
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

208 | P a g e

www.ijacsa.thesai.org

Extending Unified Modeling Language to Support

Aspect-Oriented Software Development

Rehab Allah Mohamed Ahmed

Computer Science Department,

Faculty of Computers & Information,

Helwan University, Cairo, Egypt

Amal Elsayed Aboutabl

Computer Science Department,

Faculty of Computers & Information,

Helwan University, Cairo, Egypt

Mostafa-Sami M. Mostafa

Professor of Computer Science, HCI

Lab Member

Faculty of Computers & Information,

Helwan University, Cairo, Egypt

Abstract—Aspect-Oriented Software Development (AOSD) is

continuously gaining more importance as the complexity of

software systems increases and requirement changes are high-

rated. A smart way for making reuse of functionality without

additional effort is separating the functional and non functional

requirements. Aspect-oriented software development supports

the capability of separating requirements based on concerns.

AspectJ is one of the aspect-oriented implementations of Java.

Using Model Driven Architecture (MDA) specifications, an

AspectJ model representing AspectJ elements can be created in

an abstract way with the ability to be applied in UML, Java or

XML. One of the open source tools which support MDA and

follows the standards of the Object Management Group (OMG)

for both UML and MDA is Eclipse providing an implementation

of MDA through Eclipse Modeling Framework (EMF). This

paper focuses on creating a UML profile; a UML extension

which supports language specifications for AspectJ using EMF.

Our work is based on the latest UML specification (UML 2.5)

and uses MDA to enable the inclusion of aspect-oriented concepts

in the design process.

Keywords—Aspect-Oriented Software Development; Model

Driven Architecture; Eclipse Modeling Framework; Object

Management group; UML; AspectJ

I. INTRODUCTION

Nowadays, software development complexity is
continuously increasing and the need for non-functional
requirements has become mandatory. This has led to various
problems concerning the code of existing systems. Examples of
such problems are redundancy and maintainability. Aspect-
oriented software development came with solutions to such
problems. A key concept in AOSD is by redefining the
concerns into separate aspects where each aspect supports an
individual concern. Typical examples of aspects are logging,
security, and persistence [1]. Using AOSD, the need to include
logging and security validation in each functionality is not
necessary anymore. Both of the log and security aspects scan
the code to perform what each of them is created for.

AOSD has its own terminology. An aspect refers to a
specific concern. A pointcut specifies the condition that will be
used to execute an aspect. A joinpoint refers to the program
segment that satisfies the pointcut condition. An advice is a
function that defines the behavior to use when a specific
joinpoint is executed. The weaving process defines the manner
in which the aspect code is combined with the base code so
that they can be run together [1] [2].

Aspect-oriented processing can be applied on starting
projects as well as existing projects. Various studies have
focused on how to combine the aspect-oriented process with
the software development process at different stages. Early
research covered the requirement gathering process and how to
perform separation of concerns. A formal way to convert the
requirements to concerns and find the link between concerns
has been presented [3]. In the design phase, aspects can be
supported through formal languages such as UML and related
tools [4]. A number of research projects have been conducted
in the area of incorporating aspect-oriented concepts in the
implementation stage of the software development process. In
this respect, a number of programming languages such as C++
and Java have been extended to support aspect-oriented
implementations yielding new languages such as AspectC++
and AspectJ [5] [6] [7]. Adding aspect-oriented concepts to the
software development design process requires some changes in
the design process for aspect identification and design as well
as program naming standards leading to a new generic aspect-
oriented design process [2].

This paper presents an aspect-oriented representation using
the UML extension mechanism with the abstraction of MDA.
Section II introduces Model Driven Architecture abstraction
mechanism and UML standards related to it. Section III
presents previous work on UML extension mechanism
supporting aspect-oriented development. Section IV presents
our proposed UML extension. Finally, section V presents the
conclusion and future work.

II. MDA ABSTRACTION MECHANISM

As software systems increase in complexity, the demand
for abstraction increases. Moreover, the need for separation of
the business domains, implementation, and the platform
dependency becomes mandatory. MDA supports such
abstraction on three levels: one representing business context,
second is a platform independent model (PIM), and the third is
a platform specific model (PSM) [8].

Model driven architecture (MDA) is an approach to system
specifications and system interoperability based on the use of
formal models introduced by OMG (Fig. 1). MDA separates
the specifications of a system from platform technology.
Computation Independent Model (CIM) specifies the function
of the system without getting into the construction details (Fig.
2). Platform independent model (PIM) specifies the
construction of the system without implementation details.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

209 | P a g e

www.ijacsa.thesai.org

Platform Specific Model (PSM) expresses the system details
related to implementation platform using Domain Specific
language (DSL) to transform it into different languages. MDA
aims to develop modeling specifications once and target
multiple technology implementations [12] [9] [13] [22].

Fig. 1. Model Driven Architecture [9]

Fig. 2. Model Driven Architecture Layers [8]

A. OMG and UML

Object Management Group (OMG) is a nonprofit
organization that develops technology standards for UML,
MDA and other software engineering concepts. The UML
standard specifications facilitate exchange between different
tools * [9] [10].

OMG UML2.X specifications consist of four parts [11]:

1) Superstructure which defines the elements of the

diagrams.

2) Infrastructure which defines the core metamodel of the

superstructure.

3) Object Constraint Language (OCL) which defines rules

for model elements.

4) XML MetaData Interchange (XMI) which defines an

XML format for the exchange of UML models.
UML architecture is built up using the Meta Model Library

called Meta Object Facility (MOF) based on a 4-layer
Metamodel Architecture as shown in Fig. 3.

Infrastructure is used at both M2 and M3 levels of Fig.3.
UML and MOF are both built based on the infrastructure with
additional properties to UML. MOF defines how UML models

interchange between tools using XMI. The superstructure is
specified by UML to deal with structural and behavioral
modeling [11].

Fig. 3. 4-Layer Metamodel Architecutre [15]

UML provides an extensibility mechanism in two ways.
The first is by creating profiles to customize the language for
particular platforms and domains. The second is to create a
new language related to UML using the Infrastructure library
(define new Metamodel) but this requires specific environment
modifications and handling. [11]

UML Profile cannot change the semantics of UML
elements; it is used when customizations of UML are required
for specific application domains. OMG have standardized
several existing UML profiles for specific domains like
CORBA, EJB. UML Profiles define both PIM and PSM in
MDA, as in the CORBA UML profile, which defines the
mapping from a PIM to a CORBA-specific PSM.

B. Eclipse Modeling Framework (EMF)

EMF is a framework and code generation facility that
enables the definition of a model in any of these forms (Java,
XML, and UML) and generates it in any of the three forms as
in Fig 4. It is a technology moving in the direction of MDA as
it is used to define the specification and separate it from the
platform and the language representation. EMF is considered to
be an MDA implementation supporting metamodel, but it has
no Workgroup support, and does not fully comply with MOF
standard. It has its Ecore which is close to MOF [14].

Fig. 4. EMF unifies UML, Java, and XML [14]

III. PREVIOUS WORK

As a challenging concept in software development, AOSD
has been under focus in various phases of the software

CIM

PIM

PSM

* OMG UML Specification accepted by ISO/IEC 19505-1:2012,
ISO/IEC 19505-2:2012

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

210 | P a g e

www.ijacsa.thesai.org

development process starting from requirement gathering to
design and implementation. A lot of work has been performed
in the direction of creating new language extensions which
support aspect-oriented concepts as well as developing
compilers for such languages. On the other hand, other
research focuses on the support of aspect-oriented concepts in
the design phase in a formal way supporting standards.

UML profile is an extension technique for customizing
UML to a specific domain or language implementation.
Metamodel is a parallel implementation to UML. Both UML
profile and Meta model support aspect-oriented concepts. This
section focuses classifying UML extension mechanism based
on whether it is a profile or metamodel, the used tool is open
source or commercial, the UML standard version, and whether
it supports an aspect-oriented language or is language
independent. An AspectJ profile supporting aspect-oriented
concepts in Java using one of the commercial tools and UML
2.0 extension mechanism has been developed [23].
Enhancements of such research to support UML2.4 have also
been conducted [30]. A metamodel supporting aspect-oriented
concepts and which is independent of language implementation
and platform has been proposed [25]. The research does not
rely on aspect-oriented elements related to a specific language
but relies only on the basic elements (Aspect, Pointcut, Advice,
joinpoint). Another work proposes a tightly coupled AspectJ
metamodel with Java created code based on Java metamodel
[24]. It is simple, but not considered as an extension to UML as
Java metamodel is a linear version of it. In [26], another
metamodel has been proposed representing both behavioral and
static structures. This model supports the class and interaction
diagrams by creating a tool based on the basic elements of
aspect-oriented software development.

A comparative study of the extension mechanisms
proposed to support aspect-oriented modeling approach is
found in [28] [29] up to studies performed in 2010. An updated
study, including more recent research is shown in Table 1. Our
comparison is based on six criteria; UML version, extension
mechanism, diagram support, tool support, code generation and
language support.

UML Version: represents the UML version supported by
OMG.

Extension Mechanism: uses the UML extension which
maps to UML Profile, or creates a parallel extension to UML
which maps to Metamodel. [19]

Diagram Support: represents which UML diagrams to
support; behavioral diagrams (Use case diagram, Activity
diagram, State Machine diagram, and Interaction diagram) and
static diagrams (Class diagram, Object diagram, Package
diagram, Component diagram, Deployment diagram, and
Profile diagram) [11].

Tool Support: indicates whether the created profile has
been applied with a tool, is an open source tool or one of the
commercial tools.

Code Generation: indicates whether the tool created
supports code generation from the design.

Language Support: indicates the language keywords
supported by the created profile or if it is language independent
(language independent support neglects some details and takes
the common context of different language supported by
specific profile).

TABLE I. ASPECT-ORIENTED EXTENSIONS COMPARISON

Author &

Year

UML

Version.

Language

Support.

Extension

Mechanism
Diagram Support. Tool Support. Code generation.

J. Evermann,

(2007) [23]
2.0 AspectJ

Light weight
(UML Profile)

Static Diagrams
(Class Diagram)

Magic Draw
(Commercial tool)

Supported.

 M. Chibani,

(2013) [30]
2.4 AspectJ

Light weight

(UML Profile)

Static Diagrams

 (Class Diagram)

Magic Draw

(Commercial tool)
Supported.

 Y. Han,

(2006) [24]
2.0 AspectJ

Light weight

 (UML Metamodel)
Static Diagrams Create new tool Supported

Z. Sharafi,

(2010) [25]
2.3

Language
Independent

Light weight
 (UML Profile)

Static Diagrams CASE Tool
Language
Independent

Z. Qaisar,

 (2013) [26]
2.0

Language

Independent

Heavy weight

(UML Metamodel)

Static Diagrams +

 Behavioral Diagrams
CASE Tool

Language

Independent

 A. Ali,

(2014) [27]
2.0

Language

Independent

Light weight

 (UML Metamodel)

Static Diagrams
(Class Diagram) +

Behavioral Diagrams

(Interaction Diagram)

Created new tool
Language

Independent

Based on the comparisons of the latest studies on aspect-
oriented extensions, most of the previous work doesn’t support
the latest OMG UML 2.5 standards. In addition, not all types
of diagrams are supported. Most of the previous work also uses
commercial tools or create their own tool.

This work focuses on supporting the latest UML 2.5
standards with the Eclipse open source tool.

IV. PROPOSED MODEL

To create a model, language syntax keywords to be
represented need to be listed. Then, the relation between
different elements is defined. Finally, the type of extension to
be used is matched in UML Profile extension elements to be
represented in a Modeling Tool as a profile. Mapping elements
of AspectJ profile need full awareness of UML elements and
the Metaclasses [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

211 | P a g e

www.ijacsa.thesai.org

In the proposed model, a UML extension is created through
a UML profile using EMF to support AspectJ language syntax
on Eclipse tool as open source one. The main elements of
aspect-oriented programming (aspect, pointcut, advice, and
joinpoint) are mapped together as shown in Fig. 5. A detailed
representation of AspectJ elements and their relation to
elementary subtypes are represented in Fig. 7 as AspectJ
profile.

A. Language Syntax Representation

PointCut: A pointcut can be considered to be a filter or
predicate to a set of events (called joinpoints) that is accessible
to an aspect during program execution. Pointcuts may be
categorized based on the kind of joinpoint, scope or a context
[32]. Detailed pointcut representation in the profile is shown in

Fig 6. Pointcuts in this model are represented as a child of the
UML Property Metaclass.

Structure of pointcut

<pointcut> ::= <access_type> <pointcut_name> ({

<parameters> }) : { designator [&& | ||] };

<access_type> ::= public | private [abstract]

<pointcut_name> ::= { <identifier> }

<parameters> ::= { <identifier> <type> }

<designator> ::= [!]Call | execution | target | args | cflow |

cflowbelow | staticinitialization |within | if | adviceexecution

|preinitialization

<identifier> ::= letter { letter | digit }

<type> ::= defined valid Java type [31]

Fig. 5. Basic AspectJ syntax elements

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

212 | P a g e

www.ijacsa.thesai.org

Fig. 6. Pointcut elements

Advice: An advice specifies what to do at a joinpoint
matched by a specific pointcut. Each piece of advice is
associated with a pointcut [32]. An advice in this model is
represented as a child of the UML Operation MetaClass.

Structure of Advice

Advice ::= [ReturnType] TypeOfAdvice "("[Formals]")"

[AfterQualifier] [throws TypeList] ":" Pointcut "{"

[AdviceBody] "}"

TypeOfAdvice ::= before | after | around

ReturnType ::= TypeOrPrimitive ;(applies only to around

advice)

AfterQualifier ::= ThrowsQualifier |

ReturningQualifier;(applies only to after--defined later)

Formals ::= ;(as a Java parameter list)

Pointcut ::= ;

AdviceBody ::= ;(as a Java method body with some difference

in parameter passing as parameter values provided by

pointcut) [31]

Aspect: An aspect represents a crosscutting concern in a
modular way that supports encapsulation and abstraction [32].
An aspect in this model is represented as a child of the UML
Class Metaclass.

Structure of Aspect

aspect ::= <access> [privilege] [static] aspect <identifier>

<class identifier><instantiation>

<access> ::= public | private [abstract]

<identifier> ::= letter { letter | digit }

<class identifier> ::= [dominates] [extends]

<instantiation> ::= [issingleton | perthis | pertarget |

percflow

| perflowbelow]

//pointcuts

//advice

//methods/attributes

}[31]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

213 | P a g e

www.ijacsa.thesai.org

Fig. 7. AspectJ profile elements

B. AspectJ EMF UML Profile

Creating a profile using EMF requires the following steps
[17][20][21] :

1) Create a UML profile: which is an extension

mechanism supported by UML through standard extension

elements: Stereotype, Object Constraint Language (OCL), and

Tagged Value as shown in Fig. 8.

2) Validate the created profile: Validation is based on the

version of UML that is applied. The proposed profile is

created with UML 2.5 (latest version of UML by OMG)

which has updated the OCL language validation for UML

extension.

3) Generate an XMI profile (Fig 9): This is one of the

features of using EMF. Once the model is created, it can be

used in XML format. XMI is the XML representation to

interchange the model between different tools supporting the

OMG standards. As shown in Fig 9, the resulting AspectJ

profile in XMI format holds the information of XMI version

and the OMG specifications. It holds information of EMF

Ecore, the UML Version as well as the detailed specification

of the profile elements. The resulting XMI file may be used in

Eclipse to create the modeling using the generative model of

Eclipse. Moreover, the generated XMI file may be used with

any tool supporting the XMI standard format.
Eclipse run-time environment is, then, used to run the

profile.

Fig. 8. AspectJ profile elements using EMF

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

214 | P a g e

www.ijacsa.thesai.org

Fig. 9. AspectJ profile in XMI format

C. Case Study

A Simple Telecom Simulation of a telephony system in
which customers make and accept both local and long distance
calls is presented here as an example of applying the proposed
model [18]. The basic objects of the telecom model are shown
in Fig. 10. The Customer class holds methods for managing
calls. The Connection class models the physical details of
establishing a connection between customers. The Call class is
created for both caller and receiver. If the caller and receiver
have the same area code then the call is established with a
Local connection. Otherwise a LongDistance connection is
required. Three Aspects are used in this example. The Timing
aspect keeps track of total connection time for each Customer
by starting and stopping a timer associated with each
connection. The TimerLog aspect can be included in a build to
get the timer to monitor when it started and stopped. The
Billing aspect adds billing functionality to the telecom
application on top of timing.

The created profile successfully mapped the code for the
model representation of aspect, pointcuts, and advices as in
Fig.11. This case study shows the ability of the created model
to support the language representation of AspectJ.

Fig. 10. Telecom Example Basic Objects[18]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

215 | P a g e

www.ijacsa.thesai.org

Fig. 11. Telecom Example representation using created AspectJ Profile

V. CONCLUSION AND FUTURE WORK

A successful modeling representation of AspectJ language
using Eclipse open source tool is created. Model-driven
architecture concepts are applied following UML 2.5
standards; the latest version of UML up to the time of writing
this paper. Most of the previous work doesn’t support the latest
OMG UML 2.5 standards. Moreover, most of the previous
work uses commercial tools or create their own tool to extend
UML to support aspect-oriented concepts. MDA concepts may
be applied to both language and the domains customization in
UML. This work uses MDA concepts to support language
customization as a UML profile. Future research in this area
may deal with supporting code generation from design as well
as generating the class diagram from the code. More research
can be done in handling the unification of specific domains
such as healthcare, finance, telecom in a standard UML model
using MDA concepts.

REFERENCES

[1] Fillman, Elrad, Clark, Aksit (Eds.), Aspect-Oriented Software
Development , Addison Wesley Professional, 2004.

[2] Sommerville,SoftwareEngineering,9thEdition, Pearson,chapter21, Aspect
oriented engineering, 2011.

[3] Y Raghu Reddy, An aspect oriented approach to early software
development, 7th ICUML, 2004.

[4] Mark Basch, Arturo Sanchez , Incorporating Aspects into the UML,
Aspect Oriented Modeling Workshop at AOSD, 2003.

[5] Grigoreta S. Cojocar and Adriana M. Guran, A Comparison of Aspect
Oriented Languages, Proceedings of the National Symposium
ZAC2014, pages 11-18, 2014.

[6] The Home of AspectC++ (http://www.aspectc.org/) Retrieved 22-9-
2014

[7] AspectJ (http://eclipse.org/aspectj/) Retrieved 22-9-2014

[8] Enas Ashraf, Getting Started with Model Driven Development and
Domain Specific Modeling, Software Engineering Competence Center,
2013.

[9] OMG(http://www.omg.org/gettingstarted/gettingstartedindex.htm),
Retrieved 22-9-2014

[10] Martin Fowler,UML Distilled: A Brief Guide to the Standard Object
Modeling Language,3rd ed,Addison-Wesley Professional,2004.

[11] Object Management Group. UML 2.4 Infrastructure, OMG document
ptc/10-11-16, 2011.

[12] A. Vodovnik, K. Žagar, MODEL DRIVEN ARCHITECTURE,
CONTROL SYSTEMS AND ECLIPSE , ICALEPCS , 10th, 2005

[13] Johan Den Haan, MDA ,Model Driven Architecture, basic
concepts(http://www.theenterprisearchitect.eu/blog/2008/01/16/mda-
model-driven-architecture-basic-concepts/). Retrieved 22-9-2014

[14] Dave Steinberg,Frank Budinsky ,Marcelo Paternostro ,Ed Merks ,EMF:
Eclipse Modeling Framework, 2 ed,Addison-Wesley Professional ,2008.

[15] Richard Paige,The Meta-Object Facility (MOF), University of York,
UK, July 2006.

[16] Object Management Group. UML 2.5 Infrastructure, OMG document
ptc/ formal-15-03-01, 2015.

[17] Ed Merks , James Sugrue,Essential EMF, DZone,2008

[18] The AspectJ Programming Guide, http://www.eclipse.org/aspectj/doc/
next/progguide/printable.html#a-simple-telecom-simulation, Palo Alto
Research Center, 2003.

[19] James Bruck , Kenn Hussey,Customizing UML: Which Technique is
Right forYou?, http://www.eclipse.org /modeling/mdt/uml2/docs/
articles/Customizing_UML2_Which_Technique_is_Right_For_You/
article.html .2008

[20] Model Development Tools (MDT), UML2, http://www.eclipse.org/
modeling/mdt/?project=uml2 , retrieved (07-02-2016).

[21] MDT/UML2 ,http://wiki.eclipse.org/MDT/UML2., retrieved (07-02-
2016).

[22] D. W. Embley, B. Thalheim, Handbook of Conceptual Modeling:
Theory, Practice, and Research Challenges. Springer, 2011.

[23] J. Evermann, “A Meta-Level Specification and Profile for AspectJ in
UML,” Journal of Object Technology, Volume 6, no. 7, pages 27-49,
2007.

[24] Y. Han, G. Kniesel and A. Cremers, “Towards Visual AspectJ by a
Meta Model and Modeling,” 6th International Workshop on Aspect-
Oriented Modeling, Vancouver, 2006

[25] Z. Sharafi, P. Mirshams, A. Hamou-Lhadj, and C. Constantinides.
Extending the UML Metamodel to Provide Support for Crosscutting
Concerns. In Proceedings of the 34th ACIS International Conference on
Software Engineering Research, Management and Applications
(SERA’10), Montreal, Canada, pages 149–157.IEEE, 2010

[26] Z.Qaisar, N.Anwar, S.Rehman. Using UML Behavioral Model to
Support Aspect Oriented Model. Journal of Software Engineering and
Applications, pages 98-112, 2013

[27] A.Ali, Z.Malik, N.Riaz ,M.Jaffer,K.Usmani. The UML Meta Modeling
extension mechanism by using Aspect Oriented Modeling (AOM). In
Proceedings of the International Advance Computing Conference
(IACC), pages 1373– 1378.IEEE, 2014

[28] A.Magableh,Z.Shukur, N.MohdAli. Heavy weight and lightweight UML
Modeling Extension in aspect orientation in the early stages of software
development. In Proceedings of the Journal of Applied Science, pages
2195 –2201.Asian Network for Scientific Information, 2012

[29] A.Magableh, Z.Shukur, N.MohdAli. Systematic Review on Aspect
Oriented UML modeling: A Complete Aspectual UML modeling
Framework. In Proceedings of the Journal of Applied Science, Asian
Network for Scientific Information, 2013

[30] M.Chibani, B.Belattar, A.Bourouis .Towards a UML Meta Model
Extension for Aspect Oriented Modeling. ICSEA, 2013

[31] J.D.Gradecki, NLesiecki, Mastering AspectJ Aspect-Oriented
Programming in Java, Wiley, 2003.

[32] A.Colyer, A.Clement, G.Harley, M.Webster, “Eclipse AspectJ: Aspect-
Oriented Programming with AspectJ and the Eclipse AspectJ
Development Tools”, Addison Wesley Professional, 2004.

