
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

223 | P a g e

www.ijacsa.thesai.org

*Corresponding author

Bi-Objective Task Scheduling in Cloud Computing

using Chaotic Bat Algorithm

Fereshteh Ershad Farkar

Department of Computer Engineering,

Tabriz Branch, Islamic Azad University,

Tabriz, Iran

Ali Asghar Pourhaji Kazem*

Department of Computer Engineering

Tabriz Branch, Islamic Azad University,

Tabriz, Iran

Abstract—Cloud computing is a technology for providing

services over the Internet. It gives approach to renting IT

infrastructures on a short-term pay- per-usage basis. One of the

service provider’s goals is to use the resources efficiently and

gain maximum profit. Cloud processes a huge amount of data, so

tasks scheduling is a vital role in the cloud computing. The

purpose of this paper is to propose a method based on chaos

theory and bat algorithm for task scheduling in Cloud

computing. Task scheduling is a core and challenging issue in

cloud computing. The nature of the scheduling issue is as an NP-

Hard problem and because of the success of heuristic algorithms

in optimization and NP-Hard problems, the authors use a newly

inspired bat algorithm and chaos theory to scheduling the tasks

in the cloud. In this method, bat or candidate solutions are

represented by a one-dimensional array. The fitness function is

calculated based on makespan and energy consumption. The

results show that the proposed method can schedule the received

tasks in proper time than other compared heuristic algorithms,

also the proposed method has better performance in term of

makespan and energy consumption than compared methods.

Keywords—Cloud computing; scheduling; chaos theory; bat

algorithm

I. INTRODUCTION

Cloud computing (a recent computing model) comes from
distributed computing, parallel computing and grid computing.
The dynamism and heterogeneity are properties of cloud
computing resources. In cloud computing, resources such as
storage, memory, processors, and applications are provision as
services. Cloud computing environment is a commercial
platform. Currently, there exist many commercial clouds, such
as Amazon, which provide virtualized computational and
storage hardware. Virtual Machine (VM) is a critical
component of software stacks in the cloud computing, for
example, Amazon Elastic Computing Cloud (Amazon EC2)
[1] is a cloud platform that provides infrastructure as service
in the form of VMs. The cloud computing greatly decreases
the financial cost of acquiring hardware and software for
application deployment, as well as maintenance costs [2]. So,
how to use efficiently and effectively cloud computing
resources becomes more important. Cloud computing provides
a pool of resources in a self-service, dynamically scalable and
metered method with guaranteed quality of service to users.
To achieve guaranteed Quality of Service (QoS) to users, that
is important the tasks be assigned efficiently to defined
resources by providing multiple VMs for executing the tasks
included in a program. Cloud computing also offers pay-per-

use metered service. There are motivational research results
for efficient task scheduling in cloud computing, but task
scheduling problems are still considering as an NP-complete
issue. There are some objective functions and optimization
criteria while tasks scheduling in the cloud environment, such
as makespan, cost, flow time, tardiness, waiting time,
turnaround time [3], and energy consumption [4]. In our
proposed work, we propose QoS-based task scheduling
algorithm called the Chaotic Bat Algorithm for task
scheduling on cloud computing, which aims to create a
schedule to minimize the total makespan and energy
consumption of tasks executions. Bat algorithm, first proposed
by Xing-She Yang [5], is a new meta-heuristic algorithm
inspired by the echolocation of micro-bats to sense distances
while detecting their prey. Micro-bats using this technique can
find their prey and recognizes prey even in complete darkness
Echolocation is the main specification of bats behavior. This
means that the bat gives out sound pulses and listens to echoes
to find preys and avoid collisions obstacles while flying. The
Bat algorithm can have superiority performance than
optimization algorithms and can solve many problems,
including real world and practical engineering optimization
problems [6]. So one aim of this paper is to introduce chaos
into the standard bat algorithm.

The rest of the paper is classified as follows: Section 2 is
talking about related work for scheduling in cloud computing;
Section 3 includes the background, classical Bat Algorithm
and Chaos Theory; Section 4 describes the problem; Section 5
discusses the main idea and how the new Bat Algorithm and
Chaos Theory are integrated; Section 6 contains the
simulations and results obtained; and Section 7 tells about the
future scope and conclusion of this paper.

II. RELATED WORKS

Task scheduling is a critical issue in cloud computing, so a
lot of researches have been done in this scope. This problem is
of a known Np-Hard type issue [2], [4], [7]-[9]. They belong
Np-Hard including thousands of different issues with many
applications. So far, no solution has been found for these
issues in a reasonable time, and may not be found in the future
at all. These also prove that there is no quick solution for
them. If a solution found only for any of these issues, this
solution would solve the most parts of such this issues.
Solution based techniques on full search are not feasible for
this kind of problems. The cost of schedules is very high.
Metaheuristic-based techniques can overcome these problems

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

224 | P a g e

www.ijacsa.thesai.org

*Corresponding author

by providing near optimal solutions in reasonable time. For
example, ACO algorithm is useful for solving separate
optimization problems which requiring one path to reach a
goal. It has been successfully for solving multidimensional
knapsack problem, traveling salesman problem, job shop
scheduling, and quadratic assignment problem, task
scheduling in grid and cloud computing, and much more [3].
In [10], they have considered minimization of makespan as the
objective function. Their objective function based on
execution time and transfer time of tasks on VMs. The
algorithm simulated with the number of tasks changing from
100 to 1000 in the cloudsim simulation environment. ACO has
been compared with RR and FCFS algorithms and
experimental results show that when the number of tasks
increased, ACO execution gets a short time compared with
RR and FCFS. For 1000 tasks, the algorithm able to decrease
makespan in comparison with RR and FCFS. Recently, the
genetic algorithm is useful metaheuristic for taking high-
quality solutions for combinatorial optimization problems,
including the task scheduling problem [11]. Another
competency of genetics is that its inherent parallelism can
activate to reduce running time [12].

III. BACKGRPOUND

A. Bat Algorithm

The bat algorithm has been a recently proposed
metaheuristic algorithm by Xin-She Yang [5], based on the
echolocation of micro bats. In the real world, echolocation can
diffuse within only a few thousandths of a second with a
changing frequency. Micro bats use echolocation to search
preys. All micro bats are insectivores and they use a type of
sonar, called echolocation, to find preys and avoid obstacles.
Now, we remind the standard bat algorithm according to the
following rules:

All bats use echolocation to sense distance and find prey,
also they know the difference of food and obstacles with some
magical method.

Bats fly randomly with velocity Vi at location Xi with a
permanent frequency Fmin, Fmax changing loudness A0 and
wave length λ to search prey. They can intelligently tune the
wavelength (or frequency) of their emitted pulses and tune the
rate of pulse emission r ∈ [0, 1], relevant on the proximity of
their aim.

Although the loudness can change in many ways, we
consider that the loudness changes from positive A0 to a
minimum fixed value Amin.

Initialize solutions: the virtual bats (solutions) have the
positions Xi, and velocities Vi in a D-dimensional search
space. They are randomly distributed in the possible search
space.

Generate new solutions: the values of the frequency
Fmin and Fmax is dependent on the dimensions of the issue.
The positions and velocities of bats in every temporal interval
are defined as follows:

fi = fmin + (fmax - fmin) , (1)

vi
t+1

= vi
t

+ (xi
t

- x*) , (2)

xi
t+1 =

xi
t

+ vi
t+1

(3)

Where β∈ [0,1] is a random vector and X* is the current
global best solution.

Local search: create a random number. If it is bigger than
the i

th
 bat pulse emission rate (ri), then create the new bat. A

new solution is generated around the current best solution

If rand >ri (4)

 Xnew= Xold+ Amean
t
.

Where ∈ [-1, 1] is a random vector and At is the average
loudness of all bats at time step t. ri is the i

th
 solution pulse

emotion rate.

Updating solutions by flying randomly: loudness is
reduced and pulse emission rate is increased by using the
equations as follows:

If rand () <Ai && f (xi) <f(x*),

 F(x) =f (xi), (5)

 Ai
t+1= Ai

t

 ri
t+1=

ri (1-exp (-γt))

Where α and γ [0, 1], Ai is the i
th

 bat loudness (xi) is the
fitness value of i

th
 bat and f(x*) is fitness value of the best

bat.Update the current global best solution by described the
formulas until reached the termination condition.

B. Chaos Theory

In this world numbers are essential for seeing most natural
phenomena, our surrounding world isn‟t a static system and
this system change with the dynamism of time. When system
change, the numbers represent system state in a temporal step.
The dynamic systems have not a lawful period for
representing the system states with numbers. The system can
change in discrete time. For example, all animals and most of
the insects have a one-year life cycle, and study of them
requires that only we look on their life system once in a year.
These systems are known as non-linear systems. In such
systems, the system output is not proportional to the input. If
variables changes in an initial time result may change of the
same or another variable time. Therefore, the system changes
are not proportional with the systems input. The non-linear
systems could not be divided into smaller sections and be
solved separately. They possess complete complexities. In
non-linear sciences, non-linear dynamic systems are studied.
Nature is a non-linear system. The non-linear systems are
employed in studying various fields, such as Mathematics,
Biology, Physics, Chemistry, and Computer sciences.
Furthermore, the chaotic systems are very sensitive to initial
values, and a small change in the initial values will have great
changes in the output. The changes of dynamic systems in the
discrete time called a map. In another discussion, the
convergence of evolutional algorithms is mainly dependent on
the initialization of its parameters. When the random
parameters are used for initialization, different results are seen
in various executions of this algorithm. For this reason, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

225 | P a g e

www.ijacsa.thesai.org

*Corresponding author

random variables are a key which may lead the algorithm to
escape from local optimum to better results. Some chaotic
maps are well known and we can use them in the algorithm
parameters initialization, such as Gauss Map, Tent map, Circle
map, Iterative map, logistic map, Sinusoidal map.

IV. PROBLEM DEFINITION

A. System Model

Cloud computing environment is used virtualization to
map the resources to the virtual machines. The tasks classify
according to QoS requirement, such as bandwidth, cost,
resource distance, credibility Finally, schedule the tasks to
physical resources. This paper intends that when virtual
resources meet tasks QoS requirement, using makespan and
energy-aware algorithm schedule tasks to physical resources.

B. Resources and Tasks

R= {R1, R2… Rn} represents a set of resources, where Ri is
the ith resource. Each resource implemented with a Dynamic
Voltage scaling module [4]. If supply voltage and frequency
decrease, it causes to reduce the energy consumption
consumed by the resource. Resource Ri represented as Ri
{rcc, svs} where rcc is the resource computing capacity
parameter of Ri, svs is the supply voltage strategy of ri. In svs,
there is a relational vector between its supply power and
frequency. That is Vi=[{vs1(i),fs1(i)};{vs2(i),
fs2(i)};...;{vsl(max)(i),fsl(max)(i)}], where vsl(i) supplies
power of resource Ri at DVS level sl, fsl(i) is the relative
frequency coefficient within the range of [0,1]. In this paper,
we represent 3 power supply strategies (voltage and relative
frequency pairs), and 16 DVS levels which is shown in
Table 1.

T= {T1, T2... Tn} represents a set of independent tasks,
where Tj is the jth task, W= {wj, 1<j<n} represents set of task
computational workload and EXT= EXT [i, j] m×n is the
matrix of task execution times in each resource. EXT [i, j]
denotes an expected time for the execution of task Ti on
resource Rj.

C. Energy Consumption

According to task computational workload and resource
computing capacity, the execution time needed for executing
task Ti on resource Rj defined as:

EXT [i, j] = W (ti)/rcc (rj) (6)

Supply power and frequency decrease while tasks
execution time increase, when task Ti execute on resource Rj
at DVS level si, EXT matrix can be defined as follows:

 [] [

 ()
 []

 ()
 []

 ()
 [] (7)

Where EXT [i, j] can be calculated according to the
Equation (7), {fs1(i), fs2(i),... , fsl(max)(i)} denotes the relative
frequency insufficient, specified for strategy si at
{s1,s2,...,sl(max)} DVS levels. The energy consumption model
is derived from the power consumption module in
complementary metal-oxide-semiconductor (CMOS) logic
circuits. The power consumption of the CMOS-based
processor defined to be the summation of capacitive, short-
circuit and leakage power. The capacitive power (dynamic

power consumption) is the most significant factor of the
power consumption [13]. It can be calculated in the following
way:

 P . . . (8)

Where A is the number of switches per clock cycle, C is
the total capacitance load, v is the supply voltage, and f is the
frequency. The energy consumed by resource Rj for the
execution task Ti at DVS level sl can be defined as follows:

 [i,j] [(vs)(i)]
 [(fs)(j)] f T i,j,s (9)

Where * assumed constant for a given resource,
vsl(i) is a voltage supply value for strategy si, Ri at DVS level
sl for computing task ti, fsl(j) is the relative frequency, and
ETC' [i, j, sl] is the lth coordinate of ETC' [i, j] vector.

 i ∑
j∈T(i)

i∈L j)
{Eijl} + [vsmin (i)]

 2
. [fsmin (i)].f. Idle (i)]

= . { ∑
j∈T(i)

i∈L j)
 [vsmin (i)]

2
.[fsmin(i)] . f . Idle (i) (10)

Where T (i) is the set of tasks assigned to resource Rj, L (j)
is the set of DVS level used for these tasks on resource Ri,
vsmin (i), fsmin (i) represents the minimum supply voltage and
relative frequency in the idle time that resource turn into sleep
mode and Idle (i) is an idle time of resource Ri. The idle time
for resource Ri can be calculated in following way:

Idle i= Makespan – completion (i) (11)

For the resource with makespan, the idle time is equal to
zero. So total energy consumption is as follows [4]:

 E_total=∑ i ∈ (12)

TABLE I. DVS LEVELS AND PAIRS

Pair3 Pair 2 Pair 1

Rel.f

(fs1)

Vol

(Vs1)

Rel.f

(fs1)

Vol

(Vs1)

Rel.f

(fs1)

Vol

(Vs1)
Level

1.0 1.75 1.0 2.2 1.0 1.5 0

0.8 1.4 0.85 1.9 0.9 1.4 1

0.6 1.2 0.65 1.6 0.8 1.3 2

0.4 0.9 0.50 1.3 0.7 1.2 3

 0.35 1.0 0.6 1.1 4

 0.5 1.0 5

D. Makespan

In this paper the scheduling aim is to minimize makespan
and total energy consumption. Generally, there are two
solutions:

1) Scheduling aims to find the smallest energy

consumption when execution time is limited. That is

E_opt=min(E_total),while

makespan_opt<=makespan_expected.

Where E_opt is the minimum energy consumption,
makespan_opt is the minimum makespan that can have.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

226 | P a g e

www.ijacsa.thesai.org

*Corresponding author

2) Scheduling aims to find the smallest energy

consumption when the cumulative energy consumption

limited, that is makespan_opt=min (makespan), while E_opt

<= E_expected. Makespan can be described as follows:

 Minimize f (cs) = F max (s) (13)

Where f (cs) is a candidate solution and F define the
completion time of task Ti on resource Rj. For example, the
scheduler has eight independent tasks scheduled on two
resources and the sequence of tasks is T6-T5-T2-T1-T7-T4-T3-
T0, Fig. 1 explains calculation method of makespan:

Fig. 1. Makespan definition.

We consider the scheduling as a bi-objective problem
which aiming to find the right compromise between makespan
and E_total.

The obtained results of the considered functions have not
same unit. For this purpose, we use normalization. The used
normalization formula is as follows:

Normalization(Q
c
) {

Q
c
-Q

i
 max)

Q
i
 max)-Qi min)

 Q
i
 max) Q

i
 min)

1 Q
i
 max) Q

i
 min)

(14)

Where Qc is the obtained result, Qi (max) is the maximum
obtainable value, and Qi (min) is the minimum value can be
obtained. We are used minimum makespan and minimum
energy consumption equal to zero and maximum makespan
and energy consumption obtained by sends all the tasks to the
weakest resource. There are two parameters in the total fitness
function, any changes in the parameters show the user‟s
demands from the scheduler. In other words, these two
parameters used as coefficients. The sum of the parameters
should be equal to one so the fitness function of the bi-
objective scheduling is as follows:

() (normal-makespan)+() () (15)

Table 2 shows the examples of possible states:

TABLE II. FITNESS FUNCTION PARAMETERS

Energy Makespan

 1 0

  0 1

  0.5 0.5

V. PROPOSED ALGORITHM

A. Chaotic Bat Algorithm

We describe a chaotic heuristic algorithm to send tasks to
the makespan and energy aware resources, and we call it bi-
objective chaotic bat Algorithm for task scheduling. CBA use
the execution time, the execution energy to improve the task
scheduling. All bats have properties that explained in related
works (Bat algorithm) in five sections. The initial population
mainly aims to find the food/prey and a faster convergence, as
well as improvement in the best global solution. Each bat has
some other parameters as follows:

α: is a loudness decay factor. It is also used as a cooling
factor in the traditional simulated annealing algorithm.

γ: is the pulse enhancement factor that used for adjustment
of the pulse frequency.

ri: which makes the local search is done further and with
more accuracy.

Ai: is loudness, which makes the algorithm explore the
search space globally.

In this section, we are used chaotic maps in different ways
to tune the BA parameters and improve the performance. In
chaotic sequences, the numbers are well distributed. Iterative
map and sinusoidal map has had good performance in the
initialization process. This specification can be effective in an
evolutionary algorithm. This feature can get a better
exploration in the evolutionary algorithm. So, for each bat, we
used the sinusoidal map to initialize pulse emission rate and
the iterative map for loudness frequency initialization[6].
Descriptions of the two maps are as follows:

Iterative map: The iterative chaotic map with infinite
collapses can be written as [6].

Xk+1=Sin(

) (16)

Sinusoidal map: we can define Sinusoidal map by the
following equation:

 Xk+1= 2 sin (xk) (17)

Tasks randomly distributed between resources. If we
consider „n‟ as an initial population, so we have n solutions
(bats).We used the chaotic value distributions of 100 iterations
for two maps with random initial values.

VI. SIMULATION AND RESULTS

Simulations were carried out to compare the optimization
ability of the proposed algorithm (CBA) [14] in scheduling
problem with the classical BA [5], GA [4], PSO with dynamic

T6

T1

T7

T3

T0

0

3

5

6

9

11

12

20

T5

T2

T4

Makespan=20

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

227 | P a g e

www.ijacsa.thesai.org

*Corresponding author

inertia weight [15], [16] and Symbiotic organism [2]. We use
chaotic maps for Performance improvements. The simulation
carried out using Matlab (R2014a) and Table 3 shows
parameter settings of the algorithms for task scheduling. We
are considered the maximum algorithm iterations equal to 500,
and in energy consumption and total fitness function we are
used 1500 iteration to obtain convergence which is also
considered as a condition for termination, and a fixed
population n = 100 is used for all simulations.

TABLE III. ALGORITHMS PARAMETERS

BA
[r=random initialize] [fmin=0,fmax=number of resource] [α=

0.9] [γ=0.9] [A= random initialize]

CBA
[r= initialize using Sinusoidal map][fmin=0,fmax=number of

resource][α=0.9][γ=0.9] [A=initialize using Iterative map]

PSO [w=0.4-0.9] [c1,c2=2]

GA [cross over rate=0.9] [mutation rate=0.01]

DSOS [number of organism=100]

Web applications such as web services are usually run for
a long time and their CPU requests are variable. Moreover,
High-Performance Computing (HPC) applications have short
life span and place a high demand on CPU. Furthermore,
chosen statistical models for task sizes represents different
scenarios of concurrently scheduling HPC and web
applications. Uniform distribution depicts tasks where HPC
and web applications have the same value. The left-skewed
distribution represents a state where HPC applications to be
scheduled more than web applications and right skewed
distribution represents the Reverse this state. The normal
distribution represents a tasks where a single type of
application is scheduled. To test the ability of the algorithms,
we randomly generated five types of scenarios (tasks) which
shown in Table 4. We use 15 resources and random numbers
(1000 to 10000) for processing capacity of each resource
(million instructions per second) and a number of machine
instructions for each task generated using normal, uniform,
right-skewed and left skewed distribution. The normal
distribution contains more medium size tasks and fewer small
and large size tasks. Left-skewed represents a few small size
tasks and rather a large size tasks while right skewed is the
opposite. Uniform distribution depicts an equal number of
large, medium, and small size tasks. For each distribution, 20,
30, 50, 100, 200, 300 tasks were generated which they have
been named as scenarios.

TABLE IV. SCENARIOS

Scenarios Number of tasks Number of resources

Scenario1 20 15

Scenario2 50 15

Scenario3 100 15

Scenario4 200 15

Scenario5 300 15

A. Scheduling Scenarios by Considering Makespan

The following experiments and analysis are based on the
makespan including CBA, BA, GA, DSOS and PSO
algorithm with dynamic inertia weight for normal, uniform,
right and left skewed generated tasks.

Fig. 2. Average of makespan in 10 repetition (normal).

Fig. 3. Average of makespan in 10 repetition (uniform).

Fig. 4. Average of makespan in 10 repetition (Right-Skewed).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

228 | P a g e

www.ijacsa.thesai.org

*Corresponding author

Fig. 5. Average makespan in 10 repetition (left skewed).

B. Scheduling Scenarios by Considering Energy

Consumption

In this section, we test GA [4] and proposed algorithm by
considering the energy consumption in four different
distributions tasks.

Fig. 6. Average energy in 10 repetition (normal).

Fig. 7. Average energy in 10 repetition (uniform).

Fig. 8. An example of convergency (right-skewed).

Fig. 9. Average energy in 10 repetition (left-skewed).

C. Scheduling Scenarios by Considering Total Fitness

In this section, experimental results show the Bi-Objective
results of running each algorithm. In this results, value is
equal to 0.5. Results shows that, by increasing the number
tasks amount of energy consumption and makespan increases
and proposed algorithm can obtain the better result than other
algorithms.

Fig. 10. Average total fitness in 10 repetition (normal).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

229 | P a g e

www.ijacsa.thesai.org

*Corresponding author

Fig. 11. Average total fitness in 10 repetition (uniform).

Fig. 12. Average total fitness in 10 repetition (right-skewed).

Fig. 13. Average total fitness in 10 repetition (left-skewed).

In Section VI-A, Fig. 2 to 5 show the average makespan of
each algorithm by run 10 times in 5 scenarios with 5 type of
tasks. It shows that the makespan will increase when the
number of tasks increased. Also according to these figures, the
proposed algorithm has achieved lower makespan than the
other algorithms. It is noteworthy that when the number of
incoming tasks are increased proposed algorithm has gained
better results than GA but when the number of tasks is much,

sometimes the CBA converged later than GA but obtained
results are better than it. In section B As indicated, energy
consumption is considered. Fig. 6 to 9 show the average
energy consumption of each algorithm by run 10 times in 5
scenarios with 5 type of tasks. In the last part (total fitness),
Fig. 10 to 13 represent obtained results by considering the
energy consumption and makespan. Results shows the sum of
the normalized energy consumption and makespan multiplied
by Theta coefficient. It is obvious the proposed algorithm can
obtain better total fitness than another algorithm. It is
noteworthy that in some scenarios, especially when the
number of tasks is less both algorithm results are very near but
with the increasing number of tasks proposed algorithm has
overtaken from genetic algorithm.

VII. CONCLUSION AND FEATURE SCOPE

We have studied scheduling problem in cloud computing
environments. This paper explained an advanced task
scheduling algorithm based on chaos and the effect of using
chaotic sequences for improvement of results. In this paper,
the chaos maps have used to improve the performance of Bat
Algorithm, as well as the global search by using a good
distribution of numbers in order to escape the local optimum.
The use of chaos is one of the techniques to tune some of the
parameters in algorithms. In the recent optimization literature,
chaos has become an active research topic and researchers
paid special attention to it. By comparing obtained results by
Chaotic Bat Algorithm and other algorithms, the results
showed that the improvement of the makespan and energy
consumption, due to use of deterministic chaotic signals in
part of constant parameters. Experimental results of the CBA
proposed that the tuned algorithms can clearly improve the
reliability and the convergence of the global optimality, and
they also enhanced the quality of the results. When we use a
CBA, running time of chaos maps leads to increase the total
running time of the algorithm However, this time is minimal.
Second, the algorithm late converged by taking energy
Criterion when the number of tasks was much. An interesting
question arises how some chaotic maps can improve the
performance of an algorithm, while others do not. It is still not
clear why the use of chaos in an algorithm to replace some
parameters can change the performance. Experimental results
show that the proposed algorithm in this problem is superior to
other heuristics algorithms.

REFERENCES

[1] “Amazon 2. https://aws.amazon.com/ec2.”

[2] M. Abdullahi, M. A. Ngadi, and S. M. bdulhamid, “Symbiotic
Organism Search optimization based task scheduling in cloud computing
environment,” utur. Gener. omput. Syst., vol. 56, pp. 640–650, 2016.

[3] M. Kalra and S. Singh, “ review of metaheuristic scheduling
techniques in cloud computing,” Egypt. Informatics J., vol. 16, no. 3, pp.
275–295, 2015.

[4] . T. Ying and J. Yu, “ nergy-aware genetic algorithms for task
scheduling in cloud computing,” Proc. - 7th ChinaGrid Annu. Conf.
ChinaGrid 2012, pp. 43–48, 2012.

[5] X.-S. Yang, “ New Metaheuristic Bat-Inspired lgorithm,” in Nature
Inspired Cooperative Strategies for Optimization (NICSO 2010), J. R.
González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 65–74.

[6] A. H. Gandomi and X. S. Yang, “ haotic bat algorithm,” J. omput.
Sci., vol. 5, no. 2, pp. 224–232, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

230 | P a g e

www.ijacsa.thesai.org

*Corresponding author

[7] P. Kumar and . erma, “Independent Task Scheduling in loud
 omputing by Improved Genetic lgorithm,” Int. J. dv. Res. omput.
Sci. Softw. Eng. Res., vol. 2, no. 5, pp. 5–8, 2012.

[8] R. ron, I. hana, and . braham, “ hyper-heuristic approach for
resource provisioning-based scheduling in grid environment,” J.
Supercomput., vol. 71, no. 4, pp. 1427–1450, 2015.

[9] C.-W. Tsai, W.-C. Huang, M.-H. Chiang, M.-C. Chiang, and C.-S.
Yang, “ Hyper-Heuristic Scheduling lgorithm for loud,” loud
Comput. IEEE Trans., vol. 2, no. 2, pp. 236–250, Apr. 2014.

[10] M. A. Tawfeek, A. El-Sisi, . . Keshk, and . . Torkey, “ loud task
scheduling based on ant colony optimization,” in omputer ngineering
Systems (ICCES), 2013 8th International Conference on, 2013, pp. 64–
69.

[11] . S. Wu, H. Yu, S. Jin, K. . Lin, and G. Schiavone, “ n incremental
genetic algorithm approach to multiprocessor scheduling,” I Trans.
Parallel Distrib. Syst., vol. 15, no. 9, pp. 824–834, Sep. 2004.

[12] S. M. Alaoui, O. Frieder, and T. El-Ghazawi, “ parallel genetic
algorithm for task mapping on parallel machines,” in Parallel and
Distributed Processing: 11th IPPS/SPDP‟99 Workshops Held in
Conjunction with the 13th International Parallel Processing Symposium
and 10th Symposium on Parallel and Distributed Processing San Juan,
Puerto Rico, USA, April 12--16, 1999 Proceedings, Berlin, Heidelberg:
Springer Berlin Heidelberg, 1999, pp. 201–209.

[13] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained
Distributed DVS Scheduling for Scientific Applications on Power-aware
 lusters,” in Proceedings of the 2005 M/I onference on
Supercomputing, 2005, p. 34–.

[14] A. H. Gandomi and X.-S. Yang, “ haotic bat algorithm,” J. omput.
Sci., vol. 5, no. 2, pp. 224–232, 2014.

[15] G. Yue-lin, “ New Particle Swarm Optimization lgorithm with
Random Inertia Weight and volution Strategy,” Int. onf. omput.
Intell. Secur. Work., pp. 199–203, 2007.

[16] H. S. Al-Olimat, M. Alam, R. Green, and J. K. Lee, “ loudlet
scheduling with particle swarm optimization,” Proc. - 2015 5th Int.
Conf. Commun. Syst. Netw. Technol. CSNT 2015, pp. 991–995, 2015.

