
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Efficient Video Editing for Mobile Applications
Ignasi Vegas Pajaro

Department of Computer Science
Manhattan College
New York, USA

Ankur Agrawal
Department of Computer Science

Manhattan College
New York, USA

Tina Tian
Department of Computer Science

Manhattan College
New York, USA

Abstract—Recording, storing and sharing video content has
become one of the most popular usages of smartphones. This has
resulted in demand for video editing apps that the users can use
to edit their videos before sharing on various social networks.
This study describes a technique to create a video editing
application that uses the processing power of both GPU and CPU
to process various editing tasks. The results and subsequent
discussion shows that using the processing power of both the
GPU and CPU in the video editing process makes the application
much more time-efficient and responsive as compared to just the
CPU-based processing.

Keywords—iOS programming; Image processing; GPU; CPU;
Objective-C; GPUImage; OpenGL

I. INTRODUCTION
Smartphones have become an essential part of our day-to-

day life. Americans spend about one hour a day on their
smartphones using mobile applications [1]. The iPhone is the
most used device, occupying 47% of the smartphone market
share [2].

We consume different types of content on our smartphones
such as news, social-media, images, video games, music,
films, TV shows, etc. Especially, the number of video content
distributed around the Internet is growing exponentially every
year due to popular video hosting platforms like YouTube,
Facebook, Snapchat and Instagram. The consumption of video
in mobile platforms is expected to grow 67% year-on-year
until 2019 [3] as can be seen in Fig 1.

Fig. 1. Evolution of Mobile video consumed in PB per month

As a result of the high quality camera in iPhones, we can
record video in high quality with a device that is always in our
pocket. The videos can then be shared with our friends across
different social-media platforms. With more and more videos
being recorded and shared, it has become important for the
users to be able to edit those videos before being published on

the Internet. Video editing is the process of manipulating
video images, adding audio and/ or visual effects. Since
smartphones are getting more and more powerful with each
passing day in terms of processing and memory, it is possible
to build iPhone applications to edit videos that the users
record, without the need of a computer and with a better and
faster user experience.

This paper presents a study on developing a video editing
application for iOS platform. The application uses image
processing algorithms and iOS programming techniques.
Image processing is the processing of images using
mathematical operations by using any form of signal
processing for which the input is an image, a series of images,
or a video and the output may be either an image or a set of
characteristics or parameters related to the image. iOS
programming techniques use a set of libraries, algorithms and
best practices that are used to build iPhone applications.

This application allows the user to record a video or to
import a video stored in your iPhone camera roll. The user can
select a specific part of the video and crop the video if it is
required. The user can then add some image filter effects
along with a background song. Finally, the user can save the
resulted video back to the iPhone.

II. METHODS

A. Technologies used
The application is programmed in iOS version 9.0[4]. iOS

version 9.0 runs in 80% of the iOS devices using xCode
version 7.3 [5] and Objective-C [6] as language development.
Recently, Apple launched a new programming language for
iOS called Swift [7]. This application however is programmed
in Objective-C instead of Swift since Objective-C is a more
evolved language with more documentation about video
processing than Swift.

B. Libraries used
For the entire iOS application flow and user interface, we

have used the Cocoa Framework [8], a group of native
libraries provided by Apple to create the user interface of an
application.

The video capture, video importing/exporting and video
cropping, is implemented using UIImagePickerController [9].
This is a class created by Apple to work with media files.

The video filter processing is created using GPUImage
[10], a third-party library created by Brad Larson. This library
gives you the opportunity to use the GPU to process the video
instead of CPU. The video processing tools provided by Apple

0.00

5000.00

10000.00

15000.00

20000.00

2014 2015 2016 2017 2018 2019

Mobile video consumed (PB per Month)

26 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

only allows to process video using CPU. Also, using
GPUImage you can use predefined filters or you can create
filters of your own.

To preview the video, the application uses Core Image
[11], an iOS native library that allows you to reproduce media
content in your application.

AVFoundation [12] is used to add custom background
audio to the videos. This is a native iOS library provided by
Apple to manipulate audio in media files.

C. Views
In iOS, when we talk about a view, we are referring to a

screen in the application. Our application has four different
views, as discussed below.

The first view allows the user to select a video for editing.
The user can select between recording a video using the
iphone camera and importing a video from the iPhone camera
roll. The user can also select certain parts of the video to be
processed, and delete the rest of the video. The new video
segment, thus created, is saved in a temporary directory inside
the application.

Once the video is selected for editing, the filter screen
appears. This view provides a preview of the video where the
user can select a filter to apply. There is an option to keep the
video as it is without applying any filters. When a filter is
selected, the application sends the video to the GPU. This
means that the CPU is not processing the video, as the GPU
works as a separate thread. While the video is being
processed, a loading icon is displayed. When the process is
complete, the processed video can be viewed with the filter
applied. If the user does not like the applied filter, they can
select another filter and the above process will be repeated.
When the video has been processed, it remains in the
temporary directory.

The third view is the audio view. This view shows a
classical iOS TableView [13] with a list of all the available
songs that can be chosen for the video. The song files are
stored with the application, as the application only offers a
few songs and the durations are not longer than twenty
seconds. When the user selects a song, the video is processed
again. The processing uses the CPU by creating a parallel
thread, so now the application continues to run in the main
thread. The user also has the option to not add any song to the
video. The video is again saved in the temporary directory
after an audio song has been added to the video.

The fourth view offers a final preview of the video with
the new audio included. Here, the user has the option to save
the video to the camera roll. Note that, so far, the video is only
stored in a temporary folder. This is being done to prevent
unnecessary use of memory space and CPU as it is more
efficient to work with a file stored in a temporary directory
inside the application space.

D. Filters
GPUImage works on top of OpenGL shaders[14]. OpenGL

Shaders are programs designed to run on some stage of a
graphic processor (GPU). As a result, our application can

process videos using GPU and also use predefined image
filters or create a custom filter using OpenGL features.

As mentioned earlier, when the application starts
processing the video, the CPU creates a parallel thread. This
parallel thread is then processed by the GPU as shown in Fig.
2. The GPU reads every frame of the video and processes each
frame separately. When all the frames are processed, the GPU
returns the control back to the CPU.

Fig. 2. GPU and CPU state while processing a video

The process that OpenGL Shaders use to process an image
is called rendering pipeline. The OpenGL rendering pipeline
defines a number of stages for this shaders as shown in Fig. 3.

Fig. 3. States of the rendering pipeline

The vertex shader [15] transforms the video images into
individual vertices. Primitive assembly [16] connects the
vertices created by the vertex shader to form figures which are
called primitive units. Rasterization [17] is then applied,
which transforms the primitive units into smaller units called
fragments. In the fragment processing stage [18], colors and
textures are applied to the fragments, which is then saved in a
Frame Buffer [19]. The frame buffer allows us to create an
image or show the image on a screen. The key advantage of
using OpenGL Shaders is that the various operations can be
run in parallel in the GPU allowing for a more responsive
application.

27 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

III. RESULTS
Fig. 4 displays the first view of the application. In this

view, you can select two options; Record a video using the
iPhone camera or import a video from the camera roll. Fig. 5
shows the view where the user can crop the video. Fig. 6
shows the view where a filter can be applied to the video. The
application currently provides 15 popular filters, as shown in
Table I.

Fig. 4. First app view with two available options

Fig. 5. Second app view to crop the video

Fig. 6. Third app view to apply filters

TABLE I. FILTERS AVAILABLE

Sepia Blur Color Space

Color Invert Sobel Edge Emboss

Errosion Exposure Gamma

Laplacian Luminance Posterize

Prewitt Edge Saturation Gaussian

Fig. 7 provides a view where the user can choose an audio
song that will be added to the video. Currently, the application
provides 10 audio songs. These songs have been downloaded
from jammendo.com [20], which are under Creative
Commons [21] license. The last view, as shown in Fig. 8,
provides a preview of the processed video and gives user the
option to save the video on the camera roll.

28 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Fig. 7. Fourth app view to select an audio song

Fig. 8. Fifth app view to save the edited video

IV. DISCUSSION

A. Using GPU or CPU for image processing
In the methods section, we mentioned about using GPU

processing alongside the CPU processing for many of the
processing tasks. For parallel operations like video processing,
using GPU has significant performance advantages over CPU.
The GPUImage framework takes only 2.5 ms on an iPhone 4
to upload a frame from the camera, apply a gamma filter, and
display, versus 106 ms for the same operation using Core
Image and 460 ms using CPU-based processing. This makes
GPUImage 40X faster than Core Image and 184X faster than
CPU-based processing. On an iPhone 4S, GPUImage is 4X
faster than Core Image for this case, and 102X faster than
CPU-based processing. [22].

CoreImage is the library provided by Apple to process
images and video files. In newer devices like the iPhone 6, we
can achieve the same performance using CPU or GPU.
However, for this study we decided to use GPU processing
because older devices like the iPhone 4 and iPhone 5 are more
responsive when we utilize both GPU and CPU for video
editing tasks.

B. Duration of the videos
Several social networks such as Instagram [23] and

Snapchat [24] limit the length of videos that can be uploaded
to 10 or 15 seconds. When a user uses a mobile application,
they want a fast, responsive and a seamless user experience,
and processing a video longer than 20 seconds can take a
longer time thus negatively impacting the user experience. So,
we decided to limit the duration of the videos that the users
can take using the application to 20 seconds. Table II shows
the video processing time using the application with different
video durations. All videos are in 1080p with 30 frames per
second. For this experiment, the blur effect was applied using
an iPhone 6.

TABLE II. 1080P VIDEO PROCESSING TIME ON AN IPHONE 6

Length of video (seconds) Video processing time (seconds)

10 3

20 7

30 10

40 14

50 17

60 21

70 25

Table III shows the video processing time using the
application for videos of different durations in 640p (unlike
videos in Table II that are in 1080p).

29 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

TABLE III. 640P VIDEO PROCESSING TIME ON AN IPHONE 6

Length of video (seconds) Video processing time (seconds)

10 2

20 4

30 6

40 8

50 11

60 13

70 14

Table IV shows the video processing to apply blur effect
using the application on iPhone 5s. All videos are in 1080p
with 30 frames per second. As the data shows, the processing
time required by an iPhone 5s is almost the double of the time
required by iPhone 6 as shown in Table II. This is as a result
of the iPhone 5s GPU being half as powerful as the iPhone 6
GPU [25].

TABLE IV. 1080P VIDEO PROCESSING TIME ON AN IPHONE 5S

Length of video (seconds) Video processing time (seconds)

10 10

20 20

30 30

40 39

50 49

60 60

70 68

C. Future Work
Future work will involve improving the scalability of the

application. For instance, we will have the songs list stored on
the server. The application will be able to connect to the server
and the songs can be downloaded to the smartphone. Another
new feature will involve adding the option to select between
different image qualities for the output video. With lower
quality export videos, the processing will be faster as
compared to a video generated using the high quality option.

V. CONCLUSION
Mobile applications and video content have become an

integral part of our lives. It has become common for people to
use their mobile phones to record, edit and share videos on
social networking sites. This paper presents a video editing
application for iOS devices that can be used to record videos
and edit them. The edit features include cropping, applying
filters or adding background audio. The application describes
a technique to use the processing power of both the GPU and

the CPU to improve the response time. The results show that
using the processing power of the GPU alongside CPU in the
video editing process makes the application more efficient and
responsive.

REFERENCES
[1] Smart Insights http://www.smartinsights.com/mobile-marketing/mobile-

marketing-analytics/mobile-marketing-statistics/
[2] Nielsen Smartphones market share,

http://www.nielsen.com/us/en/insights/news/2015/tops-of-2015-
digital.html

[3] Cisco Visual Networking Index,
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-
520862.html

[4] Apple iOS 9 Specifications,
https://developer.apple.com/library/ios/releasenotes/General/WhatsNewI
niOS/Articles/iOS9.html

[5] Xcode at a glance,
https://developer.apple.com/library/ios/documentation/ToolsLanguages/
Conceptual/Xcode_Overview/

[6] About Objective–C,
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptu
al/ProgrammingWithObjectiveC/Introduction/Introduction.html

[7] The Swift Programming Language,
https://developer.apple.com/library/ios/documentation/Swift/Conceptual
/Swift_Programming_Language/

[8] Cocoa Touch Documentation,
https://developer.apple.com/library/ios/documentation/General/Concept
ual/DevPedia-CocoaCore/Cocoa.html

[9] UIImagePickerController Class Reference,
https://developer.apple.com/library/ios/documentation/UIKit/Reference/
UIImagePickerController_Class/

[10] GPUImage, https://github.com/BradLarson/GPUImage
[11] Core Image Programming Guide,

https://developer.apple.com/library/mac/documentation/GraphicsImagin
g/Conceptual/CoreImaging/ci_intro/ci_intro.html

[12] AVFoundation Programming Guide,
https://developer.apple.com/library/ios/documentation/AudioVideo/Con
ceptual/AVFoundationPG/Articles/00_Introduction.html

[13] UITableView Class Reference
https://developer.apple.com/library/ios/documentation/UIKit/Reference/
UITableView_Class/

[14] Shaders, https://www.opengl.org/wiki/Shader
[15] Vertex Shader, https://www.opengl.org/wiki/Vertex_Shader
[16] Primitive Assembly, https://www.opengl.org/wiki/Primitive_Assembly
[17] Rasterization, https://www.opengl.org/wiki/Rasterization
[18] Fragment Processing, https://www.opengl.org/wiki/Framebuffer_Object
[19] Frame Buffer, https://www.opengl.org/wiki/Framebuffer_Object
[20] Jammendo Music, https://www.jamendo.com/?language=en
[21] Creative Commons, https://en.wikipedia.org/wiki/Creative_Commons
[22] GPUImage Overview, https://github.com/BradLarson/GPUImage
[23] Instagram FAQ, https://help.instagram.com/270963803047681
[24] Snapchat, https://support.snapchat.com/en-US/ca/snaps
[25] Apple A8 Chip, https://en.wikipedia.org/wiki/Apple_A8

30 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Methods
	A. Technologies used
	B. Libraries used
	C. Views
	D. Filters

	III. Results
	IV. Discussion
	A. Using GPU or CPU for image processing
	B. Duration of the videos
	C. Future Work

	V. Conclusion
	References

