
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

A Computationally Efficient P-LRU based Optimal
Cache Heap Object Replacement Policy

Burhan Ul Islam Khan
Department of ECE

Kulliyyah of Engineering
IIUM, Malaysia

Rashidah F. Olanrewaju
Department of ECE

Kulliyyah of Engineering
IIUM, Malaysia

Roohie Naaz Mir
Department of CSE

National Institute of Technology
Srinagar, Kashmir

Abdul Raouf Khan
Department of Computer Sciences

King Faisal University
Saudi Arabia

S. H. Yusoff
Department of ECE

Kulliyyah of Engineering
IIUM, Malaysia

Abstract—The recent advancement in the field of distributed
computing depicts a need of developing highly associative and
less expensive cache memories for the state-of-art processors i.e.,
Intel Core i6, i7, etc. Hence, various conventional studies
introduced cache replacement policies which are one of the
prominent key factors to determine the effectiveness of a cache
memory. Most of the conventional cache replacement algorithms
are found to be as not so efficient on memory management and
complexity analysis. Therefore, a significant and thorough
analysis is required to suggest a new optimal solution for
optimizing the state-of-the-art cache replacement issues. The
proposed study aims to conceptualize a theoretical model for
optimal cache heap object replacement. The proposed model
incorporates Tree based and MRU (Most Recently Used) pseudo-
LRU (Least Recently Used) mechanism and configures it with
JVM’s garbage collector to replace the old referenced objects
from the heap cache lines. The performance analysis of the
proposed system illustrates that it outperforms the conventional
state of art replacement policies with much lower cost and
complexity. It also depicts that the percentage of hits on cache
heap is relatively higher than the conventional technologies.

Keywords—cache heap object replacement; garbage collectors;
Java Virtual Machine; pseudo LRU

I. INTRODUCTION
To bridge the performance gap between the main memory,

cache, and the processor, the current research trends towards
computer hardware engineering are more focused on designing
efficient memory hierarchy to reduce the average memory
access time required by the CPU. Numerous research works
highlight that computer scientists performed an in-depth
investigation on Level 2 (L2) caches for several reasons such
as; firstly, processors can create a level of abstract to hide the
Level 1 (L1) cache misses followed by the L2 cache hits [1].
The processor and the cache schedule exploit the Instruction
Level Parallelism (ILP) to determine out of order execution
phases and non-blocking phases of cache lines. Therefore, it is
very difficult to hide the L2 cache miss penalty [2]. Secondly,
it can also be seen that the optimization of L1 caches

considering short hit times depicts more complex scenario
during execution time as compared to the less critical L2 cache
hits. The involvement of L2 caches allows efficient cache
replacement optimizations on smarter replacement policies [3]
[4]. All the conventional state-of-art cache replacement policies
except the random policies can detect the cache memory line to
be eliminated by looking into its past reference. In the case of
Least Recently Used (LRU) policy implementation, a set of
state transition signals (control status bits) is required to update
the cache schedule about when each cache block is accessed
[5]. Therefore, set-associativity in between cache and main
memory increases the number of bits and it imposes cost and
computational complexity. Possibly, the best way to reduce the
complexity associated with LRU, the random policy has been
chosen but only to an extent. Most of the researchers and
computer designers opted for Pseudo LRU heuristic algorithm
to minimize the hardware cost and enhance the performance of
the system by approximating the LRU mechanism [6]. Though,
most of the recent studies on cache replacement policies
usually incorporate LRU techniques with limited associativity
but few of them initiated the enhancement of LRU by
improving replacement decisions [7][8][9].

There are very few state-of-the-art optimal cache
replacement policies that are feasible as well as useful with
Java’s garbage collection mechanism. Moreover, a few of the
policies such as OPT L2, FIFO L2, and random page
replacement policies lead to an uncertain scenario where the
tall cache miss rate could be higher. It has also been observed
that most of the conventional studies are repetitive in nature
with regard to consideration of fewer efficient performance
parameters. Therefore, addressing the above-stated research
issues, the proposed study aims to combine both tree based and
MRU pseudo-LRU based cache heap replacement policies
which are further integrated with the Java’s garbage collection
scenario to further improve the performance scenario on cache
miss rate. The experimental outcomes obtained from the
prototype simulation show that it gives more precise
comparative analysis considering different cache models and it
performs very less iteration during implementation process at a

This work was partially supported by Ministry of Higher Education Malaysia
(Kementerian Pendidikan Tinggi) under Fundamental Research Grant Scheme
(FRGS) number FRGS-15-254-0495 and Research Initiative Grant Scheme
(RIGS) number RIGS15-150-0150.

128 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

faster rate and lesser space complexity from all the
experimental aspects.

Based on the motivation stated above, this study aims to
develop a cache heap object replacement policy which is based
on Java’s indirect garbage collection mechanism [10]. It also
evaluates two different types of cache object replacement
policies which are Tree based Cache Heap Object Replacement
and MRU bits based Cache Heap Object Replacement
mechanisms respectively. The experimental analysis performed
considering a test bed highlights that our proposed model
achieves optimal computational efficiency and very less L2
cache miss rates during the Java’s object replacement and
allocation process execution. It also shows the performance
improvement for different cache configurations.

The rest of the manuscript is organized as follows: Section
II discusses the literature survey followed by the theoretical
analysis of conventional memory hierarchy discussed in
Section III. Section IV discusses design methodology and the
algorithm implementation of the proposed P-LRU based cache
heap object replacement policy and the functionality of
garbage collectors on cache replacement operation. Section V
describes the experimental analysis followed by the
conclusions in Section VI.

II. LITERATURE SURVEY
This section highlights most of the significant studies

carried out towards designing optimal cache replacement
algorithms to reduce the operational cost during the instruction
read, write and fetch operations from cache memories.

Authors in [11] developed an optimal scheme for cache
replacement namely, Min-SAUD that determines the cache
objects to be replaced by incorporating validation delay.
Various factors affecting cache performance are taken into
consideration such as update frequency, retrieval delay, cache
validation cost, data size and access probability. It has been
assumed that the cache has zero access latency because it can
be easily neglected in comparison to the server access latency.
This study is known to be the first of its kind to analyze the
effect of factors like cache validation delay and access latency
on cache performance; and thus functions as a fundamental
guideline for designing cache management policies. In this
paper, stretch has been employed as the main performance
metric as it takes into account data service time which is
therefore fair for different-sized items. Furthermore, the
performance of this scheme has been thoroughly evaluated
through successive simulation experiments for diverse system
configurations. The results reveal that Min-SAUD performs
much better than the two existing algorithms viz. LRU and
SAIU. In terms of stretch, the proposed cache replacement
policy yields much better access cost as compared to other
replacement policies. However, an optimal solution can be
obtained only when the data size is comparatively smaller than
cache size. Authors have avoided updating access rate of all
cached items during every replacement in order to lower the
computational complexity. In future, this policy can be
extended to cache admission for caching client data. Moreover,
simulation results show that if improvements are made in

estimation methods, performance of Min-SUAD can be
enhanced further towards that of an ideal cache replacement
policy.

In [12] authors have addressed the cache replacement
problem for transcoding proxy caching. Generally, cache
replacement algorithms replace cached objects with minimum
profit for accommodating the incoming object to be cached.
This algorithm considers the interrelationship among various
versions of a single multimedia object and replaces any version
as per the aggregate profit unlike the traditional algorithms that
performed summation of the individual profits of the versions
to be replaced. Moreover, cache consistency has also been
considered which was not included in existing cache
replacement schemes. A complexity analysis has been
performed for demonstrating efficiency of this algorithm.
Simulation of the proposed algorithm is performed by
considering several metrics viz. request-response ratio (RRR),
delay saving ratio (DSR), staleness ratio (SR) and object-hit
ratio (OHR); and results reveal its superior performance when
compared to conventional algorithms.

An adaptive cache replacement policy called CRFP i.e.,
Combined LRU and LFU Policy was put forward by authors in
[13]. CRFP is found to respond to access pattern changes
effectively and dynamically by switching among the cache
replacement policies. This policy makes use of cache directory
for learning access pattern at run-time. Also, a SWITCH value
is maintained by cache manager for recording existing replace
policy. The proposed cache replacement scheme is built on
LRU stack which is used for maintenance of pages in the cache
and LRU queue is used for maintaining the pages replaced
recently. CRFP was implemented by authors in PostgreSQL
which is an open-source database management system and its
performance was compared with LRU, ARC, LFU and LRFU.
It was found that CRFP performed better than the other
algorithms in most of the situations thus making it suitable for
several cache management systems.

Authors in [14] presented Locality-Aware Cost-Sensitive
(LACS) cache replacement strategy that brings together cost
sensitivity and locality principles. The cost of a cache block is
estimated by LACS from number of instructions issued by
processor during cache-miss on the block and then the blocks
with poor locality and less cost are victimized for maximizing
overall cache performance. The proposed cost estimation
policy has been found to be effective in uniprocessor as well as
multiprocessor architectures. LACS accelerates the 10 L2
cache performance controlled SPEC CPU2000 benchmarks by
about 85 per cent and 15 per cent on an average without
degrading any 20 SPEC CPU2000 benchmarks in its
evaluation on uniprocessor architecture. On the other hand, it
accelerates 6 SPEC CPU2000 pairs of benchmark by about 44
per cent and 11 per cent on an average during its evaluation on
dual core multiprocessor architecture. Furthermore, this
algorithm has proven to be effective over varied associativities
and sizes of L2 cache. But there have been some problems in
case of shared L2 caches such as cache partitioning issue.
Although LACS brings down miss count in comparison to
LRU, it is not clear if private or shared threshold values should
be used.

129 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

In [15], Reuse and Memory Access cost-aware eviction
Policy (ReMAP) has been proposed by the authors that,
considers memory access cost, Post Eviction Reuse Distance
(PERD) and recency for making eviction decisions. This policy
shows superior performance since it takes into account the
interaction of last-level-cache (LLC) with main memory for
better cache management decision making. In this policy, a
cost is assigned to every cache line that indicates the eviction
cost for a specific cache line as opposed to retaining it in the
cache, unlike assignment of a fixed counter value as seen in
LRU. ReMAP has been evaluated through an open source
simulator, namely gem5 and the full system evaluation showed
about 13 per cent reduction in number of misses in SPEC2006
applications as compared to LRU and 6.5 per cent reduction on
an average. However, DRRIP and MLP aware replacement
schemes have shown only -0.7 and 5 per cent reduction in miss
count respectively. Notably, the proposed scheme achieved an
IPC performance gain of about 4.6 per cent as against 1.8 and
2.3 per cent in MLP-aware and DRRIP replacement schemes
respectively.

The drawbacks of existing cache replacement algorithms
motivated the authors in [16] to put forward a policy called
Recency Frequency Replacement (RFR) that combines recency
of a cache block with frequency i.e., a hybrid of LRU and
LFU. Two weighing values are associated to every cache block
that corresponds to LRU and LFU thereby maintaining a
balance between them and then cumulative weight is also
computed from the two values. This policy includes three
important steps viz. weighing LRU/LFU, fusing LRU/LFU and
predicting line to be evicted. The RFR scheme has been
simulated by authors using the multi-core heterogenous user-
customized simulator, CUBEMACH that captures and
compares the cache dynamics of LRU, FIFO and LFU. The
effectiveness of RFR has been analyzed using various
benchmarks viz. GCC, equake, VPR and parser which revealed
about 9 per cent better performance than LRU, FIFO and LFU
with respect to miss ratio.

In [17] authors have proposed two algorithms, wildcard
rules caching and Rule Cache Replacement (RCR) for solving
the TCAM problem in software defined networking. In these
algorithms, the accumulated contribution value of a rule-set is
calculated instead of individual value. The wildcard rules
caching policy caches the wildcard rules that are matched
frequently without incurring additional cache cost and shows
efficient TCAM space utilization in comparison to cover set
caching. Further, the rule replacement cache policy
outperforms LRU, Adaptive Replacement Cache (ARC) and
random replacement (RR) algorithms in maintaining a high hit
ratio as it considers traffic locality. Due to the inability to get
real data-center traffic, ClassBench has been used for
generating synthetic rule policy with diverse packet
classification. In this simulation, the maximum capacities of
TCAM have been set as 3K and 2K for wildcard rules caching
and cache replacement algorithms respectively. It was
observed that both the algorithms presented improved
performance with an average ratio of 10 per cent for different
ranges of traffic volume as against cover set caching policy.

In [18] a light-weight caching strategy called Optimized

Cache Replacement algorithm in Information Centric
Networks (OCRICN) has been designed in order to reduce
redundancy and maximize the cache efficiency. This can be
achieved by storing small-sized and high frequency chunks
which are closer to end-user so that a router nearby may satisfy
the request packet rather than the burden of traversing a
lengthy path to the actual server. As a result, both bandwidth
consumption and cache resource usage can be optimized with
this algorithm that greatly enhances the system performance.
When simulated, the proposed algorithm performs much better
than the traditional schemes in terms of server bandwidth
consumption and access latency which is depicted by 60 per
cent improvement in hit ratio and 30 per cent reduction in
server messages. The algorithm is believed to show further
improvement in performance in case of a complex topology
owing to effect of multiple caching metrics on hierarchical
cache level.

Regional Popularity-Aware Cache replacement (RPAC)
algorithm has been presented in [19] that prolongs the lifetime
of Solid State Drive (SSD) cache by reducing number of
erasure operations and cache replacements that are
unnecessary. This algorithm records region (formed by
consecutive disk blocks) popularity instead of block popularity
to select the block to be replaced. Thus, sequential I/O blocks
are grouped in SSD leveraging the disk-access spatial locality.
RPAC has been evaluated in real system by several workloads.
In the simulation with CacheSIM, two types of I/O traces from
real systems viz. Mail and Webvm are employed. On analyzing
the simulation results, it is revealed that RPAC has better
applicability for small caches. Further, it is seen that more
memory and time are consumed in block level popularity
statistics versus region level popularity statistics. For validation
of the algorithm, the authors have implemented the same in
Facebook’s flashcache and used Filebench to perform
comparison with other policies. The results show about 31 and
53 per cent improved I/O throughput than FIFO and LRU
respectively while reducing number of erase operations by
about 17 per cent.

Motivated to decrease the garbage collection overhead in
flash memory based SSDs, authors have proposed Random
First Flash Enlargement (RFFE) algorithm in [20]. This
algorithm makes performance improvements in write operation
by employing sequence detection mechanism and presenting
three novel techniques: spatial locality buffering, varied write
enlargements and write random ahead. The main complexity of
the proposed algorithm is designing efficient data structure for
searching customary pre-write contexts (PWCs) and removing
outdated PWCs. The random ahead characteristic of this
algorithm is beneficial for interleaved and slow sequential
wires. The application of this algorithm on random as well as
sequential write queues brings down the number of merge
operations in garbage collection thereby improving write
performance in SSD. Furthermore, the frequent write feature of
sequential stream reduces wait time of buffer data and thus
enhances data reliability. The simulation results of RFFE
depict that it outperforms Block Padding Least Recently Used
(BPLRU), Recently-Evicted-First (REF) and Fully-Associative
Sector Translation (FAST) algorithms for random as well as
sequential write patterns.

130 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Authors in [21] have proposed a model for rule caching that
is based on traffic as well as the path of flows for optimizing
the switch cache replacement. The proposed algorithm called
Flow Driven Rule Caching (FDRC) is an attempt to deal with
unpredictable flows and the size constraint of cache in software
defined networks. Particularly, a low complexity optimized
algorithm has been designed by authors for achieving
considerably high cache-hit ratio by making use of prefetching
together with a special replacement policy for predictable as
well as unpredictable flows. Furthermore, the performance of
the algorithm in terms of cache hit ratio has been evaluated
against popularly used replacement algorithms namely LRU
and FIFO.

Authors in [22] have proposed an algorithm for cache
replacement Least Error Rate (LER) for minimizing error rate
in case of L2 caches. This study is known to be the first of its
kind to address the contribution of cache replacement on error
rate of Spin Torque Transfer RAM (STT-RAM). In this
algorithm, the block to be accommodated is placed in a line
which has the least write-operation error rate. This has been
achieved by performing a comparison of incoming block
contents with cache set lines. The efficiency of this algorithm
is dependent on the data value patterns of workloads in cache
lines. For evaluation of LER, gem5 simulator has been used
with SPEC CPU2006 workload. The simulations which were
carried out on a billion instructions showed a reduction in error

rate by 2 times with approximately 3.6 and 1.4 per cent
dynamic energy consumption and performance overheads
respectively on comparison with LRU. It is to be noted that
authors have used the method of Early Write Termination
(EWT) in the simulation.

The conventional schemes that have been proposed for
cache replacement like LRU, LFU and other utility-based
schemes prove to be unsuitable for caching video stream. The
authors in [23] have presented Optimized Cache Replacement
(OCR) scheme that caches video stream by taking into
consideration the arrival patterns of user request. After
grouping the users in all the request intervals possible, the
density of users is computed in every request interval and those
groups are cached which have the maximum user density. In
this way, the groups having comparatively lower user density
are replaced to accommodate the high user density groups.
When simulated, this cache replacement scheme is shown to
increase the hit ratio by 2 times in comparison to LRU scheme.
This scheme has been further extended from a single cache to
cooperative caches and is known as Cooperative Cache
Replacement (CCR). Performances of both OCR and CCR
have been verified through simulation that evidently shows the
reduction in server load and the improvement in hit-ratio when
compared to LRU.

The following Table I highlight some of the state-of-the-art
studies introduced by various researchers in this area

TABLE I. SIGNIFICANT STUDIES CARRIED OUT TOWARDS DESIGNING OPTIMAL CACHE REPLACEMENT ALGORITHMS

AUTHOR CONTRIBUTION RESULTS OBTAINED LIMITATIONS

(Xu et al., 2004) [11]

Presented Min-SAUD gain
based cache replacement
policy for wireless data
dissemination

• Outperforms the previously proposed LRU
and SAIU in terms of better access cost
when evaluated for diverse system
configurations

• Location dependent services and object
transcoding have not been considered

• Prefetching should be combined with
this scheme to further increase
performance

• Scope for further enhancing parameter
estimation method

(Li et al., 2006) [12]

Presented an effective
algorithm for cache
replacement meant for proxy
transcoding based on an
aggregate cost-saving
function

• Showed better performance than some of
the existing algorithms like DSR, RRR,
OHR and SR besides cache consistency

• Combined cache consistency and additional
emerging factors in transcoding proxies
which was not done in the previously
proposed algorithms

• Can incur huge cost theoretically if
large number of different objects are to
be removed

(Zhansheng et al.,
2008) [13]

Proposed CRFP – a novel
adaptive cache replacement
strategy that brings together
LRU and LFU strategies

• Self-tuning policy that is capable of
switching among various cache replacement
policies dynamically and adaptively

• Higher bit ratio than other algorithms in
most of the simulations

• Applicable to majority of applications like
TPC-H and TPC-C workloads

• Simple and easy implementation besides
less computational overhead and space
consumption

• Further investigation needs to be done
for optimizing the CRFP by tuning
cache directory size and
SWITCH_TIMES value

(Sheikh and
Kharbutli, 2010) [14]

Proposed LACS algorithm
combining the principle of
locality with cost sensitivity

• Boosted L2 cache performance by a
considerable percentage

• Performed robustly when demonstrated on
various cache configurations

• Outperformed the other state-of-art cache
replacement algorithms that claimed to be
cost-sensitive

• Certain issues arise in case of shared L2
caches

• Maintenance of LRU stack information
expensive and difficult

• More comprehensive evaluation of
LACS in a multi-threaded environment
required

(Arunkumar and Wu,
2014) [15]

Presented ReMAP which
considers memory access
behaviour and reuse
characteristics to make

• Reduced number of misses and IPC
performance gain as compared to MLP-
aware replacement, LRU and DRRIP

• Provides superior performance than prior

• Extra hardware requirement despite the
substantial performance gain

• Negligible logic overhead which is the
result of effective cost calculation

131 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

eviction decisions at LLC(last
level cache)

works by combining recency, memory
access cost information and PERD

• Can misguide reuse behaviour if there
is a very large number of entries in
victim buffer thereby degrading
performance

 (Anandkumar et al.,
2014) [16]

Proposed hybrid algorithm –
RFR for cache replacement
combining LRU and LFU

• Improved cache hit-to-miss ratio than LRU,
FIFO and LFU when simulated on a variety
of cache sizes together with associativity

• Increases overall system performance by
combining frequency and recency of the
cache block

• Simple implementation and requirement of
minimal hardware

• Degree of accuracy can be increased by
considering extra parameters such as
application complexity, library
execution status and dependencies

(Sun and Wang,
2015) [17]

Put forward an algorithm for
light-weight caching
management that maximizes
volume of traffic handled by
caches besides reducing
bandwidth usage

• Provides better system performance in
terms of server bandwidth consumption and
access latency as compared to existing
strategies

• Easily implementable scheme that yields 2
times better hit ratio than LRU for a small
sized cache

• Evaluated only in homogenous cache
environment neglecting heterogenous
one

(Ye et al., 2015) [18]

Presented an algorithm
namely RPAC that improves
lifetime as well as I/O
performance of SSD

• Prolongs SSD lifetime by reducing
unnecessary cache replacements and erase
operations

• Enhanced I/O throughput by about 53% and
minimized cache replacements by about
98.5%

• Implemented successfully in real systems
and evaluated for many workloads that
revealed its extra-ordinary performance
than conventional algorithms

• Memory efficient and adoptable for a range
of applications

• Increases the replacements with the
increase in cache size therefore more
suitable for small caches

• I/O throughput shows weak sensitivity
to statistic cycle

• Performance can be enhanced only
when degree of spatial locality of
workloads is high

(Ramasamy and
Karantharaj, 2015)
[19]

Put forward a novel page
replacement algorithm -
RFFE for improving write-
operation performance in
flash memory based SSD

• Outperformed the existing schemes like
FAST, BBLRU and REF in terms of erase,
merge and write count

• Provides improved write-response time
besides no upsurge in log block area of SSD

• Minimizes the overall page replacement
cost on write by improving and bringing up
the best schemes proposed in the past

• Small overhead is involved by the
process of indexing and purging of
PWCs

• Restricted to NAND based flash
memories only

• Negative effect on write performance
on frequent issue of flush command by
host file system

(Li et al., 2015) [20]

Proposed algorithm called
FDRC – flow driven rule
caching for optimizing cacche
replacement in software
defined networks

• Low complexity algorithm with higher
cache-hit ratio thereby improving network
performance

• Performs better than LRU and FIFO under
diverse network conditions

• A meagre improvement of 3.2% in
performance of FIFO and LRU for a
large cache size

(Sheu and Chuo,
2015) [21]

Proposed wildcard rules
caching and rule cache
replacement algorithms to
solve rule dependency
problem and cache important
rules to TCAM using cover-
set approach

• Improved cache-hit ratios as compared to
prior works viz. LR, random replacement
and ARC

• Usage of wildcard rule cache algorithm
shows about 10% improvement in
comparison to cover-set cache method

• Still a scope for improving cache hit
ratio

• RCR algorithm can be further refined
for calculating weight value which is
conforming to traffic locality

(Monazzah et al.,
2016) [22]

Presented cache replacement
algorithm namely LER (Least
Error Rate) for minimizing
error rate in L2 caches

• No area overhead imposed on system
• In comparison to LRU, 2 times reduction in

error rate with 1.4% performance overhead
and 3.6% overhead in dynamic energy
consumption

• Indirectly imposes dynamic energy
performance overhead with additional
L2 cache misses because it evicts cache
lines

III. THEORETICAL ANALYSIS OF CONVENTIONAL
MEMORY HIERARCHY

A. Ideal Cache Heap Model
Define In this model, there are two different levels of

hierarchy comprising of cache heap size of N bytes along with
the cache heap lines length of B bytes as shown in Fig. 1, and
the calculation of total cache heap lines is done using (1).

Total cache heap lines: 𝑁
𝐵

 (1)

An ideal cache heap is fully associative. It implies that any
line can go anywhere in the cache heap memory [24]. The most
significant aspect of an ideal cache heap is that it incorporates
an optimal omniscient replacement model for page allocation
in cache heap blocks. It figures out which page needs to be
replaced or eliminated from the cache heap blocks if it is
required.

B. Performance Measurement
In this model, the performance evaluation is done by

computing the running time of instruction while executing.

132 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Work ← W (Ordinary serial running time during execution
of instruction when you run your code in processor)

Cmiss ← Cache heap Misses

Processor

Cache Memory

Main Memory

B

Fig. 1. A cache heap memory hierarchy

C. How Reasonable the Ideal Cache Heaps are?
Suppose an algorithm is processed through, and it incurs Q

cache heap misses on an ideal cache heap of size n. The
algorithm will be running in the machine, and the least recently
used (LRU) replacement policy will be used. Instead of using
ideal cache heap, the cache heap will be fully associative with
size two m. Basically, instruction of a block which has been
referenced longest ago in the past will be eliminated using least
recently used algorithm. The algorithm incurs 2Q cache heap
misses; hence, it indicates that LRU with the same constant
factors depicts a similarity with optimal solution [25][26].

D. Choosing LRU or the Ideal Cache with the Omniscient
Replacement
For most of the asymptotic analysis, LRU and optimal page

replacement policies are considered as convenient. The upper
bounds of an algorithm depict its efficiency regarding optimal
page replacement whereas the lower bound conveys that an
algorithm is not that efficient on its LRU. The above-stated
statement can bring an idea to get the reason behind the
internal memory management. Therefore, it is intended to use
both optimal and LRU policy for upper bounds and lower
bounds.

The proposed system theoretically assumes that the cache
heaps which are taken into account are not fully associative and
incur a different cost on bandwidth and latency (load and
store). Miss on a load and miss on a store have their different
impacts.

E. Design of a Theoretically Good Algorithm
1) Tall Cache Heap Assumptions: Tall cache heap

assumption is made based on an ideology of considering the
cache heap lines in ideal mode but in the real-time
configuration, the cache heap lines are assumed to be not
ideal. The concept of tall Cache heap line is theoretically
derived by (2) below:

B2 < η ×N where the constant η is ≤ 1 (2)

Equation (2) represents the fact that the cache heap
integrated with the system should always be tall [27]. For
example, in the modern computing systems, the cache line
length (Intel Core i7) usually considered is 64 bytes where the
L1 cache size is considered 32 KB. It can be easily interpreted
that the L2 and L3 cache heaps should be much bigger in size
as it could have 64K cache heap lines. Thus, more lines
associativity can increase the chances of cache heap
replacement. It also ensures that more items can be placed into
the cache.

2) Disadvantage of Using Small Cache Heaps: It can be
seen that a matrix of dimension D × D may not be fitted in a
small cache heap even if it satisfies the criteria of tall cache
heap assumption which is D2 < η × N. Hence, it is said that a
matrix always fits into a tall cache heap.

The asymptotic analysis of the above stated test case shows
that if D = Ω(B), then the cache heap miss that occurs while
loading in D2 data into the B cache heap is Θ(D2/B).

Fig. 2 shows a tentative representation of the above stated
test scenario.

After the text edit has been completed, the paper is ready
for the template. Duplicate the template file by using the Save
As command, and use the naming convention prescribed by
your conference for the name of your paper. In this newly
created file, highlight all of the contents and import your
prepared text file. You are now ready to style your paper; use
the scroll down window on the left of the MS Word Formatting
toolbar.

B bytes

Short C
ache Size

D X D

N
/B

 C
ac

he
 L

in
es

Fig. 2. Short cache heap over matrix

The analysis of the multiplication of D×D matrix depicts
the cache heap misses from the theoretical aspect. The analysis
of cache heap misses was performed by considering row-major
layout of arrays with two different test cases.

a) Test Case 1
The test case scenario 1 set the parameters in a way where

D > N/B. The Least Recently Used (LRU) policy has been
assumed to derive the computational asymptotic notations. It is
also used for computing the cache heap misses which is
denoted as µ(D) here.

The cache heap misses in test case 1 is represented with
µ(D) = Θ(D3). The row-major layout conventionality defines
that matrix B misses in every access on cache heap lines. A

133 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

tentative diagram for the analysis of cache heap misses is given
in Fig. 3.

D D

Matrix A Matrix B

DD

Fig. 3. Row major layout of arrays during the matrix multiplication

b) Test Case 2
The test case scenario 2 defines the parameters in such a

way where N (1/2) < D < η × (N/B). After the execution of LRU,
the cache heap misses is represented as µ(D) = D.Θ(D3/ B). It
also shows that matrix B evaluates the spatial locality. The
work analysis associated with tiled matrix multiplication by
considering the tall cache heap for sub-matrix, given in (3)
shows that

W(D) → Θ((D / S)3(S3)) → Θ(D3) (3)

It implies that a tuning technology is introduced to organize
the sub matrix in a way thus all the sub matrices can fit into the
Cache heap. The tuning of the sub metrics are defined by
sΘ(M1/2). In case of a tall cache, the misses will be Θ(S2/B).

IV. PROPOSED SYSTEM
The proposed study aims to design an efficient and optimal

least recently used algorithm based on Java’s garbage
collection mechanism. The advantage of using the proposed
system is, it incorporates Java’s garbage collector to perform
an indirect object allocation, while making use of an optimal
least recently used policy to replace or eliminate the object
which has been referenced long back during the program
execution. It also incorporates a mechanism that allows an
object which has been referred long back to get out of the
scope of a program execution state. Thus, there will be no need
of allocating a cache heap line for referring the least recently
used object. The proposed system incorporates an indirect way
of object allocation performed by the garbage collector that
ensures lesser execution time and higher efficiency in cache
heap memory. The above stated fact depicts that due to less
execution time, it requires fewer iteration during
implementation process while ensuring less time and space
complexity from a theoretical point of view. The proposed
model represents an approximation of the pseudo-tree based

and MRU based algorithm for the optimal page or referenced
object replacement from the cache heap lines [28][29]. The
associativity of these two algorithms improves the cost of
operations and also reduces the complexity of the
implementation process. As per the theoretical interpretations,
it can be said that the least recently used objects addressed in a
cache heap line are not always only the entities to be replaced
whereas it can be replaced on the most recently used object
reference lines also. The proposed system utilizes an indirect
way of object allocation (JVM Indirect Method) in the cache
heap blocks which save a lot of processing time as compared to
the shift method of JVM for object allocation. The proposed
page replacement heuristic for all the cache heap line
accessibility usually references objects, which are tracked
down by the n-way-1 bits. The n-way usually denotes the
number of cache heap lines associated with each block of
memory. The proposed model is tested on 4-way cache heap
memory, and it also considers the pseudo LRU method to track
the bits which are B0, B1, and B2 from a decision binary
engine. The track control signal flag value when set to true
(i.e., when B1 = 1) indicates that the objects residing on the
lower cache heap blocks CL0 and CL1 are recently used
whereas the flag value of B1 when set to false (i.e., when B1 =
0) means that two other higher cache heap blocks CL2 and
CL3 objects are recently used. The proposed model initiates
the bit B2 block for keeping the access track in between CL2
and CL3 object entities. The cache heap scheduler is
programmed in such a way that it looks for CL0, CL1, CL2
and CL3 cache heap line information. In the proposed work,
each cache heap line contains the information like which is
Significant_Flag_Bit, Main_memory_word, etc. The
significant flag bit contains the value 1 which indicates that the
line cache heap object is not similar to the correspondent object
of the RAM (Main Memory) whereas the value 0 represents
that the cache heap line contains the exact copy of object value
referenced in main memory line. The above stated fact
corresponds to the situation when a CPU request for an object
referenced line from the main memory. Hence, a translation
script using MTL enables the accessing of the cache heap line
address which is supposed to hold the object value. Cache heap
miss can arise when no address information is found on the
cache heap line block and variable B1 which is also associated
with the JVM’s garbage collector, looks for the least recently
used objects from the 2 lower cache heap lines or the two
higher cache heap lines. B0 and B2 identify that and replace the
cache heap line along with the least recently used object
reference. This study also deals with the introduction of a new
analytical concept of computationally efficient P-LRU based
optimal cache replacement algorithm using Java's garbage
policy from all the technical perspective. The proposed
heuristic cache heap object replacement policy set the binary
tree bits accordingly on a cache heap hit. The following Fig. 4
represents the conceptual overview of the proposed algorithm
from a theoretical point of view.

134 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Java’s Garbage
Collector

Initiate Cache
Scheduler

Check Cache
block address

for Object
Allocation

Check all 4
times in the set

valid or not

Perform Tree-
based P-LRU

Perform M-LRU

Replace Least
Recently Used
objects from

Cache

Allocate new
objects on
available
Cachlines

Indirect Way of
Object

Allocation

Fig. 4. A tentative architecture of the proposed system

The following sections highlight an in-depth description of
A. Tree based Cache Heap Object Replacement and B. MRU
bits based Cache Heap Object Replacement respectively. Both
algorithmic procedures are further combined for approximation
of optimal page replacement using Java’s garbage collector.

A. Tree based Cache Heap Object Replacement
In this case, the pseudo-LRU heuristic incorporates a binary

tree based structure for localizing or de-localizing the object
references from cache heap memory lines. SED heuristic study
considers three levels of cycles in CL2, CL3, and CL1. In cycle
1, the algorithm checks for a valid bit i.e., if (B1=1); if it is
there, it will check for B0 and B2. If B2 contains the flag bit 0,
then it will search for the least recently used object from higher
level cache heap blocks and replace that according to the cache
heap hit. In cycle 2, it replaces cache heap line object from the
lower level cache heap blocks (hit on CL3). The following
diagram represents the concept of the tree based pseudo LRU
policy. The object referencing and replacing the cache heap
lines are performed by JVM’s garbage collector.

Cycle 1
Hit in CL2

Cycle 2
Hit in CL3

Cycle 3
Miss:rep in CL1

B1 B1

B1B1

B0 B2 B0 B2

1

01

0

11

CL0 CL1 CL2 CL3

CL1 CL2CL0 CL3

Replace CL2 Object
Reference

CL1 CL2 CL3

CL1 CL2 CL3CL0

CL0

0

1 0

1

0 0B0 B2 B0 B2

Replace CL1 Object
Reference

Replace CL1 Object Reference Replace CL2 Object Reference

Fig. 5. Tree based cache heap object replacement

The above given Fig. 5 also highlights how cache heap line
referenced objects are replaced or reallocated in cycle 3 and 4
based on the valid flag bits initiated by the tree based pseudo
least recently used algorithm.

B. MRU bits based Cache Heap Object Replacement
The proposed system also incorporates another concept

which is based on pseudo least recently used policy in turn
based on most recently used cache heap reference bits for
Java’s object allocation. The concept is namely denoted as
LRUm. In this case, each of the cache heap blocks is assigned
with an MRU bit which is referenced with a tag table. The tag
table usually maintains and updates the flag values i.e., from 0
to 1 or from 1 to 0. If the MRU flag value is set to 1, it
indicates that a cache hit occurred in the cache heap block. It
also represents that the cache block is most recently used. The
cache controller is configured in a way that when it examines
the MRU flag bits which indicate ‘0’, it replaces the cache heap
line address and sets the flag value as 1. MRU flag bit set to ‘1’
for each cache object reference line indicates that it is most
recently used. An example of this concept is illustrated in the
Fig. 6.

135 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

0 0 1111 1000 1010

Cycle 1
Hit in CL2

Cycle 2
Hit in CL3

Cycle 2
Hit in CL1

CL0 CL1 CL2 CL3 CL0 CL1 CL2 CL3 CL0 CL1 CL2 CL3 CL0 CL1 CL2 CL3

MRU Flag [1.0] MRU Flag [1.0] MRU Flag [1.0] MRU Flag [1.0]

11

Fig. 6. JVM’s cache heap object replacement based on MRU

The implementation process sometimes incurs a problem, if
the MRU flag bits for all cache memory are set to 1 which
usually depicts a deadlock situation on unavailability of all
cache heap address lines. Therefore, to overcome this uncertain
and problematic situation, a principle has been introduced. It
says that all the MRU flag bits in the set should be cleared
except the MRU flag bit which is being accessed
simultaneously with a current program execution. The above-
stated deadlock situation also may arise during any potential
overflow situation.

Start

Initiate
Cache

Scheduler

Check Cache Block
Address lines for

memory availability
If(Available) Apply Indirect

Method

Allocate New
Objects

Terminate

Enable Garbage
Collector

Apply M-LRU Apply P-LRU

Loop
Structure

Replace Cache
Address Line

Value

Replace the
Least

Referenced
Objects

End

Yes

No

Fig. 7. Flow diagram of the proposed system

Fig. 7 represents a tentative flow chart of the proposed P-
LRU based optimal cache heap object replacement policy. The
asymptotic analysis of the proposed model evaluation depicts
the complexity comparison of the above mentioned two
different algorithms. The replacement heuristics also state that
MRU based replacement updates the MRU flag bit(s) on cache
hit and cache miss whereas Tree based replacement strategy
updates the tree bit(s) during cache hit or cache miss.

V. EXPERIMENTAL ANALYSIS
This section represents the experimental analysis carried

out considering the cache miss rates and performance
improvement (speed up) for a CMP architecture. It shows that
the proposed model reduces the L2 cache miss rate very
effectively as compared to the conventional LRU, OPT, FIFO,
and random algorithms for cache replacement. The
performance metric associated with different cache
configuration is highlighted in Table II.

TABLE II. UNITS FOR MAGNETIC PROPERTIES

CONFIGURATION MINIMUM AVERAGE MAXIMUM
256KB, 4-way 0% 4% 10%
512KB, 4-way 0% 15% 85%
1MB, 4-way -3% 8% 48%
2MB, 4-way -3% 19% 195%

26%

16.67%

20%

33%

0%

5%

10%

15%

20%

25%

30%

35%

FIFO L2 OPT L2 Random Proposed

Different Cache Models

 Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

Fig. 8. Performance analysis of different cache configurations

Fig. 8 shows the performance analysis of different cache
models which shows that the proposed JVM heap L2 cache
achieves 33% performance improvement rate (Speed up)
during garbage collector’s object fetching and replacement
phase. The proposed system has been evaluated using SPEC
CPU2000 benchmarks [30][31]. It uses a uniprocessor
architecture which speeds up the JVM L2 cache performance
up to 33%. Another performance parameter which is taken into
consideration is L2 cache miss rates. Fig. 9 shows the results
obtained from the L2 cache miss rates. To further estimate the
L2 cache misses for JVM, the correlation between blocks
evicted by the OPT and LRU replacement mechanisms are
thoroughly studied.

136 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

26%

20%

36%

30%

46%

20%

10%

16.67%

22%

26.67%

12%

16.67%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

FIFO L2
OPT L2

Random

Propose
d

FIFO L2
OPT L2

Random

Propose
d

FIFO L2
OPT L2

Random

Propose
d

Different Cache Models

L2
 C

ac
he

 M
iss

 R
at

e

Fig. 9. L2 cache misses

The asymptotic analysis shows that our proposed algorithm
achieves Θ(D2/B) cache misses for loading the D2 object into B
bytes cache heap. The upper bound asymptote conveys that the
proposed algorithm achieves very less L2 cache miss rates as
well as high performance ratio in comparison to the
conventional methods i.e. FIFO L2, OPT L2 and Random
Replacement Policy. Fig. 9 also highlights the cache miss rates
for different cache configurations.

Fig. 10. L2 cache miss rate Vs Iteration

A performance evaluation in between FIFO L2 Cache and
proposed JVM L2 has been carried out by obtaining the
simulation results explicitly during processing of each and
every instruction considering a constant rate of task arrival
(depicted in Fig. 10). It shows that the proposed algorithm
achieves very less cache miss rate while increasing the iteration
as compared to FIFO L2 conventional cache replacement
algorithm. Therefore, the simulation results in display of the
interface design considering all the parameters also exhibit that
the proposed algorithm executes jobs very faster and achieves
very less amount of cache miss rate, which is considered as the
significant contribution of the proposed study.

Fig. 11. Evaluation of processing time (s)

The graph in Fig. 11 represents the values (i.e.
processing/computation time in seconds) obtained after
processing the proposed cache heap object replacement policy
in an experimental and iterative test-bed configuration. The
above highlighted comparative study shows that our proposed
algorithm achieves very less processing time as compared to
the conventional mechanisms (OPT-L2 and FIFO-L2 Cache)
during cache heap object replacement. In other words, it is
computationally very much efficient and optimal in between
both upper and lower time bound.

VI. CONCLUSION
The proposed study developed a Pseudo LRU based

optimal cache object replacement policy to enhance the
performance of Java’s garbage collector and the cache
scheduler. It incorporates two different types of page
replacement policies i.e., Tree based Cache heap Object
Replacement and MRU bits based Cache heap object
replacement policies which improve the performance of the
computation and execution of instructions on very less cache
miss rates. The proposed algorithm has been configured with
JVM’s intermediate levels to enable the garbage collector
during the instruction fetching and executing time. A
significant theoretical analysis of the conventional memory
management is highlighted in section III that depicts how an
efficient cache replacement algorithm can be designed from
efficient asymptotic aspects. The performance evaluation of the
proposed system ensures its effectiveness in future research
direction of cache memory design and development.

REFERENCES
[1] R. F. Olanrewaju, A. Baba, B. U. I. Khan, M. Yacoob and A. W.

Azman, “An Efficient Cache Replacement Algorithm for Minimizing
the Error Rate in L2-STT-MRAM Caches,” presented at Fourth
International Conference on Parallel, Distributed and Grid
Computing(PDGC), 2016

[2] M. Kharbutli and R. Sheikh, "LACS: A Locality-Aware Cost-Sensitive
Cache Replacement Algorithm", IEEE Transactions on Computers, vol.
63, no. 8, pp. 1975-1987, 2014.

[3] Z. Wang, K. S. McKinley, A. L. Rosenberg and C. C. Weems, “Using
the compiler to improve cache replacement decisions,” in Parallel
Architectures and Compilation Techniques, 2002. Proceedings. 2002
International Conference on, Charlottesville, Virginia, 2002, pp. 199-
208.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 5 10 15 20 25

Ca
ch

e
M

is
s

Ra
te

Iteration

FIFO L2

Proposed L2

0

0.2

0.4

0.6

0.8

1

1.2

30 10
0

17
0

24
0

31
0

38
0

45
0

52
0

59
0

66
0

73
0

10
00

Pr
oc

es
si

ng
 T

im
e(

s)

Iteration

FIFO L2 OPT L2 Proposed

137 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

[4] S. Kumar and P.K. Singh, “An overview of modern cache memory and
performance analysis of replacement policies,” in Engineering and
Technology (ICETECH), IEEE International Conference on, 2016, pp.
210-214.

[5] C. C. Kavar and S. S. Parmar, “Improve the performance of LRU page
replacement algorithm using augmentation of data structure,” in
Computing, Communications and Networking Technologies (ICCCNT),
Fourth International Conference on, Tiruchengode, 2013, pp. 1-5.

[6] R. F. Olanrewaju, A. Baba, B. U. I. Khan, A. W. Azman, and M.
Yacoob, “A Study on Performance Evaluation of Conventional Cache
Replacement Algorithms: A Review,” presented at Fourth International
Conference on Parallel, Distributed and Grid Computing(PDGC), 2016

[7] Y. Xue and Y. Lei, “LRU-MRU with physical address cache
replacement algorithm on FPGA application,” in Computational Science
and Engineering (CSE), 2014 IEEE 17th International Conference on,
Chengdu, 2014, pp. 1302-1307.

[8] S. Ding, S. Lui and Y. Li, “Shared-cache simulation for multi-core
system with LRU2-MRU collaborative cache replacement algorithm,” in
Software Engineering, Artificial Intelligence, Networking and Parallel
& Distributed Computing (SNPD), 2012 13th ACIS International
Conference on, Kyoto, 2012, pp. 127-131.

[9] A. Valero, J. Sahuquillo, S. Petit, P. Lopez and J. Duato, “MRU-tour-
based replacement algorithms for last-level caches,” in Computer
Architecture and High Performance Computing (SBAC-PAD), 23rd
International Symposium on Vitoria, Espirito Santo, 2011, pp. 112-119.

[10] J. Jeong, P. Stenstrom, and M. Dubois, “Simple penalty-sensitive cache
replacement policies,” Journal of Instruction-Level Parallelism, vol. 10,
pp. 1-24, 2008.

[11] J. Xu, Q. Hu, W. C. Lee, and D. L. Lee, “Performance Evaluation of an
Optimal Cache Replacement Policy for Wireless Data Dissemination,”
IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 4,
pp. 125-139, 2004.

[12] K. Li, H. Shen, K. Tajima and L. Huang, “An effective cache
replacement algorithm in transcoding-enabled proxies,” The Journal of
Supercomputing, vol.35, no. 2, pp.165-184, 2006.

[13] L. Zhan-sheng, L. Da-wei, and B. Hui-juan, “CRFP: A Novel Adaptive
Replacement Policy Combined the LRU and LFU Policies,” in
Computer and Information Technology Workshops, IEEE 8th
International Conference on, 2008, pp. 72-79.

[14] R. Sheikh and M. Kharbutli, “Improving cache performance by
combining cost-sensitivity and locality principles in cache replacement
algorithms,” in Computer Design (ICCD), 2010 IEEE International
Conference on, 2010, pp. 76-83.

[15] A. Arunkumar and C. J. Wu, “ReMAP: Reuse and Memory Access Cost
Aware Eviction Policy for Last Level Cache Management,” in Computer
Design (ICCD), 2014 32nd IEEE International Conference on, 2014, pp.
110-117.

[16] K. M. AnandKumar, A. S., D. Ganesh, and M S. Christy, “A Hybrid
Cache Replacement Policy for Heterogeneous Multi-Cores,” in
Advances in Computing, Communications and Informatics (ICACCI),
2014 International Conference on, 2014, pp. 594-599.

[17] X. Sun and Z. Wang, “An optimized cache replacement algorithm for
information-centric networks”, in Smart City/SocialCom/SustainCom
(SmartCity), 2015 IEEE International Conference on, 2015, pp. 683-
688.

[18] F. Ye, J. Chen, X. Fang, J. Li and D. Feng, “A regional popularity-aware
cache replacement algorithm to improve the performance and lifetime of
SSD-based disk cache,” in Networking, Architecture and Storage (NAS),
2015 IEEE International Conference on, 2015, pp. 45-53.

[19] A.S. Ramasamy and P. Karantharaj, “RFFE: A buffer cache
management algorithm for flash-memory-based SSD to improve write
performance,” Canadian Journal of Electrical and Computer
Engineering, vol. 38, no. 3, pp. 219-231, 2015.

[20] H. Li, S. Guo, C. Wu, and J. Li, “FDRC: Flow-Driven Rule Caching
Optimization InSoftware Defined Networking”, IEEE ICC 2015 - Next
Generation Networking Symposium, 2015, pp. 5777-5782.

[21] J-P. Sheu and Y-C. Chuo, “Wildcard rules caching and cache
replacement algorithms in software-defined networking,” IEEE
Transactions on Network and Service Management, vol. 13, no. 1,
pp.19-29, 2016.

[22] A. Monazzah, H. Farbeh and S. Miremadi, “LER: Least error rate
replacement algorithm for emerging STT-RAM caches,” IEEE
Transactions on Device and Materials Reliability, vol. 16, no. 2, pp.
220-226, 2016.

[23] X. Sun and Z. Wang, “Optimized cache replacement scheme for video
on demand service,” in Dependable, Autonomic and Secure Computing,
2013 IEEE 11th International Conference on, 2013, pp. 192-199.

[24] R. Hemani, S. Banerjee, and A. Guha, “On the Applicability of Simple
Cache Models for Modern Processors,” in 2016 2nd International
Conference on Green High Performance Computing (ICGHPC), 2016.

[25] M. Frigo, C. Leiserson, H. Prokop and S. Ramachandran, “Cache-
Oblivious Algorithms,” ACM Transactions on Algorithms, vol. 8, no. 1,
pp. 1-22, 2012.

[26] E. Peserico, “Paging with dynamic memory capacity,” arXiv preprint
arXiv:1304.6007, 2013.

[27] E. Demaine, "Cache-oblivious priority queue and graph algorithm
applications", MIT Laboratory for Computer Science, 200 Technology
Square, Cambridge, MA 02139, USA, 2002.

[28] K. Kamil, M. Moreto, F. J. Cazorla, and M Valero, “Adapting cache
partitioning algorithms to pseudo-lru replacement policies,” in Parallel
& Distributed Processing (IPDPS), 2010 IEEE International Symposium
on, IEEE, 2010, pp. 1-12.

[29] X. Gu and C. Ding, “On the theory and potential of LRU-MRU
collaborative cache management,” In ACM SIGPLAN Notices, vol. 46,
no. 11, pp. 43-54. ACM, 2011.

[30] S. Sair. and M. Chamey, “Memory behavior of the SPEC2000
benchmark suite,” IBM Thomas J. Waston Research Center Technical
Report RC-21852, 2000.

[31] M. Qureshi, A. Jaleel, Y. Patt, S. Steely and J. Emer, “Adaptive
insertion policies for high performance caching”, ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, p. 381, 2007.

138 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Literature Survey
	III. Theoretical Analysis of Conventional Memory Hierarchy
	A. Ideal Cache Heap Model
	B. Performance Measurement
	C. How Reasonable the Ideal Cache Heaps are?
	D. Choosing LRU or the Ideal Cache with the Omniscient Replacement
	E. Design of a Theoretically Good Algorithm
	1) Tall Cache Heap Assumptions: Tall cache heap assumption is made based on an ideology of considering the cache heap lines in ideal mode but in the real-time configuration, the cache heap lines are assumed to be not ideal. The concept of tall Cache heap l�
	2) Disadvantage of Using Small Cache Heaps: It can be seen that a matrix of dimension D × D may not be fitted in a small cache heap even if it satisfies the criteria of tall cache heap assumption which is D2 < η × N. Hence, it is said that a matrix always �
	a) Test Case 1
	b) Test Case 2

	IV. Proposed System
	A. Tree based Cache Heap Object Replacement
	B. MRU bits based Cache Heap Object Replacement

	V. Experimental Analysis
	VI. Conclusion
	References

