Its Applications–ICCSA 2005 (pp. 936-947).
Springer Berlin Heidelberg.

[18] Khan, M. K., Hyder, I., Chowdhry, B. S., Shafiq, F., & Ali, H. M.
(2012). A novel fault tolerant volunteer selection mechanism for
volunteer computing.Sindh University Research Journal—Science
Series, 44(3), 138-143.

[19] Kondo, D., Casanova, H., Wing, E., & Berman, F. (1993, October).
Models and scheduling mechanisms for global computing applications.
In Vehicle Navigation and Information Systems Conference, 1993.,
Proceedings of the IEEE-IEE (pp. 8-pp). IEEE.

[20] Anderson, D. P., & Fedak, G. (2006, May). The computational and
storage potential of volunteer computing. In Cluster Computing and the
Grid, 2006. CCGRID 06. Sixth IEEE International Symposium on (Vol.
1, pp. 73-80). IEEE.

[21] Sarmenta, L. F. (2002). Sabotage-tolerance mechanisms for volunteer
computing systems. Future Generation Computer Systems, 18(4), 561-
572.

[22] Watanabe, K., Fukushi, M., & Horiguchi, S. (2009). Optimal spot-
checking for computation time minimization in volunteer
computing. Journal of Grid Computing, 7(4), 575-600.

[23] Kondo, D., Anderson, D. P., & McLeod, J. (2007, December).
Performance evaluation of scheduling policies for volunteer computing.
In e-Science and Grid Computing, IEEE International Conference
on (pp. 415-422). IEEE.

[24] Kondo, D., Taufer, M., Brooks III, C. L., Casanova, H., & Chien, A.
(2004, April). Characterizing and evaluating desktop grids: An empirical
study. InParallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International (p. 26). IEEE.

[25] Silaghi, G. C., Araujo, F., Silva, L. M., Domingues, P., & Arenas, A. E.
(2009). Defeating colluding nodes in desktop grid computing
platforms.Journal of Grid Computing, 7(4), 555-573.

[26] Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L. M., Fedak,
G., & Cappello, F. (2007). Characterizing result errors in internet
desktop grids. In Euro-Par 2007 Parallel Processing (pp. 361-371).
Springer Berlin Heidelberg.

[27] Morrison, J. P., Kennedy, J. J., & Power, D. A. (2001). Webcom: A web
based volunteer computer. The Journal of supercomputing, 18(1), 47-61.

[28] Shoch, J. F., & Hupp, J. A. (1982). The “worm” programs—early
experience with a distributed computation. Communications of the
ACM, 25(3), 172-180.

[29] SETI@home. The SETI@home project. http://
setiathome.ssl.berkeley.edu/

[30] Sullivan III, W. T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, D., &
Anderson, D. (1997, January). A new major SETI project based on
Project Serendip data and 100,000 personal computers. In IAU Colloq.
161: Astronomical and Biochemical Origins and the Search for Life in
the Universe (Vol. 1, p. 729).

[31] GIMPS. The Great Internet Mersene Prime Search accessible from
http://www.mersenne.org/

[32] Folding@home accessible from http://folding.stanford.edu/
[33] FIGHTAIDS. The Fight Aids At Home project accessible from

http://www.fightaidsathome.org/
[34] CANCER. The Compute Against Cancer project accessible from

http://www.computeagainstcancer.org/
[35] Einstein@Home accessible from http://einstein.phys.uwm.edu/
[36] Camiel, N., London, S., Nisan, N., & Regev, O. (1997, April). The

popcorn project: Distributed computation over the internet in java. In 6th
International World Wide Web Conference.

[37] Fedak, G., Germain, C., Neri, V., & Cappello, F. (2001). Xtremweb: A
generic global computing system. In Cluster Computing and the Grid,
2001. Proceedings. First IEEE/ACM International Symposium on (pp.
582-587). IEEE.

[38] Pedroso, H., Silva, L. M., & Silva, J. G. (1997). Web‐based
metacomputing with JET. Concurrency: Practice and Experience, 9(11),
1169-1173.

[39] Sarmenta, L. F., & Hirano, S. (1999). Bayanihan: Building and studying
web-based volunteer computing systems using Java. Future Generation
Computer Systems, 15(5), 675-686.

[40] Ghormley, D. P., Petrou, D., Rodrigues, S. H., Vahdat, A. M., &
Anderson, T. E. (1998). GLUnix: A Global Layer Unix for a network of
workstations.Software Practice and Experience, 28(9), 929-961.

[41] Entropia, Inc. accessible from http://www.entropia.com
[42] Platform Computing Inc. accessible from http://www. platform.com/
[43] Data Synapse Inc. accessible from http://www.datasynapse.com/
[44] BOINC accessible from http://boinc.berkeley.edu/
[45] XtremeWeb accessible from http://www.xtremweb.net/
[46] OurGrid accessible from http://www.ourgrid.org/
[47] HTCondor accessible from http://research.cs.wisc.edu/htcondor/
[48] Vlădoiu, M. (2010). Has Open Source Prevailed in Desktop Grid and

Volunteer Computing?. Petroleum-Gas University of Ploiesti Bulletin,
Mathematics-Informatics-Physics Series, 62(2).

[49] Distributed.Net, accessed from http://www.distributed.net
[50] De Roure, D., Baker, M. A., Jennings, N. R., & Shadbolt, N. R. (2003).

The evolution of the grid. Grid computing: making the global
infrastructure a reality, 13, 14-15.

[51] Chien, A., Calder, B., Elbert, S., & Bhatia, K. (2003). Entropia:
architecture and performance of an enterprise desktop grid
system. Journal of Parallel and Distributed Computing, 63(5), 597-610.

[52] Toth, D. (2007, February). Volunteer computing with video game
consoles. InProc. 6th WSEAS International Conference on Software
Engineering, Parallel and Distributed Computing and Systems.

[53] Conejero, J., Caminero, B., Carrión, C., & Tomás, L. (2014). From
volunteer to trustable computing: Providing QoS-aware scheduling
mechanisms for multi-grid computing environments. Future Generation
Computer Systems,34, 76-93.

[54] Tchernykh, A., Pecero, J. E., Barrondo, A., & Schaeffer, E. (2014).
Adaptive energy efficient scheduling in peer-to-peer desktop
grids. Future Generation Computer Systems, 36, 209-220.

[55] Gil, J. M., & Jeong, Y. S. (2014). Task scheduling scheme by
checkpoint sharing and task duplication in P2P-based desktop
grids. Journal of Central South University, 21(10), 3864-3872.

[56] Klejnowski, L., Niemann, S., Bernard, Y., & Müller-Schloer, C. (2014).
Using Trusted Communities to improve the speedup of agents in a
Desktop Grid System. In Intelligent Distributed Computing VII (pp.
189-198). Springer International Publishing.

[57] Canon, L. C., Essafi, A., & Trystram, D. (2014). A Proactive Approach
for Coping with Uncertain Resource Availabilities on Desktop
Grids. FEMTO-ST, Tech. Rep. RRDISC2014-1.

126 | P a g e
www.ijacsa.thesai.org

http://www.computeagainstcancer.org/
http://www/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

[58] Reddy, K. H. K., Roy, D. S., & Patra, M. R. (2014). A Comprehensive
Performance Tuning Scheduling Framework for Computational Desktop
Grid.International Journal of Grid and Distributed Computing, 7(1),
149-168.

[59] Lerida, J. L., Solsona, F., Hernandez, P., Gine, F., Hanzich, M., &
Conde, J. (2013). State-based predictions with self-correction on
Enterprise Desktop Grid environments. Journal of Parallel and
Distributed Computing, 73(6), 777-789.

[60] Kang, W., Huang, H. H., & Grimshaw, A. (2013). Achieving high job
execution reliability using underutilized resources in a computational
economy. Future Generation Computer Systems, 29(3), 763-775.

[61] Gil, J. M., Kim, S., & Lee, J. (2014). Task scheduling scheme based on
resource clustering in desktop grids. International Journal of
Communication Systems, 27(6), 918-930.

[62] Xavier, E. C., Peixoto, R. R., & da Silveira, J. L. (2013). Scheduling
with task replication on desktop grids: theoretical and experimental
analysis.Journal of Combinatorial Optimization, 1-25.

[63] Naseera, S., & Murthy, K. M. (2013). Prediction Based Job Scheduling
Strategy for a Volunteer Desktop Grid. In Advances in Computing,
Communication, and Control (pp. 25-38). Springer Berlin Heidelberg.

[64] Zhao, Y., Chen, L., Li, Y., Liu, P., Li, X., & Zhu, C. (2013). RAS: A
Task Scheduling Algorithm Based on Resource Attribute Selection in a
Task Scheduling Framework. In Internet and Distributed Computing
Systems (pp. 106-119). Springer Berlin Heidelberg.

[65] Gil, J. M., Kim, S., & Lee, J. (2013). Task Replication and Scheduling
Based on Nearest Neighbor Classification in Desktop Grids.
In Ubiquitous Information Technologies and Applications (pp. 889-895).
Springer Netherlands.

[66] Salinas, S. A., Garino, C. G., & Zunino, A. (2012). An architecture for
resource behavior prediction to improve scheduling systems

performance on enterprise desktop grids. In Advances in New
Technologies, Interactive Interfaces and Communicability (pp. 186-
196). Springer Berlin Heidelberg.

[67] Choi, S., & Buyya, R. (2010). Group-based adaptive result certification
mechanism in Desktop Grids. Future Generation Computer
Systems, 26(5), 776-786.

[68] Durrani, M. N., & Shamsi, J. A. (2014). Volunteer computing:
requirements, challenges, and solutions. Journal of Network and
Computer Applications,39, 369-380.

[69] Yang, C. T., Leu, F. Y., & Chen, S. Y. (2010). Network Bandwidth-
aware job scheduling with dynamic information model for Grid resource
brokers. The Journal of Supercomputing, 52(3), 199-223.

[70] Peyvandi, S., Ahmad, R., & Zakaria, M. N. (2014). Scoring Model for
Availability of Volatile Hosts in Volunteer Computing
Environment. Journal of Theoretical & Applied Information
Technology,70(2).

[71] Brevik, J., Nurmi, D., & Wolski, R. (2004, April). Automatic methods
for predicting machine availability in desktop grid and peer-to-peer
systems. InCluster Computing and the Grid, 2004. CCGrid 2004. IEEE
International Symposium on (pp. 190-199). IEEE.

[72] Finger, M., Bezerra, G. C., & Conde, D. R. (2010). Resource use pattern
analysis for predicting resource availability in opportunistic
grids.Concurrency and Computation: Practice and Experience, 22(3),
295-313.

[73] Anjos, J. C., Carrera, I., Kolberg, W., Tibola, A. L., Arantes, L. B., &
Geyer, C. R. (2015). MRA++: Scheduling and data placement on
MapReduce for heterogeneous environments. Future Generation
Computer Systems, 42, 22-35.

[74] SZTAKI Desktop Gird accessible from
http://doc.desktopgrid.hu/doku.php

127 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Evalauating Desktop Grid System Frameworks
	1) How users submit jobs? Can a user submit more than one job at a time?
	2) How tasks are generated of the given job? Will the tasks be dependent or independent?
	3) How the granularity of the tasks is decided? Will the tasks be coarse or fine grained?
	4) How clients register with server? What hardware parameters are polled from the client?
	5) How the tasks are mapped on appropriate clients? How client’s and task’s preference matched?
	6) How many tasks are given to a client at a given time? Can the number be changed?
	7) How results are verified and validated?
	8) How results from various clients are summed up to give user a consolidated result?
	9) How fairness is maintained among various jobs while assigning their tasks to clients?
	10) How fairness is achieved among the tasks of various jobs at client?
	11) How fault tolerance is achieved as clients can become unavailable anytime?
	12) How many replica of a task is generated to achieve fault tolerance?
	13) How many platforms are supported by client end?
	14) How the client end users are kept motivated to donate processing cycles?
	A. BOINC
	B. XtremWeb
	C. OurGrid
	D. HT Condor
	E. Comparison of Desktop Grid Systems Frameworks

	III. Evalauating Server based Task Scheduling Policies
	A. Key Performance Factors

	IV. Evalauating Client based Work Fetch Policies
	A. Key Performance Factors
	B. Discussion

	V. Conclusion

