
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

259 | P a g e

www.ijacsa.thesai.org

TinyCO – A Middleware Model for Heterogeneous

Nodes in Wireless Sensor Networks

Atif Naseer

Science and Technology Unit

Umm Al-Qura University

Makkah, Kingdom of Saudi Arabia

Basem Y Alkazemi and Hossam I Aldoobi

College of Computer and Information System

Umm Al-Qura University

Makkah, Kingdom of Saudi Arabia

Abstract—Wireless sensor networks (WSNs) contain multiple

nodes of the same configuration and type. The biggest challenge

nowadays is to communicate with heterogeneous nodes of

different WSNs. To communicate with distinct networks, an

application requires generic middleware. This middleware

should be able to translate the requests for contrary WSNs. Most

of the wireless nodes use the TinyOS or Contiki operating

systems. These operating systems vary in their architecture,

configuration and programming model. An application cannot

communicate with heterogeneous networks because of their

divergent nature. In this paper, we design and implement

TinyCO (a generic middleware model for WSNs), which

overcomes these challenges. TinyCO is a general-purpose service-

oriented middleware model. This middleware model can identify

the heterogeneous networks based on TinyOS and Contiki. It

allows applications to communicate with these networks using a

generic request. This middleware interprets the given input into

signatures of the underlying networks. This proposed

middleware is implemented in Java and tested on TelosB motes.

Keywords—wireless sensor networks; middleware;

heterogeneous network; interoperability; service-oriented

architecture

I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of
multiple sensor nodes with embedded sensors, actuators and
radio communication [1,2]. These nodes are now capable of
doing processing and transmission due to their efficient energy
mechanism but are still complex in nature [3]. There was rapid
development in applications of WSNs after the revolution of
the Internet of Things (IoT). A recent survey from the Wireless
World Research Forum foresees an increase in wireless devices
up to 7 trillion by 2017 [4]. This would increase the demands
of applications. An application cannot communicate directly
with heterogeneous WSNs.

All the wireless nodes in any network contain an operating
system to run. There are multiple operating systems available
that serve WSNs. The two major operating systems used today
are TinyOS and Contiki. To communicate with nodes, an
application should know the signatures of the underlying
network. All the applications are built for the specified
network; these applications can only communicate with
homogenous nodes of WSNs. All the nodes in WSNs use some
operating system to communicate. This operating system
remains the same in all sensor nodes within the same network
and can vary in other WSNs. Most sensor networks use the
TinyOS and Contiki operating systems. A WSN only consists

of wireless nodes with the same type of operating system
running.

In our previous paper [5], we identified the differences
between the Contiki and TinyOS operating systems in their
data exchange models. The operating systems are different in
their architectures and programming models. That paper maps
the architectures of TinyOS and Contiki into a component-
based model. An application cannot communicate with both
network types simultaneously without middleware.
Middleware allows an application to communicate with
heterogeneous nodes without modifying the request. The
middleware will translate the request according to the
signatures of the underlying network and will send the request
to the network.

Atif et al. [6] proposed a general-purpose service-oriented
middleware model for heterogeneous networks. Service-
oriented architecture (SOA) is an advanced development in
distributed computing. This approach uses “services” to
interact with all the components of software and complete the
task. All the frameworks following SOA have a common
approach towards problems. Each activity in a service-oriented
WSN application, like discovering, sensing and aggregation, is
implemented as a separate service [7]. The proposed TinyCo
middleware identifies the node types, configures the sensor
nodes and allows data communication between heterogeneous
networks. Initially the middleware will only support TinyOS-
and Contiki-based WSNs. In this paper, we design and
implement TinyCo (a generic middleware model for WSNs).
Here, we discuss its complete working model, services,
implementation and testing. TinyCo is implemented in Java
and is tested on a real network of TinyOS and Contiki-based
nodes. We deploy two different networks of TinyOS and
Contiki of TelosB motes.

In the remainder of the paper, section II discusses the
middleware role in WSNs and the challenges, section III
highlights some of the common services of SOA-based
middleware, section IV describes the TinyOS and Contiki
programming models, the proposed middleware architecture is
discussed in section V, section VI shows some implementation
and results details, and section VII draws conclusions and
offers suggestions for future work

II. RELATED WORK AND CHALLENGES

In WSNs, the middleware role is very significant in terms
of data delivery and information retrieval. Nowadays, people

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

260 | P a g e

www.ijacsa.thesai.org

are building their own networks for multiple applications. An
application cannot communicate with heterogeneous networks
without middleware, as every network has potential
mismatches in the data format and structures exchanged
between nodes. An application layer of every network is
responsible for data exchanges between users and the
underlying network. Due to this mismatch, every network
should have a separate application, and every application can
only send/receive data to/from the specified underlying
network. Middleware for WSNs plays an essential role in
communication. The middleware identifies the network and
modifies the request from an application according to the
underlying network [8]. In the literature, many solutions have
been discussed based on different approaches, like event-based,
service-oriented, virtual-machine-based, agent-based, database-
oriented and application-driven approaches. Several
middleware models have been proposed under these
approaches for WSNs.

A. Event-Based Middleware

Pietzuch [9] presented an event-based middleware model
called Hermes. His proposed middleware supports reliability
and interoperability between different components. The
architecture of Hermes consists of a middleware layer, an
event-based layer, a type-based and attribute-based pub/sub
layer, an overlay routing network layer, and a network layer.

Boonma and Suzuki [10] proposed event-based middleware
called TinyDDS. The architecture of this middleware allows an
application to control the nonfunctional properties of the
middleware and the application layer. This middleware model
was designed specifically for a WSN and does not allow
interoperability between heterogeneous nodes.

B. Service-Oriented Middleware

Some of the middleware follows a service-oriented
approach. These types of middleware are based on SOA. SOA-
based middleware is very common and well established in
WSNs.

OASIS [11] is object-centric ambient-aware service-
oriented sensor-net middleware. This middleware has a
service-oriented programming framework. The major
functionalities of this middleware are related to sensor node
operation, communication and service discovery. Due to the
limited resources of sensor nodes, this middleware maintains
the service repository itself. There are two types of service
repositories stored in this middleware: local and discovered.

Hydra [12] is middleware for ambient intelligence services
and systems. Its architecture follows the component-based
service-oriented approach. Some of the major components of
its architecture are a service manager, an event manager, a
device manager, a storage manager, a context manager and a
security manager. These components provide services to its
layers and allow an application to communicate with the
underlying network.

C. Virtual-Machine-Based Middleware

Virtual-machine (VM) based middleware is also common
in the literature. It provides a safe execution environment for
user applications by virtualization. There are two types of

VMs: middleware-level VMs and system-level VMs [13]. The
middleware-level VMs are present between the application and
the operating system, and system-level VMs are present inside
the node. Every node in a network has a VM that allows
applications to communicate with the network. These types of
middleware consume more resources of nodes in terms of
space and power.

Levis and Culler [14] proposed a VM-based middleware
called Maté. The major contribution of Maté is to effectively
handle resources like bandwidth and energy for sensor
networks. Maté follows the event-based execution model of
TinyOS. One of the main goals of this middleware is code
management that provides updates to applications.

D. Agent-Based Middleware

The middleware that follows the agent-based approach is
divided into modular programs. These programs are distributed
through the network using mobile agents. Michal et al. [15]
presented agent-based middleware for the IoT called Ubiware.
This middleware supports the creation of multiple industrial
systems. The major contribution of this middleware is to
support the monitoring, composition, resource discovery and
execution of multiple applications. This middleware is
composed of three layers: a behavior engine, a middle layer,
and shared and reusable resources (sensors, actuators, smart
machines and devices).

UbiROAD [16] is agent-based middleware used for smart
road environments. The major goal of this middleware is
interoperability between in-car and roadside heterogeneous
smart devices. This middleware provides a platform for smart
traffic management. It can communicate with heterogeneous
devices with respect to their standards, data formats and
protocols. UbiROAD is self-adaptive middleware by deploying
multiple agents.

E. Database-Oriented Middleware

The database-oriented middleware approach is very
common nowadays. In this approach, an application can query
a request to the database and the middleware executes that
request. The sensor network receives the request from the
middleware in the form of a query and sends the results
accordingly.

Bonnet et al. [17] presented database-oriented middleware
called COUGAR. This middleware deals with two types of
data: stored data and data generated by sensor nodes. This
middleware does not support event or code management but
provides flexibility and accessibility to large groups of sensors

F. Application-Driven Middleware

The application-driven middleware approach focuses on
quality of service and resource management. These types of
middleware only support specific types of applications
according to the network. These types of middleware fine-tune
themselves according to the requirements of the application.

MiLAN [18] is application-driven middleware. It allows an
application to send its requirements so that it can configure the
network accordingly. To configure the network, MiLAN needs
all the information of the network, like the number and types of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

261 | P a g e

www.ijacsa.thesai.org

sensors. This middleware is mostly used in medical
applications.

Alex et al. also designed application-driven middleware for
TinyOS called TinyCubus [19]. This middleware framework is
implemented on top of TinyOS and manages the requirements
of an application. Some of the major applications are related to
driver assistance systems and bridge monitoring.

G. Middleware Challenges

All types of middleware face certain challenges during their
implementation and execution. Hadim and Mohamed [20] list
the common middleware challenges for WSNs. Some of these
challenges are:

 Limited resources

 Scalability

 Dynamic network topology

 Heterogeneity

 Dynamic network organization

 Data aggregation

 Quality of service

 Security

III. SERVICES OF SOA MIDDLEWARE

SOA-based middleware is very popular nowadays due to its
architecture. These types of middleware offer several services
to applications and networks for the completion of tasks. Some
of the commonly used services of such middleware are:

1) Node manager: This service manages the nodes and all

corresponding services.

2) Service discovery: All the available services of the

middleware are invoked by service discovery. Usually, the

service ID is used to find out the service.

3) Data communication: This service is used to

communicate data between the middleware and the network or

application layer.

4) Network management: This service usually monitors

the network performance. This service can also be used for

network maintenance.

5) Notification: This service is used to notify about the

events in the network.

6) Data gathering: This service gets the data from the

network and makes it presentable for application.

7) Routing: The network routing protocols and algorithms

are managed by this service.

8) Group management: Some of the middleware manages

groups of nodes inside the network. This service allows the

application to communicate with multiple groups.

IV. THE TINYOS AND CONTIKI PROGRAMMING MODELS

Atif et al. [5] proposed a component-based model for the
TinyOS and Contiki programming models. The operating
systems are different in their architectures and programming
models. “Component-based software engineering (CBSE) is a
branch of software engineering that stresses the separation of
concerns in respect of the wide-ranging functionality available
throughout a given software system” [21]. Components
communicate with each other through interfaces; these
interfaces are also used for communication with other layers of
the network. They map the programming models of TinyOS
and Contiki into a component-based model. For that purpose,
we use only some of the characteristics of CBSE, like
initialization, state control, communication and data exchange.

Contiki has a modular architecture and follows the hybrid
model. The Contiki architecture consists of the Contiki kernel,
libraries, a program loader and processes [22]. These are like
components. All Contiki programs are processes. A process act
is a component and should have some core functionalities and
some interfaces for interaction with other components.

TinyOS follows a component-based model using event-
driven programming [23]. The TinyOS programming model
supports a component-based approach and provides two types
of components: modules and configurations. The interface of
every component is implemented in module components, while
configurations are used to assemble other components together,
connecting the interfaces used by some components to the
interfaces provided by others.

Figure 1 shows the component-based models of TinyOS
and Contiki. To communicate across networks, the component-
based approach supports data interoperability between
heterogeneous networks.

Sender Process

<<Chanel local/
remote port>>

Send

Configuration

Sender
Component

Receiver
Component

<<contains>><<contains>>

Send/
Receive

Send Receive

Receiver Process

Receive

TinyOS Contiki

Fig. 1. Component-based models of TinyOS and Contiki

V. PROPOSED MIDDLEWARE MODEL

A general-purpose middleware model was proposed in our
previous paper [6]. The proposed middleware model consists
of three layers: the application interface layer, the service layer
and the hardware layer. These layers communicate the message
from the application to the underlying network and vice versa.
These layers provide services according to the needs of the
network and the application. The user application interface
(with the application layers of the middleware and the network)
is interfaced with the hardware interface of the middleware.
Figure 2 shows the layers of the proposed middleware.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

262 | P a g e

www.ijacsa.thesai.org

Network

Hardware Interface Layer

Service Layer

Application Interface Layer

M
iddlew

are Layer

Application

Fig. 2. Proposed middleware model

A. Application Interface Layer

The application interface layer is responsible for invoking
services that bind the application and the middleware and
allows the messages to be communicated between the
application and the middleware. The message received by the
application interface layer is passed to the service layer.

B. Service Layer

The service layer contains most of the services required for
communication and discovery. This layer invokes its service
after receiving the message from the application layer. The
message header contains a request, which allows the
middleware to decide which service should be invoked. This
layer wraps the message according to the underlying network
signature and passes the message to the hardware interface
layer. Figure 3 shows the services of the middleware service
layer. The major services of this layer are discovery,
identification, configuration, routing and sensing.

1) Service discovery: This service is responsible for

managing all the services of the middleware and identifies the

appropriate service for the application according to its

requirements. When a request comes from the application

layer to the middleware layer, the service discovery calls the

appropriate service from its stack and sends the request to that

service.

2) Node identification: The node identification service

identifies the type of nodes in the network. There are multiple

base stations available through which an application interacts

with the network. This service identifies the TinyOS and

Contiki base stations and their port numbers.

3) Network configuration: The major responsibility of this

service is to configure the network, its topology, its node types

and its operating system.

4) Data sensing: The data sensing service collects the

sensed data from the network and makes it presentable for

application.

5) Routing: Network routing, protocols and algorithms are

managed by the routing service of the proposed middleware.

In our case, the routing for TinyOS and Contiki-based

networks is managed through this service.

S
e

rv
ic

e
 D

is
c
o

v
e

ry

N
o

d
e

 Id
e

n
tific

a
tio

n

N
e

tw
o

rk
 C

o
n

fig
u

ra
tio

n

D
a

ta
 S

e
n

s
in

g

R
o

u
tin

g
Application Interface Layer

Hardware Interface Layer

Fig. 3. Middleware layer services

C. Hardware Interface Layer

The hardware interface layer consists of open, close, read
and write services. These services are invoked upon the arrival
of the message from the service layer. The hardware interface
layer is responsible for opening and closing the connection
with the underlying network. This layer can read the message
from a connected node and can send the message to the
underlying network.

VI. IMPLEMENTATION AND RESULTS

To implement the proposed middleware model, we selected
two widely used operating systems: TinyOS and Contiki.
TinyOS and Contiki are used in many types of sensor nodes.
We design two different WSNs based on TinyOS and Contiki
and run our middleware to verify the results.

A. Sensor Nodes

A lot of sensor motes are currently used in the development
of systems. In our experimentation, we are using MEMSIC’s
TelosB mote. The TelosB platform was developed by UC
Berkley [24]. It is an open-source platform and has many
feature:

 IEEE 802.15.4 RF transceiver

 250 kbps data rate

 Onboard antenna

 8 MHz microcontroller

 1 MB external flash for

 data collection and programming

 Onboard light, humidity and temperature sensors

 Supports the TinyOS and Contiki operating systems

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

263 | P a g e

www.ijacsa.thesai.org

Fig. 4. TelosB mote

B. Operating Systems

The TelosB mote supports the TinyOS and Contiki
operating systems. To prove the concept of the proposed
middleware, we use both operating systems in different
networks. They are different in their architectures and
programming models. Our proposed middleware supports both
types of network nodes with these operating systems.

TinyOS is used mostly in sensor nodes and it is the most
robust, innovative, energy-efficient and widely used operating
system. TinyOS was developed by the University of California
[25]. It uses the NesC language for component implementation.

Contiki was developed by the Swedish Institute of
Computer Sciences [26]. Contiki uses the C programming
language; its application runs on a microcontroller. Contiki
follows event-driven programming.

C. Model

To implement and test the proposed middleware, we design
two different types of networks. The first network contains
TinyOS nodes and the second network contains Contiki-based
nodes. Both networks have two types of nodes: remote nodes
and base stations. The base station is physically connected to
the system and acts as a gateway between sensor nodes and the
middleware. The middleware sends/receives all the messages
to/from the network through the base station.

Figure 5 shows the implemented network model. This
model contains an application, the middleware and multiple
sensor networks. The application initiates any requests for the
underlying sensor network through the middleware. The
middleware translates the message according to the network
signatures. The middleware is connected to the base stations of
every network. The middleware transmits the message to the
base station, which broadcasts the message in the network.
Every network contains multiple remote sensor nodes. The
major functionalities of these nodes are to sense the data and
transmit it to the base station. In the scenario shown in Figure
5, there are two types of networks: one contains all the TinyOS
nodes and the other contains all the Contiki nodes. These
remote nodes are connected through radio link to the base
stations and among themselves.

Middleware

Application

TinyOS Nodes
Contiki Nodes

Contiki Base Station
TinyOS Base Station

Fig. 5. Network model

D. Middleware Services

The proposed middleware allows applications to interact
with different types of networks using a generic request. The
major functionalities of this middleware are:

1) Identification of Connected Ports
The application requests the middleware to identify the

ports connected. The middleware runs its service discovery
service to find out the motes connected with any sensor node.
In Figure 6, the complete process is explained by the flowchart.
The service discovery service identifies all the connected ports.
This service discovers the port number and displays it to the
application.

Start

Receive request
to Identify motes

Run ‘service discovery’
service to discover motes

Identify ports of connected
motes

Send discovery message to
application

Application displays
connected ports

Stop

Fig. 6. Identification of connected ports

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

264 | P a g e

www.ijacsa.thesai.org

2) Identification of Base Station
After identifying the connected ports of the system, the

application can identify the type of base station connected to
the system. This identification is possible by invoking the
network identification service of the middleware. This service
sends the messages to all the connected nodes and identifies if
it is a TinyOS or Contiki base station. The middleware receives
the request from the application and converts it into two
different message signatures: one for TinyOS and one for
Contiki. The middleware sends these messages to every node
connected to each port. The base station only receives the
message as per its signature and rejects the other. The base
station sends an acknowledgment to the middleware after
receiving the message. Figure 7 shows the process of the
network identification service in a flow chart. If the
middleware finds some nodes other than TinyOS or Contiki, it
also sends that information to the application. Once the
middleware has received all the information of the connected
nodes, it publishes the list to the application, along with the
node type and the node ID.

Start

Receive the port ID to
identify mote type

Run ‘network identification’ service
to discover motes

Send motes identification message to
application

Application displays
motes with port number

Stop

TinyOS base
station

detected

Contiki base
station

detected

No
Some other mote

detected

No

Yes
Yes

Fig. 7. Network identification

3) Identification of Remote Nodes
The middleware allows the application to identify the

number of remote nodes in all the available connected
networks. The application sends the request to the middleware
to identify the number of nodes in the network. The
middleware invokes its network configuration service to find
out the total number of active nodes in the network. The
middleware receives the message for some specific network,
like TinyOS or Contiki. It converts the message as per the
network message syntax and sends it to the specified network
base station.

4) Data Communication
When the application needs to communicate with the

underlying network, it requests data collection or sensing from
the middleware. The middleware invokes its data sensing
service, which manipulates the application request into
specified network-identified signatures. The middleware sends

the manipulated message to the base station of the TinyOS or
Contiki network. The base station that broadcasts the message
to the network and completes the request. The middleware also
receives the sensed data from the underlying network through
the base station and displays it to the application. Figure 8
shows the complete flow of data communication through the
middleware.

E. Implementation

To implement the middleware, we first build the scenario
as discussed in the above section. We develop two networks
based on Contiki and Tiny OS nodes.

1) Contiki Network
The first network consists of Contiki nodes. There are two

types of nodes: the base station and remote nodes. The base
station is directly connected to the serial port and
communicates with the middleware. To generalize the packet
format, a new command packet is defined in the base station.
Figure 9 shows the packet definition of the Contiki base
station. This packet contains the following fields:

Start

Receive the sensor
mote ID and message

to request data

Run ‘data sensing’ service to
sense data

Request is for
TinyOS network

Request is for
Contiki network

No

Convert the message
signature according to

TinyOS network

Convert the message
signature according to

Contiki network

Send request to TinyOS base
station

Base station broadcast the message in
the network

Base station receive the sense data
from the network

Send request to Contiki base
station

Middleware receive the message from
Base station

Send the sensed data to application

Application displays
sensed data

Stop

Yes Yes

Application
display

exception
error

No

Fig. 8. Data communication

 command: used to store the command from the
middleware

 address: used to store the address of the destination
node

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

265 | P a g e

www.ijacsa.thesai.org

 data: used to store the data

Fig. 9. Contiki packet definition

As Contiki uses event-based programming, it waits for its
serial line event to occur. Once this event has occurred, the
middleware sends some command to the Contiki base station,
which handles the following use cases:

a) Identify node type: The middleware sends a

command to find out what type of base station is connected.

Once the Contiki base station has received this command, it

sends the message back to the middleware along with its node

ID. After receiving this command, the base station will not

broadcast the message into its network.

b) Data communication: The middleware sends this

command with multiple variations. The base station is capable

of fulfilling a certain number of requests from the middleware,

like LEDs off/on, sensing the temperature and light, etc. Once

the base station has received the command and destination

address from the middleware, it sends this packet to the

network. Every node of the network forwards this message to

its neighbor node until it reaches the destination. The

following forwarding method is used for packet forwarding

within the network.

static rimeaddr_t * forward

(struct multihop_conn *c, const rimeaddr_t

*originator, const rimeaddr_t *dest, const

rimeaddr_t *prevhop, uint8_t hops)

Every neighbor node of the base station receives the
message using the receive method.

static void recv (struct multihop_conn *c, const

rimeaddr_t *sender, const rimeaddr_t *prevhop,

uint8_t hops)

Once the message has been received by the destination
node, the node checks the command of the packet and
completes the task. After sensing, the data is stored in the data
part of the packet. The destination node sends this packet to the
base station. Once the base station has received the packet from
the remote node, it communicates with the middleware and
sends the packet to the middleware for further action. Figure 10
shows the command execution for sensing temperature.

Fig. 10. Middleware command execution

2) TinyOS Network
The second network in our scenario is based on TinyOS.

All the nodes in this network are burned with TinyOS code.
This network also contains a base station connected with the
middleware and some remote nodes connected with the base
station. The base station contains the base code of TinyOS,
constituting two major files: BaseAppC.nc and BaseC.nc.
TinyOS follows the component-based approach for programing
the nodes. Hence, BaseAppC.nc contains the code for
component declarations, and BaseC.nc contains all the
implementations of the declared components. There are two
types of interfaces used in the base station. The first one binds
the base station to the middleware through serial
communication, and the second one binds the base station to
the remote nodes through radio communication.

The following methods are used in both types of interfaces.

a) SerialRequestSampleMsgsReceive: This method is

used to receive the message from the middleware through the

serial port.

b) RadioRequestSampleMsgsSend: This method is

used to send the request to the remote nodes through radio

communication.

c) RadioSampleMsgReceive: This method receives the

data from the remote nodes through radio communication.

d) SerialSampleMsgSend: This method is used to send

the message back to the middleware through the serial port.

For remote nodes, we use SamplerAppC.nc and
SamplerC.nc. SamplerAppC.nc contains the components and
their bindings for remote nodes. SamplerC.nc contains the
implementations of all these components. There are only two
types of methods used for sending and receiving interfaces.
Both interfaces communicate through radio. One interface is
used to receive the message from the base station, and the
second interface is used to send the data back to the base
station. The following two methods are used in both types of
interfaces.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

266 | P a g e

www.ijacsa.thesai.org

a) RequestSampleReceive.receive: This method

contains the code to receive the message from the base station

or other neighbor nodes.

b) SampleSend.sendDone: This method contains the

code to send the packet back to the base station. This packet

contains the sensed data.

F. Results

The proposed middleware is implemented in Java. The
middleware binds the application and underlying sensor
networks with heterogeneous nodes. The initial version of this
middleware facilitates the identification of motes, the discovery
of their types and communication with heterogeneous
networks. Figure 11 shows the proposed middleware design.

Fig. 11. Design of middleware model

1) Identification of Connected Ports
The first major functionality of the middleware is to

identify the number of ports connected with base stations. The
identify motes function identifies all such ports and displays
the results. We use the mote interface functions of Java to
identify the connected ports. Figure 12 shows the number of
ports along with the mote types.

Fig. 12. Number of connected ports

2) Identification of Base Station
Once the mote has been identified, the next task is to

identify the base station associated with every port. The
matcher function of the middleware performs this task. This
function takes a command as input and sends it to all the base
stations connected with ports. Only those nodes that recognize
the message with its signature receive the message. Once the
node has received the message, it responds to the middleware
about its type. Figure 13 shows that the base station connected
with USB0 is a TinyOS node. Hence, the messages associated
with TinyOS networks should be routed to this node through
the USB0 serial port.

Fig. 13. Base station connection

The middleware records the ports and the base stations
associated with them. Every time the matcher runs, it will
identify all the nodes again. Figure 14 shows that a Contiki
base station is running at USB1.

Fig. 14. Status of running base station

3) Data Communication
The major part of this middleware is to communicate

between heterogeneous networks. The middleware receives the
same message from applications for both types of networks;
the middleware calls the respected API after identifying the
network. Figure 15 shows the communication API for a
Contiki network. It allows the user to set the LEDs and senses
data like temperature and light. The middleware gets the
remote node ID and action as an input and displays the sensed
data to the middleware.

Fig. 15. Data communication API for Contiki

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

267 | P a g e

www.ijacsa.thesai.org

VII. CONCLUSION AND FUTURE WORK

WSNs are composed of numerous sensor motes. These
motes sense and transmit data. Some of the motes act as base
stations to communicate with applications. Most sensor
networks are composed of generic motes, and an application
can communicate with these motes using their signatures. It is
hard for an application to communicate with heterogeneous
networks without middleware. Here, we implement general-
purpose SOA-based middleware that lets an application
communicate with two different types of networks with
TinyOS and Contiki motes. We deploy a test bed to implement
the proposed middleware and to run different scenarios to
validate the results.

In future, we will enhance the functionality of this
middleware for IoT applications. This middleware will be able
to identify more sensor motes other than TinyOS and Contiki
motes and will establish communication as well.

ACKNOWLEDGMENT

This work is funded by grant number 11-INF1674-10 from
the Long-Term National Plan for Science, Technology and
Innovation (LT-NPSTI), King Abdul-Aziz City for Science
and Technology (KACST), the Kingdom of Saudi Arabia. We
thank the Science and Technology Unit at Umm A-Qura
University for its continued logistics support.

REFERENCES

[1] K.L. Man, T. Krilavicius, Th. Vallee and H.L. Leung, “TEPAWSN: A
formal analysis tool for wireless sensor networks,” International Journal
of Research and Reviews in Computer Science, Vol. 1, No. 1, pp. 24-26,
2010.

[2] Jo Ueyama, Danny Hughes, Ka Lok Man, Steven Guan, Nelson
Matthys, Wouter Horré, Sam Michiels, Christophe Huygens and Wouter
Joosen, “Applying a multi-paradigm approach to implementing wireless
sensor network based river monitoring,” Proc. ACIS International
Symposium on Cryptography and Network Security, Data Mining and
Knowledge Discovery, E-Commerce & Its Applications and Embedded
Systems (CDEE), IEEE, 2010.

[3] K. L. Man, D. Hughes, S. U. Guan and P. W. H. Wong, “Middleware
support for dynamic sensing applications,” 2016 International
Conference on Platform Technology and Service, Jeju, 2016.

[4] M. Uusitalo, “Global vision for the future wireless world from the
WWRF,” IEEE Veh. Technol. Mag., Vol. 1, No. 2, pp. 4-8, January
2006.

[5] A. Naseer, B. Y. Alkazemi and H. I. Aldoobi, “Component-based model
for heterogeneous nodes in wireless sensor networks,” Lecture Notes on
Information Theory, Vol. 3, No. 1, pp. 25-30, June 2015. doi:
10.18178/lnit.3.1.25-30.

[6] A. Naseer, B. Y. Alkazemi and H. I. Aldoobi, “A general-purpose
service-oriented middleware model for WSN,” 2016 Eighth
International Conference on Ubiquitous and Future Networks, Vienna,
pp. 283-287, 2016.

[7] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema and J.
Sztipanovits, “OASiS: A programming framework for service-oriented
sensor networks,” 2nd Intl. Conference on Communication Systems
Software and Middleware, pp. 1- 8, 7-12 January 2007.

[8] Basem Y. Alkazemi, Atif Naseer and Emad A. Felemban, “Towards a
general-purpose middleware model for WSNs: A literature survey,”
International Journal of Computer and Information Technology, Vol. 4,
No. 1, January 2015.

[9] P. R. Pietzuch, “Hermes: A scalable event-based middleware,” Univ.
Cambridge, Comput. Lab., Tech. Rep. UCAM-CL-TR-590,
http://www.cl.cam.ac.uk/techreports/UCAMCL-TR-590.pdf, Accessed
October 2016.

[10] P. Boonma and J. Suzuki, “TinyDDS: An interoperable and configurable
publish/subscribe middleware for wireless sensor networks,” Principles
and Applications of Distributed Event-Based Systems, 2010, p. 206.

[11] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema and J.
Sztipanovits, “OASiS: A programming framework for service-oriented
sensor networks”, 2nd Intl. Conf. on Communication Systems Software
and Middleware, pp. 1- 8, 7-12 January 2007.

[12] M. Eisenhauer, P. Rosengren and P. Antolin, “Hydra: A development
platform for integrating wireless devices and sensors into ambient
intelligence systems,” The Internet of Things. New York: Springer, pp.
367-373, 2010.

[13] A. Azzara, S. Bocchino, P. Pagano, G. Pellerano and M. Petracca,
“Middleware solutions in WSN: The IoT oriented approach in the ICSI
project,” in Proc. 21st Int. Conf. Softw. Telecommun. Comput. Netw.,
pp. 1-6, 2013.

[14] P. Levis and D. Culler, “Maté: A tiny virtual machine for sensor
networks,” SIGARCH Comput. Archit. News, Vol. 30, No. 5, October
2002.

[15] N. Michal, K. Artem, K. Oleksiy, N. Sergiy, S. Michal and T. Vagan,
“Challenges of middleware for the Internet of Things,” Automation
Control—Theory and Practice. InTech, 2009.

[16] V. Terziyan, O. Kaykova and D. Zhovtobryukh, “Semantic middleware
for context-aware smart road environments,” Proc. 5th Int. Conf.
Internet Web Appl. Serv., pp. 295-302, 2010.

[17] P. Bonnet, J. Gehrke and P. Seshadri, “Towards sensor database
systems,” in Mobile Data Management. New York: Springer, Vol. 1987,
pp. 3-14, 2001.

[18] W. Heinzelman, A. Murphy, H. Carvalho and M. Perillo, “Middleware
to support sensor network applications,” Network, pp. 6-14, 2004.

[19] H. Alex, M. Kumar and B. Shirazi, “Midfusion: An adaptive
middleware for information fusion in sensor network applications,” Inf.
Fusion, Vol. 9, No. 3, pp. 332-343, July 2008.

[20] S. Hadim and N. Mohamed, “Middleware: Middleware challenges and
approaches for wireless sensor networks”, IEEE Distributed Systems
Online, Vol. 7, No. 3, 2006.

[21] Component-based software engineering, http://en.wikipedia.org/w/
index.php?title=Componentbased_software_engineering, Accessed
November 2016.

[22] Beginner’s guide to crossbow motes, http://www.pages.drexel.edu/
~kws23/tutorials/motes/motes.html, Accessed October 2016

[23] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh and E. Brewer, “TinyOS: An operating system
for sensor networks”, Ambient Intelligence. Berlin: Springer, pp. 115-
148, 2005.

[24] TelosB data sheet, http://www.memsic.com/userfiles/files /Datasheets
/WSN/telosb_datasheet.pdf, Accessed September 2016

[25] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler and K. S. J. Pister,
“System architecture directions for networked sensors,” SIGPLAN Not.
35 (11), pp. 93-104, ACM, 2000.

[26] TinyOS Platform hardware,
http://docs.tinyos.net/tinywiki/index.php?title=
Platform_Hardware&oldid=5648, Accessed September 2016.

