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Abstract—Virtualization technology is used to efficiently 

utilize the resources of a Cloud datacenter by running multiple 

virtual machines (VMs) on a single physical machine (PM) as if 

each VM is a standalone PM. Efficient placement/consolidation 

of VMs into PMs can reduce number of active PMs which 

consequently reduces resource wastage and power consumption. 

Therefore, VM placement algorithms need to be optimized to 

reduce the number of PMs required for VM Placements. In this 

paper, two heuristic based Vector Bin Packing algorithms called 

FFDmean and FFDmedian are proposed for VM placement. 

These algorithms use First Fit Decreasing (FFD) technique. FFD 

preprocesses VMs by sorting all VMs in descending order of 

their sizes. Since a VM is multidimensional therefore, it is 

difficult to decide on its size. For this, FFDmean and FFDmedian 

use measures of central tendency, i.e. mean and median as 

heuristics, respectively, in order to estimate the size of a VM. The 

goal of these algorithms is to utilize the PM resources efficiently 

so that the number of required PMs for accommodation of all 

VMs can be reduced. CloudSim toolkit is used to carry out the 

cloud simulation and experiments. Algorithms are compared 

over three metrics, i.e. hosts used, power consumption and 

resource utilization efficiency. The results reveal that FFDmean 

and FFDmedian remarkably outperformed two existing 

algorithms called Dot-Product and L2 in all three metrics when 

PM resources were limited. 

Keywords—Cloud computing; virtual machine placement; 

virtualization; first fit decreasing; first fit decreasing (FFD) 

I. INTRODUCTION 

Cloud computing is an internet based business model of 
computation for outsourcing computing resources such as 
processing power, networks, servers, storage, applications, and 
services [1]. NIST (National Institute of Standards and 
Technology) published their 16th and final definition of cloud 
computing, which is. 

“Cloud computing is a model for enabling ubiquitous, 
convenient, on-demand network access to a shared pool of 
configurable computing resources (e.g. networks, servers, 
storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or 
service provider interaction” [1]. 

Cloud computing provides a lot of opportunities for the IT 
industry. It is a rapidly enhancing and developing paradigm. 
The modern computational power has allowed it to become a 
utility that provides services to customers on a pay-as-you-go 
model i.e. the customers are required to pay only when they 

use the service. Hence, it is considered to become 5
th
 utility [2] 

of our lives after other four utilities such as electricity, water, 
gas and telephony. 

In cloud computing everything that is provided is a service. 
The services are available on-demand from anywhere in the 
world through internet. A cloud service provider provides 
services to its customers in three basic service models, which 
are: 

1) Software-as-a-Service (SaaS): SaaS is software 

provided as a service. The software (application) is provided 

on demand which is built over an infrastructure and a 

platform. The software provided is a web application, 

accessible through a browser [3]. SalesForce, BaseCamp, 

GoToMeeting and NETSUITE are some examples of SaaS. 

2) Platform-as-a-Service (PaaS): PaaS is a complete 

platform provided as a service to developers, which consists of 

all the required systems and the developing environment with 

underlying infrastructure. The end users (developers) of this 

service are allowed to develop their own software by testing, 

deploying and then hosting their custom web based 

applications [3]. Generally PaaS is a middleware (like OS) that 

allows communication between hardware and application [4]. 

Google APP Engine and IBM bluemix are some examples of 

PaaS. 

3) Infrastructure-as-a-Service (IaaS): IaaS is a complete 

infrastructure provided as a Service. It provides Computing 

power with high level of adjustability as it allows the 

developers to create their own infrastructure like 

virtualization, etc. [3]. The customer is allowed to build their 

own platform and software over it. Amzaon EC2 and IBM 

Cloud are some examples of IaaS. 

These services are highly scalable i.e. they may be 
increased or decreased according to the current demand of 
customers. The cloud customer does not need to worry about 
management and provisioning of resources when the demand 
rises or decreases. This is all done at the cloud providers’ side. 
This relaxes customers from the hassle of managing, updating, 
over and under provisioning of resource (The customers and 
the service providers agree upon a contract called Service 
Level Agreements (SLAs) [27] to ensure Quality of Service 
(QoS). 

The cloud Infrastructure is based on huge datacenter(s) 
comprised of millions of physical machines (PMs). These next-
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generation datacenters are so powerful that millions of 
customers can be served. Every end user is assigned a 
dedicated virtual machine (VM) which eventually runs on a 
PM residing in a Cloud datacenter. This is accomplished by 
using virtualization technology which helps in sharing PM 
resources to multiple users by running multiple VMs on a 
single PM as if each VM is a standalone PM [5]. Since these 
PMs are hosts for VMs, PMs are also called as hosts. 

A lot of electrical power is wasted due to inefficient 
utilization of datacenter’s physical resources which results in 
high operational costs. About 70% of total data center’s power 
is consumed by PMs [6]. The principal approach to power 
saving in cloud computing is to cut the operational costs of 
datacenters by efficiently utilizing the resources of a PM, in 
order to minimize the number of PMs in use and idle/inactive 
PMs are turned off or to low power mode [7]. Hence power 
efficient cloud computing [26] is an active research area and is 
often termed as Green Cloud Computing. 

The VM placement (VMP) is a process of allocating VMs 
into PMs. A VM Placement algorithm is responsible to 
place/consolidate VMs into PMs. Efficient placement of VMs 
can reduce the number of PMs required for their 
accommodation, consequently increasing utilization of PM’s 
resources and reducing power consumption. Therefore, there is 
a continuous need to design efficient algorithms for VMP so 
that VMs are packed in minimum possible PMs and resource 
utilization efficiency is increased by increasing utilization of 
each resource in a PM. 

In this work two Vector Bin Packing (VBP) algorithms 
named as FFDmean and FFDmedian are proposed. These 
algorithms are essentially First Fit Decreasing (FFD) variants 
which are supposed to increase PM utilization to reduce 
number of PMs required and in turn reduce power 
consumption. 

The remaining paper is structured as follows: Section II 
discusses the related work to this research. Section III 
formulates VMP problem as VBP problem. Section IV 
discusses the proposed algorithms. Section V describes the 
system model. Section VI explains the experimental setup. 
Section VII presents the results. Section VIII discusses the 
results. Section IX concludes this research and Section X 
presents the future recommendations. 

II. RELATED WORK 

Cloud computing is a rapidly growing paradigm of 
computer science. A lot of academic and industrial research 
[24], [25] has been conducted in this field to enhance the 
quality of cloud. As our work is specific to VMP, in this 
section some of the work related to VMP in cloud computing is 
reviewed. 

A. Power Aware VMP Approaches 

Power conservation is a very important challenge in Cloud 
computing. In this section some of the VMP 
algorithms/policies that opt for power conservation are 
discussed. 

1) Cutting back power usage and co2 footprint by ECE 

algorithm: To become highly available, cloud data centers 

maintain different power sources. Mostly, these sources are 

not renewable and use carbon fuels to run, eventually leading 

to increased carbon footprint (cf) of environment which is 

injurious to our environment and health. The cf rate of these 

power sources is an important consideration, since data 

centers utilize electricity provided by these sources to run PMs 

and eventually VMs. 

Khosravi et al. in [8] proposed ECE algorithm for VMP to 
minimize power consumption and cf. ECE integrates two 
parameters i.e. Power Usage Effectiveness (PUE) and cf. It 
aims to place a VM in to a PM so that the power consumption, 
cf and PUE of the PM, its datacenter and cluster is minimized. 
Initially, when a VM request is received, ECE sorts all the 
clusters by their PUExcf values in ascending order. After that 
for each PM in a cluster the change in power consumption (ΔP) 
after that VM’s placement is calculated. These PMs are then 
sorted in ascending order of their ΔP. A suitable PM which has 
minimum ΔP after placement is selected. If a suitable PM is 
not found for the VM, algorithm tries the next cluster. The 
ECE algorithm decreased cf and saved power compared to 
many existing algorithms. 

2) Power saving by demand forecasting: As cloud 

computing has an on-demand resource provisioning method; 

resource (de)allocation is dynamic. The service provider needs 

switched on PMs in spare to deal with dynamic resource 

demands. These idle PMs until they get some work waste a lot 

of power. On the other hand switching them on/off on demand 

also wastes power and takes 2-3 minutes to restart. One way to 

solve this issue is to standby the inactive PMs. It takes less 

time to restart and also consume lesser power compared to 

completely switching them off. If the future resource demands 

are estimated before time then according to the estimate some 

PMs could be set on standby while others shutdown to save 

power. 

Cao et al., in [9] proposed a power efficient approach to 
solve VMP problem by forecasting the demand for VMs. The 
VMP is carried out in three steps. Initially demand forecasting 
is done by using Holt-Winter’s exponential smoothing method 
assuming that in cloud computing a particular user’s demands 
are identical and a particular demand succeeds a seasonal 
pattern. Next, a modification of multi-dimensional knapsack 
algorithm is used to allocate VMs to hosts; considering hosts as 
knapsacks and VMs as items with two types of costs i-e 
memory and cores. Finally a self-Optimizing module is used to 
update the forecasting parameter values in the demand 
forecasting model and mining the appropriate forecast periods 
by Hill Climbing method. The experiment result showed that 
proposed algorithm with forecast saves up to 60% power. 

3) Power saving by decentralized VM migration technique 

for fault-tolerant load balancing: Mostly, centralized 

approaches are used for resource management in cloud 

computing. Management becomes easy with these approaches 

however they are not fault tolerant. If the centralized resource 

manager crashes, all of the system crashes and becomes 

unmanaged. 
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Wang et al. in [10] proposed a decentralized VM migration 
technique for resource management instead of using a central 
resource manager, for fault-tolerance and to efficiently balance 
load across the data center and save power. In this approach 
each PM sends its load information maintained in a load 
vector, to every other PM in the data center(s), thus all active 
PMs have each other's load information. The proposed DVM 
algorithm uses lower and upper thresholds to judge the over 
and underutilization of a PM’s CPU respectively. VMs are 
migrated from PM’s with over utilized CPU to avoid SLA 
violations. In an underutilized PM, all VMs are migrated to 
some other PM with minimum increment in utilization after 
addition of migrating VM and the PM is turned off/sleep for 
power conservation. DVM showed balanced resource 
utilization and saved up to 20% power compared to static and 
round robin algorithms. 

4) Power saving by euclidean distance based algorithm: 

Srikantaiah et al. in [11] proposed a power aware multi 

dimensional bin-packing algorithm that uses a euclidean 

distance based heuristic for VMP. The algorithm considers 

two dimensions i.e. CPU and disk. It first finds out an optimal 

point where combination of CPU and disk utilization gives 

minimum power usage per transaction. Next, when it receives 

application (VM) requests it uses the euclidean distance 

heuristic which calculates euclidean distance of the utilization 

of each PM after allocation of the requested VM to the 

optimal point calculated in first step. The PM that has 

maximum euclidean distance of all is selected for VMP. 

Results showed that more power is saved as performance 

degradation tolerance is increased. At 20% tolerance the 

proposed algorithm used only 5.4% more power than optimal 

algorithm. 

5) Power saving by live VM migration using vector based 

repacking: Consuegra et al. in [12] proposed a vector 

repacking algorithm called replicas to minimize operational 

costs of a datacenter, that include power and migration cost. 

This algorithm places copies of each item/VM on different 

PMs that are selected by replica allocation algorithm. Among 

these copies only one copy is considered to be active and the 

operations are executed on it. When a VM has an increase in 

demand and cannot fit anymore in the current PM where it 

resides, then a PM is selected by the help of active replica 

selection algorithm. The copy in the newly selected PM is 

activated, the newly activated copy is synchronized with the 

previous copy to update if there are any changes and the 

previous copy is sent to inactive mode. By using replicas 

algorithm migration cost is reduced or even eliminated. 

6) Consolidating complementary VMs with 

spatial/temporal-awareness in cloud datacenters: Chen et al., 

in [13] proposed a spatial/temporal aware VBP algorithm for 

initial VMP. The algorithm forecasts resource usage patterns 

of VMs and packs together complementary VMs with 

spatial/temporal knowledge. This algorithm considers 

balanced utilization of CPU and memory of a PM. For e.g. a 

high CPU-intensive and low memory-intensive VM and a low 

CPU-intensive and high memory-intensive VM can be packed 

together to give a balanced utilization of PM resources. These 

types of VMs are complimentary VMs i.e. VMs for which 

overall requirement of every resource dimension (in the spatial 

space) almost arrives at their PM’s capacity throughout VM 

lifetime phase (in the temporal space). The results show that 

the proposed techniques helped in utilization of PM’s 

resources, reduction in VM migrations and active PMs in use 

alongwith maintaining SLAs. 

B. Vector Bin Packing Algorithms for VMP 

In cloud computing the VM resource demands are multi-
dimensional. To solve the multidimensional VMP problem one 
of the solutions is to use a variant of bin packing called Vector 
Bin Packing (VBP) is used. Unlike the classic bin packing it 
considers the items and bins as multi-dimensional vectors. 

1) FFD variants for VBP: VBP can be solved by classic 

FFD heuristic. In FFD, items are first sorted by decreasing 

order of their sizes and then placed in the first bin (container) 

they fit into. Since in VBP the items are considered as multi- 

dimensional, it is difficult to decide the size of an item. For 

this, many FFD variants have been put forward which use 

some heuristic to estimate the size of a multidimensional item. 

Maruyama et al. in [14] proposed a generalized VBP 
algorithm for FFD and best fit decreasing (BFD) techniques 
where BFD chooses the best bin in which an item can fit into. 
The algorithm considers many heuristics to estimate the size of 
a multi-dimensional item. The heuristics include taking product 
of all dimensions, sum of average and standard deviation of all 
dimensions and different versions of sum of all dimensions. 
Among these they found taking sum of dimensions and sum of 
average and standard deviation, far better than taking product. 
Kou and Markowsky in [15] proposed multidimensional bin 
packing algorithms. Three heuristics were used to calculate the 
size of items for FFD and BFD. Heuristics used for deciding 
the size were lexicographical (Lex), maximum component 
(Max) and sum of components. In Lex an item a>b if a equals 
b or first component of a-b is positive. In Max a>b if maximum 
component of a is greater than that of b. In sum of components 
a>b iff sum of all components of a is greater than that of b. 

Spieksma in [16] proposed FFD heuristic algorithm which 
sorts items by assigning priorities and a branch and bound 
algorithm for 2-dimensional (2d) VBP. Han et al., in [17] 
proposed heuristics and exact algorithms for 2d VBP for 
heterogeneous bins. Caprara and Toth in [18] also studied the 
2d case of VBP in detail. They proposed enhanced lower 
bounding methods, heuristics, and exact algorithms for this 
problem. Stillwell et al. in [19] proposed some VBP algorithms 
for resource allocation in virtualized shared hosting platforms. 
To sort items for FFD and BFD they used heuristics such as 
Sum, Max and Lex from [15]. They also proposed choose pack 
and permutation pack algorithms, greedy algorithms, a genetic 
algorithm and relaxed linear programming solution. From all 
these, the algorithms which used Sum as a heuristic performed 
well. Panigrahy et al. in [20] proposed two FFD variants called 
Dot-Product (DP) and L2 which use dot product and L2 norm 
techniques, respectively as heuristics to estimate the size of a 
VM. 
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Measures of central tendency such as mean and median are 
used to calculate a particular value from a dataset which 
identifies the central point of that dataset. This technique can 
be used to estimate the size of a multi-dimensional VM. As far 
as related work is reviewed for this research, FFD variants that 
use these measures for VMP in cloud computing environment 
are not found. Therefore, in this work two new VBP algorithms 
called FFDmean and FFDmedian for VMP in cloud computing 
environment are proposed, which are essentially FFD variants. 
The algorithms use mean and median respectively as heuristics 
to estimate the size of a VM. 

III. PROBLEM FORMULATION 

1) VBP problem: Vector Bin packing (VBP) problem is a 

variant of bin packing problem. It is NP-hard which means 

that it cannot be solved in polynomial time however 

approximation algorithms are proposed for this problem. The 

problem is all same as bin packing problem except the items 

here are not one dimensional but d-dimensional vectors where 

d≥2. 

The resource demand of an item is represented by demand 

vector  ⃗⃗  and the bin capacity is represented by resource vector 

  ⃗⃗  ⃗ . Both vectors are d-dimensional where d≥2 and are 
represented in (1) and (2), respectively, here i is item’s demand 
and c is the bin’s capacity in a particular dimension. 

  ⃗⃗  {i1, i2… id } 

  ⃗⃗  {c1, c2… cd } 

In VBP, there is B number of bins each with a resource 

vector  ⃗⃗  and I number of items each with a demand vector  ⃗⃗ . 
The problem is to place all items in minimum number of bins, 
such that in each bin b, the sum of demands in each dimension 
of all accommodated items does not exceed the bin capacity in 
each corresponding dimension. 

2) VMP problem: VM Placement (VMP) problem is a NP-

hard problem. The VMP problem receives a set V of VMs, 

each with d-dimensional resource demands and a Set P of 

PMs, each with d-dimensional resource capacity. The problem 

is to place all VMs in minimum number of PMs, such that in 

each PM the sum of demands in each dimension of all VMs 

does not exceed the PM capacity in each corresponding 

dimension. 

3) VMP problem formulation as VBP problem: Since 

VMP problem is multi-dimensional, it is difficult to formulate 

it as general bin packing problem. VMP Problem can be 

transformed into a VBP problem by considering VMs as items 

with d-dimensional demand vector  ⃗⃗  and PMs as bins with d-

dimensional resource vector  ⃗⃗ . In this work  ⃗⃗  in (3) for a VM 

v has four-dimensions which are CPU mips, ram, bandwidth 

(bw) and Storage (strg).  ⃗⃗  in (4) for PM p which is used as a 

host for VMs also has the same dimensions. 

  ⃗⃗    (                       ) 

  ⃗⃗      
    

   
   

   
  
   

    
  

IV. PROPOSED ALGORITHMS 

FFDmean and FFDmedian are two new VBP algorithms 
proposed for VMP in cloud computing environment. The 
algorithms use classic FFD heuristic. 

FFD is a simple heuristic approach to solve bin packing 
problem, which receives set of items and bins. Since FFD is 
used here for VMP, items are considered as VMs and bins as 
PMs/hosts. In FFD, VMs are first sorted in descending order of 
their sizes. After that starting from the largest VM, each VM is 
placed in the first available PM they fit into. The process 
continues until all VMs are placed. 

The first requirement of FFD heuristic is to sort all the VMs 
into descending order of their sizes; however in this case where 
a VM is four-dimensional vector, it is difficult to decide which 
dimension should be selected as size of a VM. Therefore, a 
particular value/number is required in order to sort VMs. For 
this, measures of central tendency such as mean and median 
can be used to calculate a particular value from demand vector 

 ⃗⃗  of a VM. This value identifies the central point of the vector 

 ⃗⃗  and is the estimated size of a VM. 

A. FFDmean and FFDmedian 

FFDmean and FFDmedian use mean and median 
respectively to estimate the size of a multi-dimensional VM. 
The algorithms work in three steps, i.e. Normalization, size 
estimation and sorting and placement. Step 1 and Step 3 are 
same for both algorithms, however Step 2 is different. 

1) Step 1 (Normalization): In this step, all the VMs are 

normalized to bring them on same scale. VMs are normalized 

by dividing all dimensions of a VM by their corresponding 

dimension in the PM as shown in (5). 

 normalized_VM =  
vmips

p
mips

, 
vram

p
ram

, 
vbw

p
bw

, 
vstrg

p
strg

) 

2) Step 2 (Size Estimation): In this step, the size of each 

VM is estimated by using a Size function S. This function is 

different for FFDmean and FFDmedian. 

a) Size function for FFDmean: For FFDmean this 

function calculates mean of VM dimensions in demand vector 

 ⃗⃗ . The larger the mean the larger is the VM size. The size 

function S for FFDmean is presented in (6) where v represents 

a VM, i is a dimension and d is the total number of dimensions 

 1 ≤ i ≤ d) from  ⃗⃗ . 

 S( )  
∑  i 
 
i 1

 
 

b) Size function for FFDmedian: For FFDmedian this 

function calculates median of VM dimensions in demand 

vector  ⃗⃗ . The larger the median the larger is the VM size. For 

median there are two cases. The first case is for odd number of 

dimensions in  ⃗⃗ . In this case the middle value is taken as the 

median. The second case is for even number of dimensions in 

 ⃗⃗ , which is true for this research. In this case two middle 

values are taken and then average of these values is calculated. 

The size function S for the second case is presented in (7) 
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where v represents a VM and x and y represent two middle 

values in  ⃗⃗ . 

S( )  
     

2
 

3) Step 3 (Sorting and placement): In this step, all the 

VMs are sorted in decreasing order of their sizes and then 

placed in PMs by using FFD technique. 

Bin-centric version of FFD [20] is used in which a PM is 
taken at a time t. The process continues from Step 1 to Step 3 
for each PM until no VM is left for placement. 

V. SYSTEM MODEL 

This work is based on the IaaS layer of cloud computing. 
CloudSim toolkit [21] is used to simulate the IaaS environment 
and the experimental setup. CloudSim is a framework for 
modeling and simulation of cloud computing infrastructures 
and services. 

The system consists of one datacenter which contains 800 
identical PMs. Since the cloud computing datacenters are 
multi-tenant i.e. VMs of different users might run on same PM, 
the VM instances are designed to bring the effect of different 
resource requirements by different users. For example, a user 
may demand a VM with high CPU capacity while another user 
may demand a VM with high memory etc. There are six types 
of VMs inspired by Amazon EC2 VM instances, used in our 
experiments. VM requirements are designed to be within PM 
capacities. 

This work is limited to only initial VMP. This means that 
VMs complete their lifetime in only one PM in which they are 
initially placed and they are not migrated. Four algorithms are 
used separately for VMP. The algorithms are FFDmean, 
FFDmedian, Dot-Product (DP) and L2. FFDmean and 
FFDmedian are the proposed algorithms in this work while DP 
and L2 [20] are existing algorithms used for comparative 
analysis. DP uses dot product and L2 uses L2Norm as heuristic 
to estimate the size of a VM. In DP the larger the dot product 

between  ⃗⃗  and  ⃗⃗  the larger is a VM’s size whereas in L2 the 

smaller the difference between  ⃗⃗  and  ⃗⃗  the larger is a VM’s 
size. 

The system receives user requests for VMs in the form of 
PlanetLab workload. It is a real workload of user requests 
(tasks/Jobs) selected by CloudSim from PlanetLab and 

provided by CoMon project [22]. 

A. PlanetLab Workload 

PlanetLab is a research network spread worldwide which 
supports the advancement of new network services. From the 
start of 2003, above 1,000 researchers from industrial research 
labs and remarkable academic institutes have chosen PlanetLab 
to develop new techniques for distributed storage, peer-to-peer 
systems, network mapping, distributed hash tables, and query 
processing. 

PlanetLab workload is the real workload traces from real 
systems. It is the data made available as a part of the CoMon 

project [22] which is a monitoring infrastructure for PlanetLab. 
This data consists of CPU utilizations of more than a 1,000 
VMs from PMs (servers) situated at more than 500 places 
around the world. The utilizations of VMs are measured at an 
interval of five minutes. 

To make our experiments more authentic it is important to 
test our algorithms with a real workload. For this we have 
chosen the PlanetLab Workload traces of 10 random days 
collected during March and April 2011, provided in CloudSim. 

B. Power Model 

Power consumption in an IaaS is decided by data center 
resources such as electric power supplies, cooling systems, 
CPU, memory, disk storage, network equipment, etc. 
According to recent research [23], among these resources CPU 
utilization has a linear relationship with PM’s power 
consumption. This is because there are least amount of states 
that can be assigned to the voltage and frequency of a CPU and 
furthermore performance scaling such as DVFS (Dynamic 
Voltage and Frequency Scaling) is not functional to other 
resources that use power, for instance network devices, 
memory, storage, etc. 

Due to the increased use of virtualization technology, state-
of-the-art PMs are designed with multi-core CPUs and large 
quantities of other resources. Memory, network and other 
devices also add in the power consumption of a PM. For the 
reason that modeling power expenditure of current PMs is a 
difficult research problem, in this research genuine information 
on power expenditure made available by SPEC (Standard 
Performance Evaluation Corporation) power benchmark is 
used rather than making an analytical power model [23]. SPEC 
power model provides real power usage of PMs at different 
CPU usage/load levels. 

VI. EXPERIMENTAL SETUP 

Three Experiments are designed to evaluate FFDmean and 
FFDmedian algorithms compared with DP and L2. In each 
experiment, there is one datacenter with 800 identical PMs of 
types 1, 2 and 3, respectively as shown in Table 1. The 
difference between the experiments is the PM type 
(configuration). Since the goal is to test the performance 
sustainability of algorithms as the resources increases under 
different PM types. VMs are created according to the Instances 
provided in Table 2. 

Jobs/tasks for VMs are taken from PlanetLab Workload 
provided in CloudSim which is divided into 10 parts or 
workloads. All algorithms i.e. FFDmean, FFDmedian, DP and 
L2 are used separately for VMP for all PlanetLab Workloads. 
Therefore, we have four algorithms, 10 workloads and three 
experiments; we get total 120 simulations (4*10*3). 

Power model made available by SPEC power benchmark 
for each host type is used. Power consumption of these PMs at 
different CPU usage/load levels is presented in Table 3. 
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TABLE I. PM CONFIGURATION 

Physical Machine 
PM Configurations 

CPU Cores RAM Strg BW 

1 
HP ProLiant 

ML110 G5 

2.66 GHZ 

(2660 MHZ) 
2 

4 GB 

(4096 
MB) 

160 GB 

(163840 
MB) 

1000 

Mb/s 

2 
IBM System 

x3250 M3 

3.07 GHz 

(3067 MHz) 
4 

8 GB 

(8192 
MB) 

160 GB 

(163840 
MB) 

1000 

Mb/s 

3 
IBM System 

x3550 M3 

2.93 GHz 

(2933 MHz) 
6 

12 GB 

(12288 
MB) 

160 GB 

(163840 
MB) 

1000 

Mb/s 

TABLE II. VM INSTANCE TYPES 

VM Type a 

VM Configurations 

CPU 
Co

res 
RAM Strg BW 

1 High CPU 
1700 MHz 

(1.7 GHz) 
1 

2048 

MB 

(2 GB) 

1024 MB 

(1 GB) 

400 

Mb/s 

2 
High 
Memory 

1200 MHz 

(1.2 GHz) 
1 

3072 

MB 

(3 GB) 

2048 MB 

(2GB) 

300 

Mb/s 

3 High BW 
1300 MHz 

(1.3 GHz) 
1 

512 MB 

(0.5 GB) 

2048 MB 

(2 GB) 

500 

Mb/s 

4 High Strg 
1400 MHz 

(1.4 GHz) 
1 

1024 

MB 

(1 GB) 

12288 

MB 

(6 GB) 

200 

Mb/s 

5 General 
1500 MHz 

(1.5 GHZ) 
1 

1024 

MB 

(1 GB) 

3072 MB 

(3 GB) 

200 

Mb/s 

6 General 
1000 MHz 

(1.0 GHz) 
1 

512 MB 

(0.5 GB) 

512 MB 

(0.5 GB) 

250 

Mb/s 

a. Inspired from https://aws.amazon.com/ec2/instance-types/ 

TABLE III. POWER MODEL OF EACH PM 

PM  

Workload (%) 

Power Consumption of PMs (Watts)b 

HP ProLiant 

ML110 G5 

IBM System 

x3250 M3 

IBM System 

x3550 M3 

1 0% 93.7 42.3 66 

2 10% 97 46.7 107 

3 20% 101 49.7 120 

4 30% 105 55.4 131 

5 40% 110 61.8 143 

6 50% 116 69.3 156 

7 60% 121 76.1 173 

8 70% 125 87 191 

9 80% 129 96.1 211 

10 90% 133 106 229 

11 100% 135 113 247 
b. Taken from www.spec.org 

A. Performance Metrics 

There are three performance metrics used to analyze the 
algorithms. These are described below: 

1) Hosts Used: Hosts used is the number of PMs required 

to host (accommodate) all VMs in the workload. The goal is to 

minimize this number. The smaller the number the better is 

the performance. 

2) Power Consumption: It is the total electrical power 

consumed by all PMs in a datacenter. The goal is to reduce the 

power consumption. Power consumption of a PM is calculated 

by using SPEC power model. Power consumption of each 

active PM at different load levels in a datacenter is calculated 

using the values provided in Table 3. At the end of the 

simulation, power consumed by all active PMs is then added 

together to get total power consumption of the datacenter. 

3) Resource Utilization Efficiency: Resource utilization 

efficiency is how well the resources of a PM in each 

dimension are utilized. The goal is to increase utilization 

efficiency in all dimensions of a PM. For each PM, utilization 

percentage in each of its dimension i.e. CPU, RAM, BW, and 

Strg is calculated first. After that average utilization 

percentage of each PM in each dimensions is calculated. 

VII. RESULTS 

The experiments were conducted on a HP notebook PC 
running Windows 7 Home Premium with Core i5 CPU @ 1.60 
GHz and 4 GB RAM. In each experiment all VMs were placed 
separately by FFDmean, FFDmedian, DP and L2. Average 
results of each algorithm in each performance metric are 
presented here. Fig. 1 shows a graphical representation of 
average hosts used by each algorithm in each experiment and 
Fig. 2 shows a graphical representation of average power 
consumption in kilo watts (KW) by each algorithm in each 
experiment. Fig. 3 shows a graphical representation of average 
resource utilization efficiency (%) by each algorithm in each 
experiment. To save space in figures FFDmean and 
FFDmedian are represented as Mean and Median. Table 4 
shows a summary of results in each experiment. 

 
Fig. 1. Average hosts used in each experiment. 

 

Fig. 2. Average power consumption in each experiment.
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Fig. 3. Average resource utilizataion (%) in each experiment. 

TABLE IV. SUMMARY OF AVERAGE RESULTS BY ALL ALGORITHMS IN ALL METRICS 

Exp. # Algorithms Hosts Used Power Consumption 
Resource Utilization Efficiency (%) 

CPU RAM BW Strg 

1 

FFDmean 
FFDmedian 

DP 

L2 

368 
368 

413 

458 

734.241 
734.522 

790.843 

835.828 

81.55 
81.55 

72.49 

65.38 

93.34 
93.34 

83 

74.99 

95.92 
95.92 

85.39 

77.06 

30.28 
30.28 

26.86 

24.15 

2 

FFDmean 

FFDmedian 
DP 

L2 

353 

363 
376 

353 

315.745 

324.919 
336.343 

318.602 

36.64 

35.68 
34.42 

36.7 

48.29 

46.73 
45.29 

48.35 

99.85 

97.13 
93.82 

99.83 

31.67 

30.85 
29.64 

31.59 

3 

FFDmean 

FFDmedian 

DP 
L2 

357 

370 

376 
357 

552.971 

572.475 

584 
560.968 

24.89 

24.14 

23.68 
24.88 

31.86 

30.66 

29.93 
31.84 

98.97 

95.4 

93.75 
98.9 

31.35 

30.13 

29.62 
31.33 

VIII. DISCUSSION 

A. Hosts Used 

In Exp. 1 FFDmean and FFDmedian saved 11% hosts 
compared to DP and saved 20% hosts compared to L2. In 
Exp. 2 FFDmean saved 6% hosts compared to DP and 
performed equally well as L2. FFDmedian saved 3% hosts 
compared to DP however it used 3% more hosts compared to 
L2. In Exp. 3 FFDmean saved 5% hosts compared to DP and 
performed equally well compared to L2. FFDmedian saved 2% 
hosts compared to DP however it used 4% more hosts 
compared to L2. 

This shows that in Exp. 1 where PM resources were very 
limited compared to other experiments, FFDmean and 
FFDmedian remarkably saved hosts leaving behind DP and L2, 
however when resources were comparatively increased in 
Exp. 2 and Exp. 3 FFDmean outperformed DP and performed 
equally well as L2 however FFDmedian only performed better 
than DP. 

B. Power Consumption 

In Exp. 1 FFDmean saved 7.16% power compared to DP 
and 12.15% power compared to L2. FFDmedian saved 7.12% 
power compared to DP and saved 12.12% power compared to 
L2.  In  Exp. 2  FFDmean  saved 6.12% power compared to DP  

and saved 0.9% compared to L2. FFDmedian saved 3.4% 
power compared to DP; however, it used 1.98% more power 
compared to L2. In Exp. 3 FFDmean saved 5.31% power 
compared to DP and saved 1.43% power compared to L2. 
FFDmedian saved 1.97% power compared to DP; however, it 
used 2.05% more power compared to L2. 

This shows that like hosts used metric, in Exp. 1 where PM 
resources were limited compared to other experiments 
FFDmean and FFDmedian both outperformed DP and L2 in 
saving power. When PM resources were comparatively 
increased in Exp. 2 and Exp. 3 FFDmean outperformed both 
DP and L2 however FFDmedian only performed better than 
DP. 

C. Resource Utilization Efficiency 

Table 4 shows that in Exp. 1, FFDmean and FFDmedian 
performed equally in increasing utilization efficiency in all 
dimensions and outperformed both DP and L2. The effect of 
this utilization efficiency can be seen in other two metrics 
where FFDmean and FFDmedian outperformed very well than 
both DP and L2. In Exp. 2 FFDmean and L2 showed same 
utilization values and better than FFDmedian and DP, therefore 
their performance in other two metrics was almost same. 
FFDmedian increased up to 1% utilization in all dimensions 
compared to DP. Even with 1% increase in utilization 
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FFDmedian saved 3% hosts and 3.4% power compared to DP. 
This shows that even minor increase in utilization can bring a 
lot of effect. In Exp. 3 FFDmean and FFDmedian performed 
equally to L2. FFDmean and FFDmedian increased up to or 
more than 1% utilization compared to DP in all dimensions. 
With this minor change FFDmean saved 5% hosts and saved 
5.31% power compared to DP, and FFDmedian saved 2% 
hosts and 1.97% power compared to DP. 

This shows that with very limited resources in Exp. 1 
FFDmean and FFDmedian remarkably outperformed DP and 
L2 in increasing resource utilization efficiency. By increasing 
PM resources in Exp. 2 and Exp. 3 utilization values of all 
algorithms became almost equal with minor difference. It is 
observed that even minor changes in utilization can bring a lot 
of effect in saving hosts and power. 

From all experiment results, it is observed that our 
proposed algorithms FFDmean and FFDmedian remarkably 
outperformed DP and L2 when PM resources were extremely 
limited. Our algorithms also performed well when resources 
were increased, however the performance was not that 
remarkable compared to the prior situation. This shows that our 
algorithms can be useful in situations where resources are very 
limited. 

IX. CONCLUSION 

This research proposed two Vector Bin Packing algorithms 
for virtual machine placement called FFDmean and 
FFDmedian. These algorithms are essentially FFD variants 
which use mean and median respectively as heuristics to 
estimate size of a multi-dimensional VM. The performance of 
proposed algorithms was evaluated by comparing them to 
existing algorithms DP and L2 over three metrics i-e hosts 
used, power consumption and resource utilization efficiency. 
DP and L2 use dot product and L2-norm respectively to 
estimate the size of a VM. 

Proposed algorithms were tested over three types of PMs 
(different in configuration) to evaluate their performance 
sustainability as the PM resources increase. It is observed that 
the proposed algorithms remarkably outperformed DP and L2 
when PM resources were comparatively limited to other 
experiments. The algorithms also performed well when 
resources were increased, however the performance was not 
that remarkable compared to the prior situation. This shows 
that the algorithms can be useful in situations where resources 
are very limited. 

X. FUTURE RECOMMENDATIONS 

Since this work was limited to only initial VMP, live VM 
migrations can be incorporated in this work.  The algorithms 
were measured over only three metrics i.e. hosts used, power 
consumption and resource utilization efficiency this work can 
also be extended in future by using other metrics such as SLA 
performance degradation, etc. Moreover non-identical PMs can 
be used in the experiments. 
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