
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

261 | P a g e

www.ijacsa.thesai.org

FFD Variants for Virtual Machine Placement in

Cloud Computing Data Centers

Aneeba Khalil Soomro, Mohammad Arshad Shaikh, Hameedullah Kazi

Department of Computer Science

ISRA University

Hyderabad, Pakistan

Abstract—Virtualization technology is used to efficiently

utilize the resources of a Cloud datacenter by running multiple

virtual machines (VMs) on a single physical machine (PM) as if

each VM is a standalone PM. Efficient placement/consolidation

of VMs into PMs can reduce number of active PMs which

consequently reduces resource wastage and power consumption.

Therefore, VM placement algorithms need to be optimized to

reduce the number of PMs required for VM Placements. In this

paper, two heuristic based Vector Bin Packing algorithms called

FFDmean and FFDmedian are proposed for VM placement.

These algorithms use First Fit Decreasing (FFD) technique. FFD

preprocesses VMs by sorting all VMs in descending order of

their sizes. Since a VM is multidimensional therefore, it is

difficult to decide on its size. For this, FFDmean and FFDmedian

use measures of central tendency, i.e. mean and median as

heuristics, respectively, in order to estimate the size of a VM. The

goal of these algorithms is to utilize the PM resources efficiently

so that the number of required PMs for accommodation of all

VMs can be reduced. CloudSim toolkit is used to carry out the

cloud simulation and experiments. Algorithms are compared

over three metrics, i.e. hosts used, power consumption and

resource utilization efficiency. The results reveal that FFDmean

and FFDmedian remarkably outperformed two existing

algorithms called Dot-Product and L2 in all three metrics when

PM resources were limited.

Keywords—Cloud computing; virtual machine placement;

virtualization; first fit decreasing; first fit decreasing (FFD)

I. INTRODUCTION

Cloud computing is an internet based business model of
computation for outsourcing computing resources such as
processing power, networks, servers, storage, applications, and
services [1]. NIST (National Institute of Standards and
Technology) published their 16th and final definition of cloud
computing, which is.

“Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g. networks, servers,
storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or
service provider interaction” [1].

Cloud computing provides a lot of opportunities for the IT
industry. It is a rapidly enhancing and developing paradigm.
The modern computational power has allowed it to become a
utility that provides services to customers on a pay-as-you-go
model i.e. the customers are required to pay only when they

use the service. Hence, it is considered to become 5
th
 utility [2]

of our lives after other four utilities such as electricity, water,
gas and telephony.

In cloud computing everything that is provided is a service.
The services are available on-demand from anywhere in the
world through internet. A cloud service provider provides
services to its customers in three basic service models, which
are:

1) Software-as-a-Service (SaaS): SaaS is software

provided as a service. The software (application) is provided

on demand which is built over an infrastructure and a

platform. The software provided is a web application,

accessible through a browser [3]. SalesForce, BaseCamp,

GoToMeeting and NETSUITE are some examples of SaaS.

2) Platform-as-a-Service (PaaS): PaaS is a complete

platform provided as a service to developers, which consists of

all the required systems and the developing environment with

underlying infrastructure. The end users (developers) of this

service are allowed to develop their own software by testing,

deploying and then hosting their custom web based

applications [3]. Generally PaaS is a middleware (like OS) that

allows communication between hardware and application [4].

Google APP Engine and IBM bluemix are some examples of

PaaS.

3) Infrastructure-as-a-Service (IaaS): IaaS is a complete

infrastructure provided as a Service. It provides Computing

power with high level of adjustability as it allows the

developers to create their own infrastructure like

virtualization, etc. [3]. The customer is allowed to build their

own platform and software over it. Amzaon EC2 and IBM

Cloud are some examples of IaaS.

These services are highly scalable i.e. they may be
increased or decreased according to the current demand of
customers. The cloud customer does not need to worry about
management and provisioning of resources when the demand
rises or decreases. This is all done at the cloud providers’ side.
This relaxes customers from the hassle of managing, updating,
over and under provisioning of resource (The customers and
the service providers agree upon a contract called Service
Level Agreements (SLAs) [27] to ensure Quality of Service
(QoS).

The cloud Infrastructure is based on huge datacenter(s)
comprised of millions of physical machines (PMs). These next-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

262 | P a g e

www.ijacsa.thesai.org

generation datacenters are so powerful that millions of
customers can be served. Every end user is assigned a
dedicated virtual machine (VM) which eventually runs on a
PM residing in a Cloud datacenter. This is accomplished by
using virtualization technology which helps in sharing PM
resources to multiple users by running multiple VMs on a
single PM as if each VM is a standalone PM [5]. Since these
PMs are hosts for VMs, PMs are also called as hosts.

A lot of electrical power is wasted due to inefficient
utilization of datacenter’s physical resources which results in
high operational costs. About 70% of total data center’s power
is consumed by PMs [6]. The principal approach to power
saving in cloud computing is to cut the operational costs of
datacenters by efficiently utilizing the resources of a PM, in
order to minimize the number of PMs in use and idle/inactive
PMs are turned off or to low power mode [7]. Hence power
efficient cloud computing [26] is an active research area and is
often termed as Green Cloud Computing.

The VM placement (VMP) is a process of allocating VMs
into PMs. A VM Placement algorithm is responsible to
place/consolidate VMs into PMs. Efficient placement of VMs
can reduce the number of PMs required for their
accommodation, consequently increasing utilization of PM’s
resources and reducing power consumption. Therefore, there is
a continuous need to design efficient algorithms for VMP so
that VMs are packed in minimum possible PMs and resource
utilization efficiency is increased by increasing utilization of
each resource in a PM.

In this work two Vector Bin Packing (VBP) algorithms
named as FFDmean and FFDmedian are proposed. These
algorithms are essentially First Fit Decreasing (FFD) variants
which are supposed to increase PM utilization to reduce
number of PMs required and in turn reduce power
consumption.

The remaining paper is structured as follows: Section II
discusses the related work to this research. Section III
formulates VMP problem as VBP problem. Section IV
discusses the proposed algorithms. Section V describes the
system model. Section VI explains the experimental setup.
Section VII presents the results. Section VIII discusses the
results. Section IX concludes this research and Section X
presents the future recommendations.

II. RELATED WORK

Cloud computing is a rapidly growing paradigm of
computer science. A lot of academic and industrial research
[24], [25] has been conducted in this field to enhance the
quality of cloud. As our work is specific to VMP, in this
section some of the work related to VMP in cloud computing is
reviewed.

A. Power Aware VMP Approaches

Power conservation is a very important challenge in Cloud
computing. In this section some of the VMP
algorithms/policies that opt for power conservation are
discussed.

1) Cutting back power usage and co2 footprint by ECE

algorithm: To become highly available, cloud data centers

maintain different power sources. Mostly, these sources are

not renewable and use carbon fuels to run, eventually leading

to increased carbon footprint (cf) of environment which is

injurious to our environment and health. The cf rate of these

power sources is an important consideration, since data

centers utilize electricity provided by these sources to run PMs

and eventually VMs.

Khosravi et al. in [8] proposed ECE algorithm for VMP to
minimize power consumption and cf. ECE integrates two
parameters i.e. Power Usage Effectiveness (PUE) and cf. It
aims to place a VM in to a PM so that the power consumption,
cf and PUE of the PM, its datacenter and cluster is minimized.
Initially, when a VM request is received, ECE sorts all the
clusters by their PUExcf values in ascending order. After that
for each PM in a cluster the change in power consumption (ΔP)
after that VM’s placement is calculated. These PMs are then
sorted in ascending order of their ΔP. A suitable PM which has
minimum ΔP after placement is selected. If a suitable PM is
not found for the VM, algorithm tries the next cluster. The
ECE algorithm decreased cf and saved power compared to
many existing algorithms.

2) Power saving by demand forecasting: As cloud

computing has an on-demand resource provisioning method;

resource (de)allocation is dynamic. The service provider needs

switched on PMs in spare to deal with dynamic resource

demands. These idle PMs until they get some work waste a lot

of power. On the other hand switching them on/off on demand

also wastes power and takes 2-3 minutes to restart. One way to

solve this issue is to standby the inactive PMs. It takes less

time to restart and also consume lesser power compared to

completely switching them off. If the future resource demands

are estimated before time then according to the estimate some

PMs could be set on standby while others shutdown to save

power.

Cao et al., in [9] proposed a power efficient approach to
solve VMP problem by forecasting the demand for VMs. The
VMP is carried out in three steps. Initially demand forecasting
is done by using Holt-Winter’s exponential smoothing method
assuming that in cloud computing a particular user’s demands
are identical and a particular demand succeeds a seasonal
pattern. Next, a modification of multi-dimensional knapsack
algorithm is used to allocate VMs to hosts; considering hosts as
knapsacks and VMs as items with two types of costs i-e
memory and cores. Finally a self-Optimizing module is used to
update the forecasting parameter values in the demand
forecasting model and mining the appropriate forecast periods
by Hill Climbing method. The experiment result showed that
proposed algorithm with forecast saves up to 60% power.

3) Power saving by decentralized VM migration technique

for fault-tolerant load balancing: Mostly, centralized

approaches are used for resource management in cloud

computing. Management becomes easy with these approaches

however they are not fault tolerant. If the centralized resource

manager crashes, all of the system crashes and becomes

unmanaged.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

263 | P a g e

www.ijacsa.thesai.org

Wang et al. in [10] proposed a decentralized VM migration
technique for resource management instead of using a central
resource manager, for fault-tolerance and to efficiently balance
load across the data center and save power. In this approach
each PM sends its load information maintained in a load
vector, to every other PM in the data center(s), thus all active
PMs have each other's load information. The proposed DVM
algorithm uses lower and upper thresholds to judge the over
and underutilization of a PM’s CPU respectively. VMs are
migrated from PM’s with over utilized CPU to avoid SLA
violations. In an underutilized PM, all VMs are migrated to
some other PM with minimum increment in utilization after
addition of migrating VM and the PM is turned off/sleep for
power conservation. DVM showed balanced resource
utilization and saved up to 20% power compared to static and
round robin algorithms.

4) Power saving by euclidean distance based algorithm:

Srikantaiah et al. in [11] proposed a power aware multi

dimensional bin-packing algorithm that uses a euclidean

distance based heuristic for VMP. The algorithm considers

two dimensions i.e. CPU and disk. It first finds out an optimal

point where combination of CPU and disk utilization gives

minimum power usage per transaction. Next, when it receives

application (VM) requests it uses the euclidean distance

heuristic which calculates euclidean distance of the utilization

of each PM after allocation of the requested VM to the

optimal point calculated in first step. The PM that has

maximum euclidean distance of all is selected for VMP.

Results showed that more power is saved as performance

degradation tolerance is increased. At 20% tolerance the

proposed algorithm used only 5.4% more power than optimal

algorithm.

5) Power saving by live VM migration using vector based

repacking: Consuegra et al. in [12] proposed a vector

repacking algorithm called replicas to minimize operational

costs of a datacenter, that include power and migration cost.

This algorithm places copies of each item/VM on different

PMs that are selected by replica allocation algorithm. Among

these copies only one copy is considered to be active and the

operations are executed on it. When a VM has an increase in

demand and cannot fit anymore in the current PM where it

resides, then a PM is selected by the help of active replica

selection algorithm. The copy in the newly selected PM is

activated, the newly activated copy is synchronized with the

previous copy to update if there are any changes and the

previous copy is sent to inactive mode. By using replicas

algorithm migration cost is reduced or even eliminated.

6) Consolidating complementary VMs with

spatial/temporal-awareness in cloud datacenters: Chen et al.,

in [13] proposed a spatial/temporal aware VBP algorithm for

initial VMP. The algorithm forecasts resource usage patterns

of VMs and packs together complementary VMs with

spatial/temporal knowledge. This algorithm considers

balanced utilization of CPU and memory of a PM. For e.g. a

high CPU-intensive and low memory-intensive VM and a low

CPU-intensive and high memory-intensive VM can be packed

together to give a balanced utilization of PM resources. These

types of VMs are complimentary VMs i.e. VMs for which

overall requirement of every resource dimension (in the spatial

space) almost arrives at their PM’s capacity throughout VM

lifetime phase (in the temporal space). The results show that

the proposed techniques helped in utilization of PM’s

resources, reduction in VM migrations and active PMs in use

alongwith maintaining SLAs.

B. Vector Bin Packing Algorithms for VMP

In cloud computing the VM resource demands are multi-
dimensional. To solve the multidimensional VMP problem one
of the solutions is to use a variant of bin packing called Vector
Bin Packing (VBP) is used. Unlike the classic bin packing it
considers the items and bins as multi-dimensional vectors.

1) FFD variants for VBP: VBP can be solved by classic

FFD heuristic. In FFD, items are first sorted by decreasing

order of their sizes and then placed in the first bin (container)

they fit into. Since in VBP the items are considered as multi-

dimensional, it is difficult to decide the size of an item. For

this, many FFD variants have been put forward which use

some heuristic to estimate the size of a multidimensional item.

Maruyama et al. in [14] proposed a generalized VBP
algorithm for FFD and best fit decreasing (BFD) techniques
where BFD chooses the best bin in which an item can fit into.
The algorithm considers many heuristics to estimate the size of
a multi-dimensional item. The heuristics include taking product
of all dimensions, sum of average and standard deviation of all
dimensions and different versions of sum of all dimensions.
Among these they found taking sum of dimensions and sum of
average and standard deviation, far better than taking product.
Kou and Markowsky in [15] proposed multidimensional bin
packing algorithms. Three heuristics were used to calculate the
size of items for FFD and BFD. Heuristics used for deciding
the size were lexicographical (Lex), maximum component
(Max) and sum of components. In Lex an item a>b if a equals
b or first component of a-b is positive. In Max a>b if maximum
component of a is greater than that of b. In sum of components
a>b iff sum of all components of a is greater than that of b.

Spieksma in [16] proposed FFD heuristic algorithm which
sorts items by assigning priorities and a branch and bound
algorithm for 2-dimensional (2d) VBP. Han et al., in [17]
proposed heuristics and exact algorithms for 2d VBP for
heterogeneous bins. Caprara and Toth in [18] also studied the
2d case of VBP in detail. They proposed enhanced lower
bounding methods, heuristics, and exact algorithms for this
problem. Stillwell et al. in [19] proposed some VBP algorithms
for resource allocation in virtualized shared hosting platforms.
To sort items for FFD and BFD they used heuristics such as
Sum, Max and Lex from [15]. They also proposed choose pack
and permutation pack algorithms, greedy algorithms, a genetic
algorithm and relaxed linear programming solution. From all
these, the algorithms which used Sum as a heuristic performed
well. Panigrahy et al. in [20] proposed two FFD variants called
Dot-Product (DP) and L2 which use dot product and L2 norm
techniques, respectively as heuristics to estimate the size of a
VM.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

264 | P a g e

www.ijacsa.thesai.org

Measures of central tendency such as mean and median are
used to calculate a particular value from a dataset which
identifies the central point of that dataset. This technique can
be used to estimate the size of a multi-dimensional VM. As far
as related work is reviewed for this research, FFD variants that
use these measures for VMP in cloud computing environment
are not found. Therefore, in this work two new VBP algorithms
called FFDmean and FFDmedian for VMP in cloud computing
environment are proposed, which are essentially FFD variants.
The algorithms use mean and median respectively as heuristics
to estimate the size of a VM.

III. PROBLEM FORMULATION

1) VBP problem: Vector Bin packing (VBP) problem is a

variant of bin packing problem. It is NP-hard which means

that it cannot be solved in polynomial time however

approximation algorithms are proposed for this problem. The

problem is all same as bin packing problem except the items

here are not one dimensional but d-dimensional vectors where

d≥2.

The resource demand of an item is represented by demand

vector ⃗⃗ and the bin capacity is represented by resource vector

 ⃗⃗ ⃗ . Both vectors are d-dimensional where d≥2 and are
represented in (1) and (2), respectively, here i is item’s demand
and c is the bin’s capacity in a particular dimension.

 ⃗⃗  {i1, i2… id } 

 ⃗⃗  {c1, c2… cd } 

In VBP, there is B number of bins each with a resource

vector ⃗⃗ and I number of items each with a demand vector ⃗⃗ .
The problem is to place all items in minimum number of bins,
such that in each bin b, the sum of demands in each dimension
of all accommodated items does not exceed the bin capacity in
each corresponding dimension.

2) VMP problem: VM Placement (VMP) problem is a NP-

hard problem. The VMP problem receives a set V of VMs,

each with d-dimensional resource demands and a Set P of

PMs, each with d-dimensional resource capacity. The problem

is to place all VMs in minimum number of PMs, such that in

each PM the sum of demands in each dimension of all VMs

does not exceed the PM capacity in each corresponding

dimension.

3) VMP problem formulation as VBP problem: Since

VMP problem is multi-dimensional, it is difficult to formulate

it as general bin packing problem. VMP Problem can be

transformed into a VBP problem by considering VMs as items

with d-dimensional demand vector ⃗⃗ and PMs as bins with d-

dimensional resource vector ⃗⃗ . In this work ⃗⃗ in (3) for a VM

v has four-dimensions which are CPU mips, ram, bandwidth

(bw) and Storage (strg). ⃗⃗ in (4) for PM p which is used as a

host for VMs also has the same dimensions.

 ⃗⃗ () 

 ⃗⃗

  

IV. PROPOSED ALGORITHMS

FFDmean and FFDmedian are two new VBP algorithms
proposed for VMP in cloud computing environment. The
algorithms use classic FFD heuristic.

FFD is a simple heuristic approach to solve bin packing
problem, which receives set of items and bins. Since FFD is
used here for VMP, items are considered as VMs and bins as
PMs/hosts. In FFD, VMs are first sorted in descending order of
their sizes. After that starting from the largest VM, each VM is
placed in the first available PM they fit into. The process
continues until all VMs are placed.

The first requirement of FFD heuristic is to sort all the VMs
into descending order of their sizes; however in this case where
a VM is four-dimensional vector, it is difficult to decide which
dimension should be selected as size of a VM. Therefore, a
particular value/number is required in order to sort VMs. For
this, measures of central tendency such as mean and median
can be used to calculate a particular value from demand vector

 ⃗⃗ of a VM. This value identifies the central point of the vector

 ⃗⃗ and is the estimated size of a VM.

A. FFDmean and FFDmedian

FFDmean and FFDmedian use mean and median
respectively to estimate the size of a multi-dimensional VM.
The algorithms work in three steps, i.e. Normalization, size
estimation and sorting and placement. Step 1 and Step 3 are
same for both algorithms, however Step 2 is different.

1) Step 1 (Normalization): In this step, all the VMs are

normalized to bring them on same scale. VMs are normalized

by dividing all dimensions of a VM by their corresponding

dimension in the PM as shown in (5).

 normalized_VM =
vmips

p
mips

,
vram

p
ram

,
vbw

p
bw

,
vstrg

p
strg

) 

2) Step 2 (Size Estimation): In this step, the size of each

VM is estimated by using a Size function S. This function is

different for FFDmean and FFDmedian.

a) Size function for FFDmean: For FFDmean this

function calculates mean of VM dimensions in demand vector

 ⃗⃗ . The larger the mean the larger is the VM size. The size

function S for FFDmean is presented in (6) where v represents

a VM, i is a dimension and d is the total number of dimensions

 1 ≤ i ≤ d) from ⃗⃗ .

 S()
∑ i

i 1

 

b) Size function for FFDmedian: For FFDmedian this

function calculates median of VM dimensions in demand

vector ⃗⃗ . The larger the median the larger is the VM size. For

median there are two cases. The first case is for odd number of

dimensions in ⃗⃗ . In this case the middle value is taken as the

median. The second case is for even number of dimensions in

 ⃗⃗ , which is true for this research. In this case two middle

values are taken and then average of these values is calculated.

The size function S for the second case is presented in (7)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

265 | P a g e

www.ijacsa.thesai.org

where v represents a VM and x and y represent two middle

values in ⃗⃗ .

S() 

2
 

3) Step 3 (Sorting and placement): In this step, all the

VMs are sorted in decreasing order of their sizes and then

placed in PMs by using FFD technique.

Bin-centric version of FFD [20] is used in which a PM is
taken at a time t. The process continues from Step 1 to Step 3
for each PM until no VM is left for placement.

V. SYSTEM MODEL

This work is based on the IaaS layer of cloud computing.
CloudSim toolkit [21] is used to simulate the IaaS environment
and the experimental setup. CloudSim is a framework for
modeling and simulation of cloud computing infrastructures
and services.

The system consists of one datacenter which contains 800
identical PMs. Since the cloud computing datacenters are
multi-tenant i.e. VMs of different users might run on same PM,
the VM instances are designed to bring the effect of different
resource requirements by different users. For example, a user
may demand a VM with high CPU capacity while another user
may demand a VM with high memory etc. There are six types
of VMs inspired by Amazon EC2 VM instances, used in our
experiments. VM requirements are designed to be within PM
capacities.

This work is limited to only initial VMP. This means that
VMs complete their lifetime in only one PM in which they are
initially placed and they are not migrated. Four algorithms are
used separately for VMP. The algorithms are FFDmean,
FFDmedian, Dot-Product (DP) and L2. FFDmean and
FFDmedian are the proposed algorithms in this work while DP
and L2 [20] are existing algorithms used for comparative
analysis. DP uses dot product and L2 uses L2Norm as heuristic
to estimate the size of a VM. In DP the larger the dot product

between ⃗⃗ and ⃗⃗ the larger is a VM’s size whereas in L2 the

smaller the difference between ⃗⃗ and ⃗⃗ the larger is a VM’s
size.

The system receives user requests for VMs in the form of
PlanetLab workload. It is a real workload of user requests
(tasks/Jobs) selected by CloudSim from PlanetLab and

provided by CoMon project [22].

A. PlanetLab Workload

PlanetLab is a research network spread worldwide which
supports the advancement of new network services. From the
start of 2003, above 1,000 researchers from industrial research
labs and remarkable academic institutes have chosen PlanetLab
to develop new techniques for distributed storage, peer-to-peer
systems, network mapping, distributed hash tables, and query
processing.

PlanetLab workload is the real workload traces from real
systems. It is the data made available as a part of the CoMon

project [22] which is a monitoring infrastructure for PlanetLab.
This data consists of CPU utilizations of more than a 1,000
VMs from PMs (servers) situated at more than 500 places
around the world. The utilizations of VMs are measured at an
interval of five minutes.

To make our experiments more authentic it is important to
test our algorithms with a real workload. For this we have
chosen the PlanetLab Workload traces of 10 random days
collected during March and April 2011, provided in CloudSim.

B. Power Model

Power consumption in an IaaS is decided by data center
resources such as electric power supplies, cooling systems,
CPU, memory, disk storage, network equipment, etc.
According to recent research [23], among these resources CPU
utilization has a linear relationship with PM’s power
consumption. This is because there are least amount of states
that can be assigned to the voltage and frequency of a CPU and
furthermore performance scaling such as DVFS (Dynamic
Voltage and Frequency Scaling) is not functional to other
resources that use power, for instance network devices,
memory, storage, etc.

Due to the increased use of virtualization technology, state-
of-the-art PMs are designed with multi-core CPUs and large
quantities of other resources. Memory, network and other
devices also add in the power consumption of a PM. For the
reason that modeling power expenditure of current PMs is a
difficult research problem, in this research genuine information
on power expenditure made available by SPEC (Standard
Performance Evaluation Corporation) power benchmark is
used rather than making an analytical power model [23]. SPEC
power model provides real power usage of PMs at different
CPU usage/load levels.

VI. EXPERIMENTAL SETUP

Three Experiments are designed to evaluate FFDmean and
FFDmedian algorithms compared with DP and L2. In each
experiment, there is one datacenter with 800 identical PMs of
types 1, 2 and 3, respectively as shown in Table 1. The
difference between the experiments is the PM type
(configuration). Since the goal is to test the performance
sustainability of algorithms as the resources increases under
different PM types. VMs are created according to the Instances
provided in Table 2.

Jobs/tasks for VMs are taken from PlanetLab Workload
provided in CloudSim which is divided into 10 parts or
workloads. All algorithms i.e. FFDmean, FFDmedian, DP and
L2 are used separately for VMP for all PlanetLab Workloads.
Therefore, we have four algorithms, 10 workloads and three
experiments; we get total 120 simulations (4*10*3).

Power model made available by SPEC power benchmark
for each host type is used. Power consumption of these PMs at
different CPU usage/load levels is presented in Table 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

266 | P a g e

www.ijacsa.thesai.org

TABLE I. PM CONFIGURATION

Physical Machine
PM Configurations

CPU Cores RAM Strg BW

1
HP ProLiant

ML110 G5

2.66 GHZ

(2660 MHZ)
2

4 GB

(4096
MB)

160 GB

(163840
MB)

1000

Mb/s

2
IBM System

x3250 M3

3.07 GHz

(3067 MHz)
4

8 GB

(8192
MB)

160 GB

(163840
MB)

1000

Mb/s

3
IBM System

x3550 M3

2.93 GHz

(2933 MHz)
6

12 GB

(12288
MB)

160 GB

(163840
MB)

1000

Mb/s

TABLE II. VM INSTANCE TYPES

VM Type a

VM Configurations

CPU
Co

res
RAM Strg BW

1 High CPU
1700 MHz

(1.7 GHz)
1

2048

MB

(2 GB)

1024 MB

(1 GB)

400

Mb/s

2
High
Memory

1200 MHz

(1.2 GHz)
1

3072

MB

(3 GB)

2048 MB

(2GB)

300

Mb/s

3 High BW
1300 MHz

(1.3 GHz)
1

512 MB

(0.5 GB)

2048 MB

(2 GB)

500

Mb/s

4 High Strg
1400 MHz

(1.4 GHz)
1

1024

MB

(1 GB)

12288

MB

(6 GB)

200

Mb/s

5 General
1500 MHz

(1.5 GHZ)
1

1024

MB

(1 GB)

3072 MB

(3 GB)

200

Mb/s

6 General
1000 MHz

(1.0 GHz)
1

512 MB

(0.5 GB)

512 MB

(0.5 GB)

250

Mb/s

a. Inspired from https://aws.amazon.com/ec2/instance-types/

TABLE III. POWER MODEL OF EACH PM

PM

Workload (%)

Power Consumption of PMs (Watts)b

HP ProLiant

ML110 G5

IBM System

x3250 M3

IBM System

x3550 M3

1 0% 93.7 42.3 66

2 10% 97 46.7 107

3 20% 101 49.7 120

4 30% 105 55.4 131

5 40% 110 61.8 143

6 50% 116 69.3 156

7 60% 121 76.1 173

8 70% 125 87 191

9 80% 129 96.1 211

10 90% 133 106 229

11 100% 135 113 247
b. Taken from www.spec.org

A. Performance Metrics

There are three performance metrics used to analyze the
algorithms. These are described below:

1) Hosts Used: Hosts used is the number of PMs required

to host (accommodate) all VMs in the workload. The goal is to

minimize this number. The smaller the number the better is

the performance.

2) Power Consumption: It is the total electrical power

consumed by all PMs in a datacenter. The goal is to reduce the

power consumption. Power consumption of a PM is calculated

by using SPEC power model. Power consumption of each

active PM at different load levels in a datacenter is calculated

using the values provided in Table 3. At the end of the

simulation, power consumed by all active PMs is then added

together to get total power consumption of the datacenter.

3) Resource Utilization Efficiency: Resource utilization

efficiency is how well the resources of a PM in each

dimension are utilized. The goal is to increase utilization

efficiency in all dimensions of a PM. For each PM, utilization

percentage in each of its dimension i.e. CPU, RAM, BW, and

Strg is calculated first. After that average utilization

percentage of each PM in each dimensions is calculated.

VII. RESULTS

The experiments were conducted on a HP notebook PC
running Windows 7 Home Premium with Core i5 CPU @ 1.60
GHz and 4 GB RAM. In each experiment all VMs were placed
separately by FFDmean, FFDmedian, DP and L2. Average
results of each algorithm in each performance metric are
presented here. Fig. 1 shows a graphical representation of
average hosts used by each algorithm in each experiment and
Fig. 2 shows a graphical representation of average power
consumption in kilo watts (KW) by each algorithm in each
experiment. Fig. 3 shows a graphical representation of average
resource utilization efficiency (%) by each algorithm in each
experiment. To save space in figures FFDmean and
FFDmedian are represented as Mean and Median. Table 4
shows a summary of results in each experiment.

Fig. 1. Average hosts used in each experiment.

Fig. 2. Average power consumption in each experiment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

267 | P a g e

www.ijacsa.thesai.org

Fig. 3. Average resource utilizataion (%) in each experiment.

TABLE IV. SUMMARY OF AVERAGE RESULTS BY ALL ALGORITHMS IN ALL METRICS

Exp. # Algorithms Hosts Used Power Consumption
Resource Utilization Efficiency (%)

CPU RAM BW Strg

1

FFDmean
FFDmedian

DP

L2

368
368

413

458

734.241
734.522

790.843

835.828

81.55
81.55

72.49

65.38

93.34
93.34

83

74.99

95.92
95.92

85.39

77.06

30.28
30.28

26.86

24.15

2

FFDmean

FFDmedian
DP

L2

353

363
376

353

315.745

324.919
336.343

318.602

36.64

35.68
34.42

36.7

48.29

46.73
45.29

48.35

99.85

97.13
93.82

99.83

31.67

30.85
29.64

31.59

3

FFDmean

FFDmedian

DP
L2

357

370

376
357

552.971

572.475

584
560.968

24.89

24.14

23.68
24.88

31.86

30.66

29.93
31.84

98.97

95.4

93.75
98.9

31.35

30.13

29.62
31.33

VIII. DISCUSSION

A. Hosts Used

In Exp. 1 FFDmean and FFDmedian saved 11% hosts
compared to DP and saved 20% hosts compared to L2. In
Exp. 2 FFDmean saved 6% hosts compared to DP and
performed equally well as L2. FFDmedian saved 3% hosts
compared to DP however it used 3% more hosts compared to
L2. In Exp. 3 FFDmean saved 5% hosts compared to DP and
performed equally well compared to L2. FFDmedian saved 2%
hosts compared to DP however it used 4% more hosts
compared to L2.

This shows that in Exp. 1 where PM resources were very
limited compared to other experiments, FFDmean and
FFDmedian remarkably saved hosts leaving behind DP and L2,
however when resources were comparatively increased in
Exp. 2 and Exp. 3 FFDmean outperformed DP and performed
equally well as L2 however FFDmedian only performed better
than DP.

B. Power Consumption

In Exp. 1 FFDmean saved 7.16% power compared to DP
and 12.15% power compared to L2. FFDmedian saved 7.12%
power compared to DP and saved 12.12% power compared to
L2. In Exp. 2 FFDmean saved 6.12% power compared to DP

and saved 0.9% compared to L2. FFDmedian saved 3.4%
power compared to DP; however, it used 1.98% more power
compared to L2. In Exp. 3 FFDmean saved 5.31% power
compared to DP and saved 1.43% power compared to L2.
FFDmedian saved 1.97% power compared to DP; however, it
used 2.05% more power compared to L2.

This shows that like hosts used metric, in Exp. 1 where PM
resources were limited compared to other experiments
FFDmean and FFDmedian both outperformed DP and L2 in
saving power. When PM resources were comparatively
increased in Exp. 2 and Exp. 3 FFDmean outperformed both
DP and L2 however FFDmedian only performed better than
DP.

C. Resource Utilization Efficiency

Table 4 shows that in Exp. 1, FFDmean and FFDmedian
performed equally in increasing utilization efficiency in all
dimensions and outperformed both DP and L2. The effect of
this utilization efficiency can be seen in other two metrics
where FFDmean and FFDmedian outperformed very well than
both DP and L2. In Exp. 2 FFDmean and L2 showed same
utilization values and better than FFDmedian and DP, therefore
their performance in other two metrics was almost same.
FFDmedian increased up to 1% utilization in all dimensions
compared to DP. Even with 1% increase in utilization

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

268 | P a g e

www.ijacsa.thesai.org

FFDmedian saved 3% hosts and 3.4% power compared to DP.
This shows that even minor increase in utilization can bring a
lot of effect. In Exp. 3 FFDmean and FFDmedian performed
equally to L2. FFDmean and FFDmedian increased up to or
more than 1% utilization compared to DP in all dimensions.
With this minor change FFDmean saved 5% hosts and saved
5.31% power compared to DP, and FFDmedian saved 2%
hosts and 1.97% power compared to DP.

This shows that with very limited resources in Exp. 1
FFDmean and FFDmedian remarkably outperformed DP and
L2 in increasing resource utilization efficiency. By increasing
PM resources in Exp. 2 and Exp. 3 utilization values of all
algorithms became almost equal with minor difference. It is
observed that even minor changes in utilization can bring a lot
of effect in saving hosts and power.

From all experiment results, it is observed that our
proposed algorithms FFDmean and FFDmedian remarkably
outperformed DP and L2 when PM resources were extremely
limited. Our algorithms also performed well when resources
were increased, however the performance was not that
remarkable compared to the prior situation. This shows that our
algorithms can be useful in situations where resources are very
limited.

IX. CONCLUSION

This research proposed two Vector Bin Packing algorithms
for virtual machine placement called FFDmean and
FFDmedian. These algorithms are essentially FFD variants
which use mean and median respectively as heuristics to
estimate size of a multi-dimensional VM. The performance of
proposed algorithms was evaluated by comparing them to
existing algorithms DP and L2 over three metrics i-e hosts
used, power consumption and resource utilization efficiency.
DP and L2 use dot product and L2-norm respectively to
estimate the size of a VM.

Proposed algorithms were tested over three types of PMs
(different in configuration) to evaluate their performance
sustainability as the PM resources increase. It is observed that
the proposed algorithms remarkably outperformed DP and L2
when PM resources were comparatively limited to other
experiments. The algorithms also performed well when
resources were increased, however the performance was not
that remarkable compared to the prior situation. This shows
that the algorithms can be useful in situations where resources
are very limited.

X. FUTURE RECOMMENDATIONS

Since this work was limited to only initial VMP, live VM
migrations can be incorporated in this work. The algorithms
were measured over only three metrics i.e. hosts used, power
consumption and resource utilization efficiency this work can
also be extended in future by using other metrics such as SLA
performance degradation, etc. Moreover non-identical PMs can
be used in the experiments.

ACKNOWLEDGEMENT

Greatest thanks to Ms. Suhni Abbasi, for her help and
encouragement.

REFERENCES

[1] Mell, P., & Grance, T. The NIST definition of cloud computing, 2011.

[2] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. Cloud
computing and emerging IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Generation computer
systems, vol. 25, issue 6, pp. 599-616, June 2009.

[3] Rimal, B. P., Choi, E., & Lumb, I. A taxonomy and survey of cloud
computing systems. In Proceedings of the 2009 Fifth International Joint
Conference on INC, IMS and IDC, pp. 44-51, 2009.

[4] Ruest, N., & Ruest, D. Virtualization, A Beginner's Guide. McGraw-
Hill, Inc, 2009, pp. 423.

[5] MALHOTRA, L., AGARWAL, D., & JAISWAL, A. Virtualization in
Cloud Computing. J Inform Tech Softw Eng, vol. 4, issue 2, pp.136,
2014.

[6] Basmadjian, R., Niedermeier, F., & De Meer, H. (2012). Modelling and
analysing the power consumption of idle servers. IEEE. In proceedings
of Sustainable Internet and ICT for Sustainability (SustainIT), pp. 1-9
October 2012.

[7] Beloglazov, A., Abawajy, J., & Buyya, R. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing. Future generation computer systems, vol. 28 issue 5, pp.
755-768, May 2012.

[8] Khosravi, A., Garg, S. K., & Buyya, R. Energy and carbon-efficient
placement of virtual machines in distributed cloud data centers. In
proceedings of Euro-Par 2013 Parallel Processing, Springer Berlin
Heidelberg, vol. 8096, pp. 317-328, 2013.

[9] Cao, J., Wu, Y., & Li, M. Energy efficient allocation of virtual machines
in cloud computing environments based on demand forecast. In
Advances in Grid and Pervasive Computing, Springer Berlin
Heidelberg, vol. 7296, pp. 137-151, 2012.

[10] Wang, X., Liu, X., Fan, L., & Jia, X. A decentralized virtual machine
migration approach of data centers for cloud computing. Mathematical
Problems in Engineering, vol. 2013, Article ID 878542, 10 pages, 2013.
doi:10.1155/2013/878542

[11] Srikantaiah, S., Kansal, A., & Zhao, F. Energy aware consolidation for
cloud computing. HotPower'08 Proceedings of the 2008 conference on
Power aware computing and systems, pp. 10-10, 2008.

[12] Consuegra, M. E., Narasimhan, G., & Rangaswami, R. Vector repacking
algorithms for power-aware computing. In Green Computing
Conference (IGCC), 2013 International, pp. 1-8, June 2013.

[13] Chen, L., & Shen, H. Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters. In INFOCOM, 2014
Proceedings IEEE, pp. 1033-1041, May 2014.

[14] Maruyama, K., Chang, S. K., & Tang, D. T. A general packing
algorithm for multidimensional resource requirements. International
Journal of Computer & Information Sciences, vol. 6, issue 2, pp. 131-
149, June 1977.

[15] Kou, L. T., & Markowsky, G. Multidimensional bin packing
algorithms. IBM Journal of Research and development, vol. 21 issue 5,
pp. 443-448, September 1977.

[16] Spieksma, F. C. A branch-and-bound algorithm for the two-dimensional
vector packing problem. Computers & operations research, vol. 21 issue
1, pp. 19-25, January 1994.

[17] Han, B. T., Diehr, G., & Cook, J. S. Multiple-type, two-dimensional bin
packing problems: Applications and algorithms. Annals of Operations
Research, vol. 50, issue 1, pp. 239-261, December 1994.

[18] Caprara, A., & Toth, P. Lower bounds and algorithms for the 2-
dimensional vector packing problem. Discrete Applied
Mathematics, vol. 111, issue 3, pp. 231-262, August 2001.

[19] Stillwell, M., Schanzenbach, D., Vivien, F., & Casanova, H. Resource
allocation algorithms for virtualized service hosting platforms. Journal
of Parallel and distributed Computing, vol. 70, issue 9, pp. 962-974,
September 2010.

[20] Panigrahy, R., Talwar, K., Uyeda, L., & Wieder, U. “Heuristics for
vector bin packing. Research,” unpublished.

[21] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya,
R. CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

269 | P a g e

www.ijacsa.thesai.org

Software: Practice and Experience, vol. 41, issue 1, pp. 23-50, January
2011.

[22] Park, K., & Pai, V. S. CoMon: a mostly-scalable monitoring system for
PlanetLab. ACM SIGOPS Operating Systems Review, vol. 40, issue 1,
pp. 65-74, January 2006.

[23] Beloglazov, A., & Buyya, R. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers. Concurrency and
Computation: Practice and Experience, vol. 24, issue 13, pp. 1397-1420,
September 2012.

[24] Pires, F. L., & Barán, B. A virtual machine placement taxonomy.
In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pp. 159-168, May 2015.

[25] Madni, S. H. H., Latiff, M. S. A., & Coulibaly, Y. Recent advancements
in resource allocation techniques for cloud computing environment: a
systematic review. In Cluster Computing, vol. 20, issue 3, pp. 2489-
2533, September 2017.

[26] Hameed, A., et al. A survey and taxonomy on energy efficient resource
allocation techniques for cloud computing systems. In Computing, vol
98, issue 7, pp. 751-774, July 2016.

[27] Radha, K., et al. Service Level Agreements in Cloud Computing and Big
Data. International Journal of Electrical and Computer Engineering, vol
5, issue 1, pp. 158-165, February 2015.

