
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Multithreaded Sliding Window Approach to Improve
Exact Pattern Matching Algorithms

Ala’a Al-shdaifat
Computer Information System Department

The University of Jordan
Amman, Jordan

Mohammad Abushariah
Computer Information System Department

The University of Jordan
Amman, Jordan

Bassam Hammo
Computer Information System Department

The University of Jordan
Amman, Jordan

Esra’a Alshdaifat
Computer Information System Department

The Hashemite University
Zarqa,Jordan

Abstract—In this paper an efficient pattern matching ap-
proach, based on a multithreading sliding window technique, is
proposed to improve the efficiency of the common sequential
exact pattern matching algorithms including: (i) Brute Force, (ii)
Knuth-Morris-Pratt and (iii) Boyer-Moore. The idea is to divide
the text under-search into blocks, each block is allocated one or
two threads running concurrently. Reported experimental results
indicated that the proposed approach improves the performance
of the well-known pattern matching algorithms, in terms of search
time, especially when the searched patterns are located at the
middle or at the end of the text.

Keywords—pattern matching; multithreading; sliding window;
Brute Force; Knuth-Morris-Pratt; Boyer-Moore

I. INTRODUCTION

In the world of Internet and the increasing availability of
huge data, text remains the main form to exchange knowledge.
Searching text for a “string matching”, also referred to as
“pattern matching” , is an active research area with respect
to text processing domain. Pattern matching algorithms are
the basic components used in the implementation of practical
software applications existing under most operating systems.
This area of research is expected to grow widely due to the
increasing demand of speed associated with many applica-
tions related to pattern matching [1]. Examples of pattern
matching applications include: text editors, database queries,
computational molecular biology, network intrusion detection
system, information retrieval, natural language processing, web
search engines, language syntax checker, digital libraries, two
dimensional mesh, ms word spell checker and many other
applications [2]. The quantity of available data in these fields
increases enormously. This is the reason why algorithms
should be efficient even if the speed and capacity of storage
of computers increase regularly. Pattern matching consists of
finding one, or more generally, all the occurrences of a pattern
in a text. More formally, the input to the pattern matching
problem are: (i) the pattern P and (ii) the text T . The pattern
is denoted by P = T [0 ... m-1], where m is the length of the
pattern. The text is denoted by T = T [0 ... n-1], where n is
the length of the text. Both strings are built over a finite set
of characters called an alphabet and denoted by

∑
[3]. Many

sequential algorithms exist for pattern matching and are widely
used in practice. The most well-known ones are :

1) Brute-force exact pattern matching algorithm.
2) Knuth-Morris-Pratt (KMP) exact pattern matching

algorithm.
3) Boyer-Moore exact pattern matching algorithm.

The sliding window mechanism [4] is always utilised to im-
plement the previous sequential pattern matching algorithms.
Where the text is scaned with the help of a window whose
size is generally equal to m (the same as pattern size). The
search process starts with aligning the left ends of the window
and the text and then compare the characters of the window
with the characters of the pattern p. After a complete match of
the pattern or after a mismatch is reported the window will be
shifted to the right. The process is repeated again until the right
end of the window goes beyond the right end of the text. The
main issue associated with sequential exact pattern matching
algorithms is the efficiency. More specifically, as the text size
increases the efficiency tends to degrade. The work presented
in this paper utilises multithreading programming technique
to execute the pattern matching process simultaneously in a
timesharing manner. The text is divided into text blocks and
assigned to threads. More specifically, each block is assigned
to: (i) forward thread and (ii) backward thread. The forward
thread runs in a forward direction starting from the top of the
block “top-down”. While backward thread starts the search
process from the bottom of the block “bottom-up”. Each thread
scans and searches the text at different places as the string may
occur anywhere within the text. The conjecture advantage is
to improve the performance of the search process.

The rest of this paper is organised as follows. Section II
gives a review of related work on pattern matching algorithms
along with some background on sliding window technique and
multithreading motivation. Section III describes the proposed
multithreaded sliding window technique for pattern matching
algorithms. Section IV presents an evaluation of the proposed
approach as applied to a range of different data collections.
Section V summarises the work and indicates some future
research directions.

www.ijacsa.thesai.org 431 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

II. LITERATURE REVIEW

This section provides a review of sequential pattern match-
ing algorithms, sliding window mechanism and multithreading.
The section is organised as follows: Section II-A presents
Brute-Force exact pattern matching algorithm, Section II-B
provides an overview of Knuth-Morris-Pratt exact pattern
matching algorithm, While II-C presents Boyer-Moore exact
pattern matching algorithm. An overview of sliding window
mechanism is presented in Section II-D. Section II-E pro-
vides an overview of the related work on multithreading
programming technique as a solution to the efficiency problem
associated with sequential pattern matching algorithms.

A. Brute-Force Exact Pattern Matching Algorithm

This section presents an overview of Brute-Force (BF)
exact pattern matching algorithm. The BF algorithm is a naive
algorithm that compares each character in the pattern with
its corresponding character in the input text. In a case of a
complete match or a mismatch of the pattern it shifts one
position to the right [1]. It is worth to note that the BF
algorithm has no preprocessing phase; it has only a searching
phase. During the searching phase, each position in the text
T is checked to see if the pattern P starts in that position.
With respect to the time complexity of the searching phase, in
the worst case, the time complexity is O(mn) where m is the
pattern length and n is the text length [5].

B. Knuth-Morris-Pratt (KMP) Exact Pattern Matching Algo-
rithm

In this section an overview of Knuth-Morris-Pratt (KMP) is
provided. KMP algorithm was proposed by Knuth, Morris and
Pratt in 1977 [6] to improve and speed up the algorithm that
proposed earlier by Morris and Pratt [7]. The KMP algorithm
performs a character comparison from left to right of the
pattern and it avoids comparisons with the input text that has
previously been involved in comparison with some element
of the input pattern. This is done by using information of
the previous character that has already been tested in order
to decide the next sliding position. Unlike the BF algorithm,
the KMP algorithm has preprocessing phase, in addition to the
searching phase. Within the preprocessing phase the pattern is
preprocessed to find matches of prefixes of the pattern with the
pattern itself. The information obtained from the preprocessing
phase is used to avoid naive BF useless shifts of the pattern,
so backtracking on the string never occurs. More specifically,
KMP algorithm consists of the following two functions:

1) P
¯
refix Function. This function is used to compute the

number of shifts that the pattern can be moved to
avoid wasteful comparisons.

2) K
¯

MP Matcher This function takes the text, the pattern
and the prefix function as inputs. The target is to find
the occurrence of the searched pattern within the text.

The time complexity of the preprocessing and searching
phases are Θ(m) and Θ(n) respectively, where m is pattern
length and n is the text length [3].

C. Boyer-Moore Pattern Matching Algorithm

This section presents Boyer-Moore pattern matching al-
gorithm. Boyer-Moore algorithm searches from left to right
and performs character comparisons within its sliding window
from right to left. The BM algorithm performs preprocessing
on the pattern by using two heuristics: (i) bad-character shift
and (ii) good-suffix shift. In bad-character heuristic, the input
pattern is shifted to align the mismatched character with the
rightmost position, where the mismatched character is placed
in the input pattern. In the good-suffix, the mismatch occurs
in the middle of the search string. Therefore the input pattern
is shifted to the next occurrence of the suffix in the string [8].
The time and space complexity of the preprocessing phase is
O(m+|

∑
|). While the running time of the searching phase is

O(nm + |
∑

|) in the worst case. Note that m is the pattern
length and n is the text length [1].

D. Sliding Window Mechanism

In this section an overview of sliding window mechanism
is presented. Most pattern matching algorithms scan the text
with the help of a window, whose size is generally equal to the
pattern size. This mechanism is referred to as “sliding window”
mechanism [4]. The general procedure is as follows. At the
beginning of the search, the left end of the window is aligned
with the left end of the text. Then the occurrence of the pattern
is checked, this process is referred to as an “attempt”. The
check is generally carried out by comparing the characters of
the window with the characters of the pattern [9]. After finding
a match of the pattern, or after a mismatch is detected, the
window is shifted to the right by a finite number of positions
according to the shift strategy. The same process is repeated
again until the right end of the window goes beyond the right
end of the text. Recently some researchers suggested the use
of multiple windows to scan the text simultaneously, in order
to improve the efficiency of the search process [10], [11], [12].

E. Threads and Multithreading

This section presents an overview of: (i) threads and
multithreading and (ii) utilising multithreading techniques to
reduce the computation time of pattern matching approaches.
With respect to threads and multithreading, the thread is the
basic unit of execution [13]. In single threaded applications,
all operations are executed sequentially by a single thread.
More specifically, an operation must complete before the other
operations can begin, also there is only one thread running
at a time [14]. While in multithreading applications, multiple
threads run simultaneously in a timesharing manner [15]. This
allows many parts of the same program to run concurrently
on a single processor system [14]. Java makes concurrency
available to application programs running on a Java machine.
Java programs can have multiple threads of execution, where
each thread is responsible for a portion of the program that
may execute concurrently with other threads while sharing
with them application resources such as memory [14]. Every
Java thread has a priority which helps the operating system
to determine the order in which threads are scheduled. A
thread with a higher priority is allocated a processor time
before a lower priority one [14]. Recently, multithreading
techniques have been utilised to decrease the computation
time of pattern matching approaches [16], [17]. Kofahi and

www.ijacsa.thesai.org 432 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Abusalama [16] suggested a framework that uses data distri-
bution and multithreading techniques for string matching. The
main idea is based on applying a multithreading technique
which concurrently searches the text at different positions.
The framework combines two techniques of concurrency: (i)
a multithread technique that searches the target text simul-
taneously in a time sharing manner, in which each thread
starts searching the target text at different positions, and (ii)
a technique that distributes the search load among multiple
servers and implements the multithreading approach on small
sub text. A novel multithreaded string matching approach was
proposed by Nirmala and Rajagopalan for exact occurrences
of string in DNA sequences [17]. In this approach, the DNA
sequence is divided into parts depending on string size, and
then multiple search threads search the string simultaneously
in a timesharing manner. The proposed technique depends on
the pre-processing phase, which retrieves the index. Rasool
et al. [18] also utilised multithreading techniques to improve
the CPU utilization and increase the time efficiency for a
hybrid string matching algorithm that combines Knuth-Morris-
Pratt (KMP) and Boyer-Moore. The work presented in this
paper utilises multithreading techniques to execute the pattern
matching process simultaneously in a timesharing manner. The
main idea is to split the text into text blocks with associated
threads running on the blocks. Each thread scans and searches
the text in different places as the string may occur anywhere
within the text.

III. THE PROPOSED EFFICIENT PATTERN MATCHING
APPROACH

In this section the suggested Efficient Pattern Matching
(EPM) approach is described. As noted in the introduction to
this paper the proposed approach adopts: (i) sliding window
mechanism and (ii) multithreading techniques. The intuition
behind using multithreading techniques is that it could improve
the efficiency of the common sequential exact pattern matching
algorithms. The EPM approach is applied to three well-known
pattern matching algorithms namely: (i) BF, (ii) KMP and
(iii) BM. The rest of this section is organized as follows:
Section III-A presents the proposed Efficient Pattern Matching
Approach, while Section III-B provides a complete working
example explaining how it works.

A. Efficient Pattern Matching (EPM) Approach

In this section the Efficient Pattern Matching (EPM) ap-
proach is described. As noted above the EPM utilises multi-
threading techniques to improve the efficiency of the pattern
matching algorithms. The main idea is to divide the text
document into blocks and assign the blocks to threads to
run concurrently. Figure 1 illustrates the process. The text is
divided into w blocks, and each block is allocated a “forward”
thread that runs in a forward direction starting from the top of
the block. In Figure 1 each block is assigned to one forward
thread. In the work presented in this paper assigning a block to
two independent threads is also considered. More specifically,
each block is assigned to: (i) forward thread and (ii) backward
thread. Figure 2 illustrates assigning each block to a forward
and backward thread. Recall that forward thread runs in a
forward direction starting from the top of the block “top-
down”. While backward thread starts the search process from
the bottom of the block “bottom-up”.

Block 1

Block 2

Forward Thread 1

Forward Thread 2

Forward Thread 3

Forward Thread w

Block 3

Block w

.

.

Fig. 1: A text divided into w blocks,each block is assigned to
onel forward thread

Block 1

Block 2

Forward Thread 1

Forward Thread 2

Forward Thread 3

Forward Thread w

Block 3

Block w

.

.

Backward Thread 2

Backward Thread 1

Backward Thread 3

Backward Thread w

Fig. 2: A text divided into w blocks, each block is assigned
to two threads: (i) a forward thread and (ii) a backward thread

It is interesting to note here that the size of each block
specified according to the total number of words in the text as
follows:

1) If the number of words in the text is even:
Block size = n/w.
Where n is the number of words in the text and w is
the number of blocks.

2) If the number of words in the text is odd:
Block size= n/w.
The last block size = block size + the reminder of
the division.
Again, n is the number of words in the text and w is
the number of blocks.

Algorithm Efficient Pattern Matching approach presents
the proposed EPM procedure. The input to the algorithm is
the text under search text and the number of desired blocks
NumOfBlocks. The process commences by dividing the text
into blocks according to NumOf Blocks and number of
words in text as explained earlier (line 10). Then calculate
and allocate the required number of threads, note here that
two threads (forward and backward) will be allocated for each
block (line 11). After that we loop through the blocks (line 12)
and on each iteration: (i) assign block i to a forward thread FT
(line 13), (ii) assign block i to a backward thread BT (line
14), (iii) start search process at block i, using the specified
pattern matching algorithm, with respect to FT (line 15), and
(iv) start search process at block i, using the specified pattern
matching algorithm, with respect to BT (line 16). The output
of the EPM procedure will be the occurrences of the searched
pattern in the text associated with the time consumed to find
them using the forward and backward threads.

www.ijacsa.thesai.org 433 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

1: Efficient Pattern Matching approach
2:
3: INPUT
4: text The text under search
5: NumOfBlocks The number of desired blocks

6: OUTPUT
7: The occurrences of the searched pattern in the text associated with the time consumed to find them using the forward and

backward threads

8: block A segment of text
9: FT Thread starts searching from the top of the block

10: BT Thread starts searching from the bottom of the block

11: START PROCEDURE EfficientPatternMatchingl(text,NumOfBlocks)
12: Divide text into Blocks
13: Allocate (2* NumOfBlocks) threads (two threads for each block)
14: for i = 0 to i = NumOfBlocks do
15: Assign block i to FT
16: Assign block i to BT
17: Start search process at block i, using the specified pattern matching algorithm, with respect to FT
18: Start search process at block i, using the specified pattern matching algorithm, with respect to BT
19: end for
20: END PROCEDURE EfficientPatternMatching(text,NumOfBlocks)

B. working example

Section III-A above explained the proposed EPM approach.
This section presents a complete example to clarify how
the proposed EPM approach works. Figure 3 presents an
example of the searching process using EPM approach. In
this example, the text size = 275 words and the target pattern
is “compression”. The text is divided into three blocks (w =
3). The sizes of the first and second blocks were 92 words,
while the third block has 91 words. From the figure we can
observe that the target pattern has three occurrences and each
occurrence is located at different position. The first occurrence
is located at the begging of the text (the first word). The second
occurrence is located in the middle of the text (the number
of words after it almost equal to the number of the words
before it). The last occurrence is located at the end of the
text (the last word). Each block is assigned to two threads:
(i) a forward thread (FT) and (ii) a backward thread (BT).
Forward and backward threads are used to search the pattern
concurrently in a timesharing manner from different positions.
In detail, the FT scans the text from the top to the bottom of
the block. While the BT scans the text from the bottom to the
top of the block to speed up the process of finding the required
pattern. It is interesting to note that each thread uses a sliding
window of size 11 characters, which is equal to the pattern size
(compression). With respect to the number of shifts needed to
move each sliding window, it depends on the utilised pattern
matching algorithm (KMP, FB, and BM). During the searching
process, the following will occur:

1) In the first block, FT1 will find the pattern before
BT1.

2) In the second block, the pattern will be found by the
fastest between FT2 and BT2.

3) In the third block, the pattern will be found first by
BT3.

In the context of evaluation, the execution time, for all
threads, was recorded and the minimum time for each pattern
occurrence was taken.

IV. EXPERIMENTS AND EVALUATION

In this section we present an overview of the adopted
experimental set up and the evaluation results obtained. This
section is organised as follows: sub-Section IV-A provides
an overview of the data collections used to evaluate the
proposed Efficient Pattern Matching (EPM) approach and a
generic overview of the adopted evaluation measure. While
sub-Section IV-B presents and discusses the obtained results.

A. Evaluation Data Collections and Criteria

The suggested Efficient Pattern Matching (EPM) approach
was evaluated using three different data collections obtained
from “textfiles”1. The general characteristics of the data col-
lections are provided in Table I. From the table it can be
observed that the evaluation data collections are varied in
context of size and topic. In order to evaluate the efficiency
of the proposed EPM approach, run time measure was used.
Run time refers to the total time an algorithm needs to find
each occurrence of the pattern including any preprocessing
time. Note that the running times reported in this paper are
all in nano second. Since the running time can be affected by
many factors such as memory usage and CPU of the system,
each test was repeated ten times and all preprocessing times
were included. The results were very stable across different
runs. All experiments were conducted on Microsoft Windows
7 Professional, 32-bit Operating system with a 3.40 GHz Intel
Core i7 processor, and 8 GB memory. Because the performance

1a repository that contains copyrighted documents cover a wide range
of topics including art, computers, drugs, games, hacking, politics, and many
other topics.

www.ijacsa.thesai.org 434 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

Fig. 3: An example of the searching process using our proposed EPM approach

TABLE I. EVALUATION DATA COLLECTIONS

File
Name

Length
(KB)

Number of
Words

Number of
Characters

Description

Abyssal 2KB 355
words

1931
characters

Walkthrough:
The Abyssal

Zone

Ejournal 239KB 31071 words 262585
characters

Directory of
Electronic

Journals and
Newsletters by

Michael
Strangelove
(July 1992)

Mail-list 1011KB 180403 words 1318707
characters

List of special
interest

mailing list
(June, 14,

1993

of pattern matching process affected by: (i) text length, (ii)
pattern length and (iii) pattern occurrence frequency [19], the

conducted experiments were designated to take the previous
factors into consideration, more specifically:

1) The proposed approach evaluated against three def-
erent text length (See Table I).

2) The proposed approach evaluated against different
pattern length, range from 2 to 26 characters as shown
in Table II.

3) The proposed approach evaluated against different
pattern occurrence positions: (i) beginning, (ii) mid-
dle and (iii) end of the text. Patterns were induced
into evaluation texts at these three different positions.
Each experiment, reported later in this paper, shows
the searching results for all these three positions.

For comparison purposes the three sequential pattern
matching algorithms were also applied to the data collections,
namely:

1) Brute-Force (BF) sequential exact pattern matching
algorithm.

www.ijacsa.thesai.org 435 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

TABLE II. AN EXAMPLE EVALUATION PATTERN WITH VARIABLE
LENGTH

Pattern Length Pattern (P)

2 HO
4 HONO
6 HONOLU
8 HOUNOLULU
10 HOUNOLULULU
12 HOUNOLULULULU
14 HOUNOLULULULULU
16 HOUNOLULULULULULU
18 HOUNOLULULULULULULU
20 HOUNOLULULULULULULULU
22 HOUNOLULULULULULULULULU
24 HOUNOLULULULULULULULULULU
26 HOUNOLULULULULULULULULULULU

2) Knuth-Morris-Pratt (KMP) sequential exact pattern
matching algorithm.

3) Boyer-Moore sequential exact pattern matching algo-
rithm.

B. Results and Discussion

In this section, we compare the performance of each
sequential algorithm (BF, KMP and Boyer-Moore) with its cor-
responding multithreading pair (EPM approach) with respect
to: (i) different text length, (ii) different pattern length and (iii)
different pattern occurrence position. With respect to the EPM
approach the text was divided into three blocks (w = 3) and
each block was assigned two threads running in both directions
(i.e forward and backward). Commencing with BF algorithm,
Table III presents the obtained results with respect to Abyssal
evaluation data collection, Table IV presents the obtained
results with respect to Ejournal evaluation data collection and
Table V presents the obtained results with respect to Mail-list
evaluation data collection.

The tables presents the running time of the forward thread
FT, backward thread BT and the minimum time was taken as
the fastest result. From the tables it can be observed that the
average time taken by the proposed multithreading approach
(EPM) is lower than the sequential techniques especially when
the pattern is located at the middle or the end of the text.
The results are reasonable since the multithreading approaches
search the text from multiple sides while the sequential ap-
proaches search the text from one side only. This can be
justified by the following two advantages of the proposed
approach. First, this approach is based on dividing the text
into blocks before the search phase. Second, each block is
allocated two search threads that scan the block concurrently
to match the pattern, with the use of sliding window technique.
It is interesting to note that when the pattern occurs at the
beginning of the text sequential pattern matching outperforms
EPM approach for some cases, the reason behind this is that
assigning tasks to threads consumes time in addition to the
search time.

Regarding KMP algorithm, Table VI presents the obtained
results with respect to Abyssal evaluation data collection, Table
VII presents the obtained results with respect to Ejournal
evaluation data collection and Table VIII presents the obtained
results with respect to Mail-list evaluation data collection. The
same as the case of BM algorithm, the multithreading approach

outperforms sequential approach in terms of average search
time especially when the pattern is located at the middle or
the end of the text regardless the pattern length.

With respect to BF algorithm, Table IX presents the ob-
tained results with respect to Abyssal evaluation data col-
lection, Table X presents the obtained results with respect
to Ejournal evaluation data collection and Table XI presents
the obtained results with respect to Mail-list evaluation data
collection. Again, the multithreading approach outperforms
sequential approach in terms of average search time especially
when the pattern is located at the middle or the end of the text
regardless the pattern length.

www.ijacsa.thesai.org 436 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

TABLE III. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL BM AND EPM APPROACH FOR BM ALGORITHM (MULTITHREADING BM) WITH
RESPECT TO ABYSSAL DATA COLLECTION

Multithreading BM Sequential BM
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 1841 24962 1841 13885 6550 6550 12677 1570 1570 2203 130943 202602
4 4045 18412 4045 7516 6127 6127 11591 1751 1751 3381 107670 189200
6 3381 13251 3381 7395 6429 6429 11591 2083 2083 3924 91884 167165
8 8331 13704 8331 8029 6973 6973 9206 2143 2143 4105 81892 137674
10 3320 11561 3320 7124 6158 6158 10323 2565 2565 3954 72535 115790
12 3260 12375 3260 7365 6852 6852 8753 2687 2687 4649 67615 104954
14 3652 11017 3652 7154 6490 6490 9417 3079 3079 5222 67826 112077
16 3501 10746 3501 7305 6429 6429 8995 3351 3351 5373 65442 104712
18 4286 11560 4286 7999 5645 5645 8482 3109 3109 5463 66347 102297
20 6459 8965 6459 7154 5674 5674 8180 3290 3290 5162 59133 90585
22 4769 11048 4769 7003 5735 5735 8270 3320 3320 6128 54062 86662
24 5765 9810 5765 6882 6127 6127 7606 3652 3652 5977 57261 103233

TABLE IV. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL BM AND EPM APPROACH FOR BM ALGORITHM (MULTITHREADING BM) WITH
RESPECT TO EJOURNAL DATA COLLECTION

Multithreading BM Sequential BM
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 1751 1283135 1751 596201 164233 164233 496502 1208 1208 1177 2147044 2810364
4 2173 1032787 2173 426293 82101 82101 248930 906 906 1902 1532866 1877249
6 1811 727472 1811 482104 54392 54392 164142 966 966 1902 1390180 1625655
8 1841 551196 1841 348659 42922 42922 131242 996 996 1419 1250393 1509019

10 1871 443800 1871 288744 35376 35376 103200 906 906 1721 1293014 1630817
12 1841 362242 1841 245942 28736 28736 89708 1026 1026 2445 1127689 1608781
14 2053 316815 2053 198885 27106 27106 76125 906 906 1600 938670 1509653
16 1992 261366 1992 187415 23846 23846 70269 935 935 1660 854423 1432681
18 2143 246304 2143 167402 19167 19167 64564 1027 1027 2083 951740 1290086
20 2294 220617 2294 151495 19620 19620 60972 996 996 1751 648409 956057
22 2264 199458 2264 130789 16330 16330 56807 905 905 1751 612670 1091226
24 2234 187385 2234 127800 15092 15092 54120 936 936 1902 550065 990709
26 2203 166285 2203 133717 14368 14368 69062 1117 1117 2083 522838 931184

TABLE V. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL BM AND EPM APPROACH FOR BM ALGORITHM (MULTITHREADING BM) WITH
RESPECT TO MAIL-LIST DATA COLLECTION

Multithreading BM Sequential BM
Pat. Beginning Middle End Beg. Middle EndLeng. FT BT Min FT BT Min FT BT Min

2 1871 2881654 1871 1283657 1552178 1283657 2066371 845 845 1207 3467394 6982057
4 1871 1815870 1871 518057 759020 518057 1030499 936 936 1388 2061094 3827345
6 1811 1485742 1811 453945 518811 453945 692795 725 725 1268 1909598 3045625
8 2053 1367660 2053 581655 391070 391070 519445 906 906 1449 1687892 2552378

10 2083 1259388 2083 468584 312440 312440 422794 755 755 1479 1554597 2293334
12 2113 1146166 2113 376884 268521 268521 353793 996 996 1600 1483331 2058317
14 2294 1074387 2294 327260 222520 222520 309361 875 875 1660 1421272 1955177
16 2083 1058933 2083 269366 199459 199459 272928 906 906 1660 1388370 1856382
18 2203 1101704 2203 258198 176127 176127 251890 906 906 1721 1357914 1786052
20 3139 918545 3139 226625 157322 157322 227078 872 872 1871 1092501 1454475
22 2294 844261 2294 214310 145097 145097 208967 875 875 1902 1258486 1598063
24 2324 773689 2324 198373 134563 134563 196954 905 905 1902 1519945 1856926
26 2324 765298 2324 191340 125175 125175 184518 875 875 2083 1260297 1555532

www.ijacsa.thesai.org 437 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

TABLE VI. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL KMP AND EPM APPROACH FOR KMP ALGORITHM (MULTITHREADING KMP)
WITH RESPECT TO ABYSSAL DATA COLLECTION

Multithreading KMP Sequential KMP
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 1841 25083 1841 13613 6580 6580 22910 1570 1570 1902 59525 95053
4 2324 18473 2324 7456 6128 6128 11681 1811 1811 1660 74376 115579
6 2143 13372 2143 7395 6490 6490 11108 2053 2053 1811 82979 119171
8 2657 13613 2657 7909 6882 6882 9176 2234 2234 1872 71086 108002
10 2777 11742 2777 7063 6128 6128 10323 2566 2566 2505 78874 129283
12 3833 12375 3833 7486 6852 6852 8754 2626 2626 2324 92910 140149
14 3320 11047 3320 7063 6399 6399 9387 3199 3199 2445 78089 129253
16 3652 10565 3652 7274 6278 6278 8995 3230 3230 2234 103324 143379
18 4075 11591 4075 7908 5765 5765 8421 3139 3139 2264 79236 115579
20 5736 10353 5736 7124 5705 5705 8361 3351 3351 2837 93181 141629
22 4739 10927 4739 6973 6580 6580 8180 3230 3230 2868 107851 162728
24 5162 9689 5162 6912 7033 6912 7576 3562 3562 2656 86329 126476
26 4226 8905 4226 7486 5675 5675 8180 3502 3502 3290 79477 130068

TABLE VII. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL KMP AND EPM APPROACH FOR KMP ALGORITHM (MULTITHREADING KMP)
WITH RESPECT TO EJOURNAL DATA COLLECTION

Multithreading KMP Sequential KMP
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 1690 1273416 1690 598344 162935 162935 491431 875 875 1147 1999891 3099327
4 1871 1006285 1871 428014 82101 82101 248689 905 905 815 1995484 3095011
6 1811 725510 1811 477787 54392 54392 166648 936 936 996 2004540 3106693
8 1811 546155 1811 342592 42469 42469 127076 966 966 1117 2000495 3160664

10 1932 433205 1932 289287 33716 33716 104257 875 875 1087 2016403 3121845
12 2113 366649 2113 232902 28615 28615 87836 875 875 1268 1935627 3039682
14 2143 325085 2143 219923 24027 24027 77785 875 875 1298 2019331 3128758
16 2053 274315 2053 189165 22035 22035 73257 875 875 1419 1940940 3048586
18 2234 243769 2234 170632 19046 19046 63780 906 906 1449 1912384 3016711
20 2173 221161 2173 152008 17658 17658 60037 996 996 1539 1925092 3043032
22 2113 203594 2113 129823 16179 16179 56958 966 966 1600 1941664 3049884
24 2686 188712 2686 128555 15092 15092 54936 936 936 1751 1919116 3018974
26 2355 169214 2355 119439 14368 14368 51796 1207 1207 1811 1983682 3088401

TABLE VIII. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL KMP AND EPM APPROACH FOR KMP ALGORITHM (MULTITHREADING KMP)
WITH RESPECT TO MAIL-LIST DATA COLLECTION

Multithreading KMP Sequential KMP
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 1690 4362730 1690 1028480 3192564 1028480 4248209 1117 1117 1177 4895488 10905149
4 1691 4194933 1691 989209 3072761 989209 4043135 1147 1147 966 4848007 10910461
6 1781 4207581 1781 983142 3057155 983142 3986871 1056 1056 1087 4865725 10938714
8 1992 4253069 1992 1017462 3112574 1017462 4139092 1177 1177 1147 4835752 10850122
10 1962 4267074 1962 1005479 3103821 1005479 4107670 1147 1147 1238 4922865 10951753
12 2023 4214221 2023 983957 3067871 983957 3998885 1087 1087 1238 4925461 10981998
14 2143 4087657 2143 991986 3081635 991986 4047995 1117 1117 1298 4910489 10966121
16 2203 4276251 2203 988666 3046379 988666 4040871 1177 1177 1419 4921446 10967057
18 2234 4171680 2234 990625 3053918 990625 4021814 1027 1027 1509 4892952 10952810
20 2234 4168692 2234 998413 3085611 998413 4064857 1117 1117 1570 4909735 10919064
22 2294 4277265 2294 1008313 3094365 1008313 4031080 1178 1178 1721 4978435 11075450
24 2234 4207690 2234 998081 3065508 998081 4062744 1056 1056 1871 4828598 10837776
26 2505 4166518 2505 993644 3081144 993644 4083964 1086 1086 1902 4944749 11051544

www.ijacsa.thesai.org 438 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

TABLE IX. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL BF AND EPM APPROACH FOR BF ALGORITHM (MULTITHREADING BF) WITH
RESPECT TO ABYSSAL DATA COLLECTION

Multithreading BF Sequential BF
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 2264 17447 2264 9599 7788 7788 15394 1358 1358 2354 128226 193607
4 3381 17507 3381 9357 7908 7908 15364 1177 1177 2596 128287 193758
6 2173 19318 2173 9538 8391 8391 15515 1751 1751 2355 114795 196507
8 2234 31875 2234 17084 15032 15032 32418 3682 3682 2807 128771 194153
10 2566 18926 2566 9901 9055 9055 15485 2415 2415 3743 157263 256963
12 3079 18956 3079 10051 9236 9236 15726 2656 2656 4467 187148 323585
14 2445 32750 2445 9870 9387 9387 15635 2747 2747 4799 196022 329561
16 3049 19258 3049 10474 9418 9418 17175 2656 2656 4528 191706 307104
18 30697 32448 30697 16903 9146 9146 15817 2505 2505 4830 187238 305021
20 3200 32116 3200 9931 8874 8874 15817 2324 2324 5192 174229 290804
22 2958 31301 2958 17266 10625 10625 16058 1992 1992 5403 188476 309518
24 2868 30818 2868 17266 14066 14066 15998 1600 1600 7365 242296 412480
26 3139 40960 3139 17779 13402 13402 27951 1660 1660 7094 218902 371488

TABLE X. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL BF AND EPM APPROACH FOR BF ALGORITHM (MULTITHREADING BF) WITH
RESPECT TO EJOURNAL DATA COLLECTION

Multithreading BF Sequential BF
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 2113 1038763 2113 480323 242441 242441 709181 453 453 1298 2262986 3207662
4 2355 1027414 2355 469789 238698 238698 707581 392 392 1539 2226311 3177085
6 2294 1039397 2294 478391 238969 238969 705196 634 634 1570 2227578 3177326
8 2324 1028772 2324 469064 240237 240237 706585 966 966 1720 2237570 3184661
10 2234 1030765 2234 472536 238969 238969 714101 876 876 1720 2229088 3181401
12 2596 1026026 2596 468763 300123 300123 709603 875 875 1871 2224198 3180888
14 2505 1040725 2505 469276 245972 245972 707400 936 936 1690 2224892 3166459
16 2445 1028501 2445 469457 240962 240962 710267 996 996 1781 1966507 2816341
18 2475 1026237 2475 469064 239422 239422 707158 936 936 1962 2173004 3120216
20 2596 1043593 2596 468370 239181 239181 707249 815 815 1992 2184836 3131656
22 2475 1027444 2475 469246 238637 238637 707430 845 845 2023 2191447 3140259
24 2626 1040242 2626 477637 239331 239331 708003 724 724 2173 2185983 3134071
26 3653 1037526 3653 470966 238939 238939 705438 453 453 2234 2185832 3136697

TABLE XI. AVERAGE TIME IN NANO SECONDS FOR SEQUENTIAL BF AND EPM APPROACH FOR BF ALGORITHM (MULTITHREADING BF) WITH
RESPECT TO MAIL-LIST DATA COLLECTION

Multithreading BF Sequential BF
Pattern Beginning Middle End Begin. Middle EndLength FT BT Min FT BT Min FT BT Min

2 2204 3300232 2204 730859 2250502 730859 2983505 815 815 1509 4642058 9780652
4 2324 3304186 2324 731554 2246911 731554 2987097 845 845 1539 4695786 9833414
6 2354 3418254 2354 741485 2300941 741485 3033038 1087 1087 1539 4677917 9846816
8 3290 3289426 3290 738255 2256539 738255 3001314 1087 1087 1751 4645680 9829551

10 2807 3293169 2807 730648 2252585 730648 2990719 1177 1177 1720 4710909 9879959
12 2717 3291357 2717 730558 2249235 730558 2992047 1328 1328 1871 4692871 9870812
14 2656 3339140 2656 730648 2257988 730648 2999442 1328 1328 1872 4699439 9883370
16 2596 3294769 2596 730527 2251951 730527 2990327 1208 1208 1962 4678581 9898432
18 2656 3303100 2656 731312 2254910 731312 2984350 1208 1208 2022 4700344 9925145
20 2958 3295402 2958 735568 2249567 735568 2995217 1147 1147 2083 4645710 9793329
22 2837 3380915 2837 732006 2249325 732006 2994613 1147 1147 2234 4676740 9877152
24 2868 3308744 2868 732731 2255936 732731 2997450 966 966 2204 4682113 9847179
26 2958 3305062 2958 731221 2249325 731221 2985557 694 694 2294 4688149 9846484

www.ijacsa.thesai.org 439 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

The previous results are summarized and plotted in the
next three figures to compare two approaches: (i) sequential
and (ii) multithreading (EPM) with respect to all the three used
pattern matching algorithms. Figure 4 presents a comparison
between all sequential and multithreading approaches with
respect to Abyssal data collection. From the figure it can be
observed that: (i) as noted earlier, multithreading approaches
clearly outperform sequential approaches in terms of average
case time and (ii) the minimum average case time obtained
from multithreading BM and multithreading KPM. Figure 5

0

50000

100000

150000

200000

250000

2 4 6 8 10 12 14 16 18 20 22 24 26

A
v

e
r
a

g
e

 
t
i
m

e
 
i
n

 
n

s

Pattern length

Average Case Time of All Sequential & Multithreading Algorithms 
Running on Abyssal Data Collection (2KB Text) 

Sequential BM

Multithreading BM

Sequential KMP

Multithreading KMP

Sequential BF

Multithreading BF

Fig. 4: Comparison between all sequential and multithreading
approaches with respect to Abyssal data collection

presents a comparison between all sequential and multithread-
ing approaches with respect to Ejournal data collection. From
the figure it can be observed that, and the same as Abyssal
data collection, multithreading approaches clearly outperform
sequential approaches and the minimum average case time
obtained from multithreading BM and multithreading KPM.
Figure 6 presents a comparison between all sequential and
multithreading approaches with respect to E-mail data col-
lection (the largest data collection). From the figure it can
be observed that, and the same as Abyssal and Ejournal
data collection, multithreading approaches clearly outperform
sequential approaches. However, the minimum average case
time obtained from multithreading BM.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2 4 6 8 10 12 14 16 18 20 22 24 26

A
v

e
r
a

g
e

 
t
i
m

e
 
i
n

 
n

s

Pattern length

Average Case Time of All Sequential & Multithreading Algorithms Running 
on Ejournal Data Collection (239KB Text)

Sequential BM

Multithreading BM

Sequential KMP

Multithreading KMP

Sequential BF

Multithreading BF

Fig. 5: Comparison between all sequential and multithreading
approaches with respect to Ejournal data collection

V. CONCLUSION AND FUTURE WORK

In this paper, Efficient Pattern Matching (EPM) approach
based on multithreading techniques has been proposed to im-
prove the efficiency of sequential pattern matching algorithms.
Three common pattern matching algorithm have been consid-
ered: (i) Brute Force, (ii) Knuth-Morris-Pratt and (iii) Boyer-
Moore. The central idea was to divide the text into blocks and
assign each block to two threads, forward thread and back-
ward thread, to conduct the search process concurrently. The
proposed approach was evaluated using different text size and
various pattern lengths. From the reported experimental results,
presented in this paper, it was demonstrated that the proposed
multithreading approach shows remarkable performance gain
compared with the traditional sequential approach, especially
when the lookup patterns were located at the middle and the
end of the text regardless the text length or the pattern length.
With respect to future work the authors intend to investigate the
effect of multithreading approach on Arabic data collections.

REFERENCES

[1] C. Charras and T. lecroq, “Exact string matching algorithms-animations
in java,” URL http://www-igm.univ-mlv.fr/∼lecroq/string/index.html,
1997, accessed 1-March-2015.

www.ijacsa.thesai.org 440 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 1, 2017

0

1000000

2000000

3000000

4000000

5000000

6000000

2 4 6 8 10 12 14 16 18 20 22 24 26

A
v

e
r
a

g
e

 
t
i
m

e
 
i
n

 
n

s

Pattern length

Average Case Time of All Sequential & Multithreading Algorithms Running 
on Mail-list Data Collection (10111KB Text)

Sequential BM

Multithreading BM

Sequential KMP

Multithreading KMP

Sequential BF

Multithreading BF

Fig. 6: Comparison between all sequential and multithreading
approaches with respect to Mail-list data collection

[2] N. Singla and D. Garg, “String matching algorithms and their applica-
bility in various applications,” International Journal of Soft Computing
and Engineering (IJSCE), vol. 1, no. 6, pp. 218 – 222, 2012.

[3] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. The MIT Press, 2009.

[4] C. Charras and T. Lecroq, Handbook of Exact String Matching Algo-
rithms. King’s College Publications, 2004.

[5] A. Levitin, Introduction to the Design and Analysis of Algorithms (2Nd
Edition). Addison-Wesley Longman Publishing Co., Inc., 2006.

[6] D. Knuth, J. Morris, and V. Pratt, “Fast pattern matching in strings,”
SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 1977.

[7] J. Morris and V. Pratt, “A Linear Pattern Matching Algorithm,” Com-
puting Center, University of California, Berkeley, Tech. Rep. 40, 1970.

[8] R. Boyer and J. Moore, “A fast string searching algorithm,” Commun.
ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[9] S. Faro and T. Lecroq, “The exact online string matching problem: A
review of the most recent results,” ACM Comput. Surv., vol. 45, no. 2,
pp. 13:1–13:42, 2013.

[10] A. Hudaib, R. Al-Khalid, D. Suleiman, M. Itriq, and A. Al-Anani, “A
fast string matching algorithm with two sliding windows (tsw),” Journal
of Computer Science, vol. 4, no. 5, pp. 393–401, 2008.

[11] S. Faro and T. Lecroq, “A multiple sliding windows approach to speed
up string matching algorithms,” in Experimental Algorithms - 11th
International Symposium, SEA 2012, Bordeaux, France, June 7-9, 2012.
Proceedings, 2012, pp. 172–183.

[12] A. Hudaib, R. Al-Khalid, A. Al-Anani, M. Itriq, and D. Suleiman, “Four
sliding windows pattern matching algorithm (fsw),” Journal of Software
Engineering and Applications, vol. 8, no. 3, pp. 154–165, 2015.

[13] M. MacDonald, Pro .NET 2.0 Windows Forms and Custom Controls in
VB 2005. Apress, 2007.

[14] H. Deitel and P. Deitel, Java SE8 for Programmers, 3rd ed. Prentice
Hall Press, 2014.

[15] T. Ungerer, B. Robič, and J. Šilc, “A survey of processors with explicit
multithreading,” ACM Comput. Surv., vol. 35, no. 1, pp. 29–63, 2003.

[16] N. Kofahi and A. Abusalama, “A framework for distributed string
matching based on multithreading,” The International Arab Journal of
Information Technology, vol. 9, no. 1, pp. 30–38, 2012.

[17] S. N. Devi and S. P. Rajagopalan, “An index based pattern matching
using multithreading,” International Journal of Computer Applications,
vol. 50, no. 6, pp. 13–17, 2012.

[18] A. Rasool, N. Khare, H. Arora, A. Varshney, and G. Kumar, “Multi-
threaded implementation of hybrid string matching algorithm,” Inter-
national Journal of Soft Computing and Engineering (IJSCE), vol. 4,
no. 3, pp. 438–441, 2012.

[19] W. Smyth, S. Wang, and M. Yu, “An adaptive hybrid pattern-matching
algorithm on indeterminate strings,” in Proceedings of the Prague
Stringology Conference 2008, J. Holub and J. Žďárek, Eds., Czech
Technical University in Prague, Czech Republic, 2008, pp. 95–107.

www.ijacsa.thesai.org 441 | P a g e


