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Abstract—The Prediction by Partial Matching (PPM) 

compression algorithm is considered one of the most efficient 

methods for compressing natural language text. Despite the 

advances of the PPM method for the English language to predict 

upcoming symbols or words, more research is required to devise 

better compression methods for other languages, such as Arabic 

due, for example, to the rich morphological nature of the Arabic 

text, where a word can take many different forms. In this paper, 

we propose a new method that achieves the best compression 

rates not only for Arabic text but also for other languages that 

use Arabic script in their writing system such as Persian. Our 

word-based method constructs a context-free grammar (CFG) 

for the text and this grammar is then encoded using PPM to 

achieve excellent compression rates. 
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I. INTRODUCTION 

The Prediction by Partial Matching (PPM) compression 
algorithm is one of the most effective kinds of statistical 
compression. First described by Cleary and Witten in 1984 [1], 
there are many variants of the basic algorithm, such as PPMA 
and PPMB [1], PPMC [2], PPMD [3], PPM [4], PPMZ [5] and 
PPMii [6]. Prediction in PPM depends on a bounded number of 
previous characters or symbols, effectively using a Markov-
based approach. Despite the cost in terms of memory and the 
speed of execution, PPM usually attains better compression 
rates compared with other well-known compression methods. 

In PPM, to predict the next character or symbol, different 
orders of models are used, starting from the highest order down 
to the lowest orders. An escape probability estimates if a new 
symbol appears in the context [1], [2] and if an escape is 
encoded, the algorithm will back-off to a lower order model. 
The „full exclusions‟ mechanism [1] is used to significantly 
improve compression by excluding the prediction of higher 
order symbols when an escape has occurred since these 
characters were not encoded [17]. Experimental results show 
that not using full exclusions speeds up the execution time of 
programs but compression is reduced. 

However, when a PPM approach is applied to words rather 
than characters, it is not clear what the most effective method 
for encoding the text is. This is because there are issues of how 
to encode the spaces and punctuation along with the text, how 
to deal with capitalized words, whether to treat digit sequences 
differently, how to deal with the much larger alphabet when 
using full exclusions, and so on. This is compounded further 
when considering certain languages, such as Arabic, which has 
a rich morphological structure which potentially presents 

further types of difficulties for word-based compression 
compared to languages, such as English since the same word 
can take many different forms. 

As an illustration, the lists below in Table 1 show the most 
common words in each of the examined texts. They are based 
on an analysis of the Brown Corpus for American English [9], 
the LOB Corpus for British English [10], the BACC [11] and 
CCA [12] Corpora for Arabic text, the Hamshahri corpus for 
Persian text [13] and the CEG corpus for Welsh text [16]. 

Substitution of these words using our context-free grammar 
scheme and standard PPM can significantly improve overall 
compression as shown below. For example, natural languages 
contain common sequences of words that often repeat in the 
same order, such as in English “the” , “of” and “and”, and for 
the Arabic language in the BACC corpus , such as “فٖ “ ,”هي” 
and so on. From Table 1, the most common word “the” for 
both the American and British English is found to be “the”. 
However, for these corpora if one treats capitalized words as 
being distinct (that is, “the” is treated as distinct from “The”), 
we find that the word “The” also appears in the top 20 ranked 
words, but at different ranks (12 for the Brown Corpus versus 
16 for the LOB Corpus). In contrast, the word “had” appears 
with the same rank for both corpora. Certain words, such as 
“from” and “at” appear in the list for one corpus but not for the 
other. 

 THE TOP COMMON 20 WORDS FOR THE BROWN, LOB, BACC, TABLE I.
CCA AND HAMSHAHRI TEXT CORPORA 

Rank 
Brown 

Corpus 

LOB 

Corpus 

BACC 

Corpus 

CCA 

Corpus 
Hamshahri 

1 the the بسّزش فٖ هي 

2 of of دستْز هي بي 

3 and and سوتٔ علٔ قال 

4 to a اٗي اى الله 

5 a in حو٘د إلٔ ها 

6 in that دز التٖ بالله 

7 that is ٖاعلام عي ف 

8 is was ْبٌ٘ادٓ ها أب 

9 was for اظِازات لا محمد 

10 for it َ٘صف ُرا عل 

11 with to ٔكٌد ُرٍ عل 

12 The be ٔافزّد الرٕ إل 

13 as his بسآ أّ أى 

14 he as ٖبس ّ عل 

15 it on آّل كاى عبد 

16 his The ٌَكسدًد هع ع 

17 on his َكجا لن ل 

18 be at كَ كل ثن 

19 from as كرشتَ ذلك لك 

20 had had ٕادازٍ ب٘ي الر 
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For Arabic text, the most common word for both the BACC 
and ACC Corpora is found to be “ٖف” (in). Nevertheless, we 
find that the word “اى” (that) also appears in the top 20 ranked 
words, but at different ranks (4 for the ACC Corpus versus 6 
for the BACC Corpus). In contrast, the word “هي” (from) 
appears with the same rank for both corpora. Certain words 
such as “ ٖالت” (which) and “َل” (for him) appear in the list for 
one corpus but not for the other. For Persian text in the 
Hamshahri Corpus, even if it uses Arabic script, the top 20 
ranked words are noticeably different due to the difference 
between these two languages. 

From these lists, it is clear even just from examining the top 
20 ranking words that there are important differences, and 
therefore word-based compression schemes have to adapt 
directly to the text being compressed in an online manner (as 
PPM does) rather than use dictionaries created from general 
sources. Another factor is that since the most frequent words 
represent a significant proportion of the text, adaptive word-
based schemes can often lead to improved compression for 
many languages. An added advantage of such schemes is that 
much less symbols need to be encoded (for example, for 
English, there is on average approximately five times less word 
symbols than there are character symbols). However, finding 
the most effective word-based compression is still an open 
problem with word-based schemes under-researched compared 
to character-based schemes. The comparison between the 
effectiveness of word-based schemes with character-based and 
parts-of-speech (tags) based ones also provides an interesting 
tool for performing further linguistic analysis [8]. The main 
contribution of the work described in this paper is the 
improved word-based compression method for PPM. This is 
due to parsing of the text to construct a word-based context 
free grammar (CFG) which is then compressed using PPM. 

The rest of the paper is organized as follows. Previous work 
is discussed first. Then our new approach is discussed in the 
next section. We discuss experimental results for various 
natural language texts in order to evaluate how well the new 
scheme performs compared to other well-known methods. The 
summary and conclusions are presented in the final section. 

II. PREVIOUS WORK 

As stated, standard PPM word-based models predicts the 
forthcoming symbol, starting from the highest order context; 
but when the upcoming symbol has not appeared in this 
context then a lower context is used and an escape symbol is 
encoded. There have been a number of methods that have been 
used to estimate the probability for these escape symbols [7], 
[8]. 

Experiments indicate that the X1 method is the best 
performing for English text in the most cases [8]. This method 
is given by the formula: 

   
    

       
 

Here, t1 denotes the number of symbols seen previously 
only once in the context and Td is the frequency with which the 
symbol occurs in the context. Therefore, this method estimates 
the escape symbol probability proportionate to the number of 
words that have appeared only once in the text. 

 SOME MODELS FOR PREDICTING CHARACTERS AND WORDS TABLE II.
(TEAHAN, 1998) 

C|C5 Model W|W Model 

p(ci | ci-1 ci-2 ci-3 ci-4 ci-5) p(wi | wi-1) 

 p(ci | ci-1 ci-2 ci-3 ci-4 )  p(wi ) 

 p(ci | ci-1 ci-2 ci-3 )  Character model 

 p(ci | ci-1 ci-2 )  

 p(ci | ci-1 )  

 p(ci  )  

 pe q(ci  )  

Experiments for the English language show that word 
based models in Table 2 presents the best performance among 
other models [8]. 

Model C|C
5
 is a PPM character model of order five that 

predicts the probability of character symbols and used as a 
compression baseline. In this model, the formula for the 
probability of text string S of m characters is given by: 

      ∏      |                          
 
    

Where, the preceding five characters in the text is used to 
estimate the probability of the forthcoming symbol. 

This estimate of the probability for the previous formula 

depends on the escape method (in Table 2, the symbol  → 

denotes an escape). In character based models, if the highest 
order fails to predict forthcoming symbol, the probability of 
escape is encoded using the next highest order. 

The second model W|W, is a PPM order one word-based 
model that predicts the probability of word symbols. In this 
model, the estimation of the probability for the forthcoming 
word depends on the previous word in the text as represented 
by the following formula for the probability of text string S of n 
words: 

      ∏      |     
 
    

Where, p denotes the probability of the symbols in the 
sequence of the text S based on words. If the word is not 
predicted by this model, then an escape is encoded down to the 
order 0 model. If the word still has not been seen in this 
context, then a further escape is encoded followed by each 
character in the word being encoded separately using the 
standard PPM character-based model. 

III. WORD-BASED GRAMMARS FOR PPM (GRW-PPM) 

A new approach based on word-based context free 
grammars (CFGs) for compressing text files is presented here. 
This algorithm, which we call GRW-PPM (which is short for 
grammar word-based pre-processing for PPM) uses both CFGs 
and PPM as the basis of a universal general-purpose adaptive 
compression method for text files. 

In our approach, we essentially parse words, digits, spaces 
and punctuation in the source file to first generate a grammar 
with rules and terminal and non-terminal symbols representing 
each of these text elements. We then substitute every time 
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when one of these text elements occurs in the source text with 
the single unique non-terminal symbol as specified by its rule 
in the grammar. This is done during the pre-processing phase 
prior to the PPM compression phase which is applied to the 
sequences of non-terminal symbols for words, digits and 
spaces and punctuation separately. 

Our method replaces sequences of words (n-grams) in the 
text as they are processed from beginning to end in a single 
pre-processing pass. The PPM algorithm is used as the encoder 
once the sequences have been replaced. Unlike PPM, our 
method is off-line during the phase which generates the 
grammar. 

Our approach adapts the W|W word-based method and the 
character n-graph replacement pre-processing approach of 
Teahan [8] by using an off-line technique to generate the list of 
word n-grams first from the source file being compressed. 
However, our approach is considered within a grammar-based 
context instead. The main difference with the prior word-based 
schemes (such as W|W) is the use of PPM to encode the 
sequence of word symbols directly without the need to escape 
to a separate character-level encoding and also treatment of 
digits as word symbols (see below). 

The grammar in GRW-PPM shares the same characteristic 
as Sequitur by Neville-Manning and Witten [14] and GR-PPM 
[15] which is that no pair of symbols appears in the grammar 
more than once. This property ensures that every n-gram in the 
grammar is unique, a property called non-terminal uniqueness 
using the same terminology proposed by Neville-Manning and 
Witten. To make sure that each rule in the grammar is useful, 
the second property, referred to as rule utility, is that every rule 
in the grammar is used more than once in the corrected text 
sequence. 

Fig. 1 shows the whole process of GRW-PPM. First, the 
original text will be parsed and word, digit and 
space/punctuation tokens will be extracted then the CFG will 
be generated by replacing them in the text wherever they occur 
with the non-terminal symbols as defined by their rules in the 
grammar. After the rules have been produced, the grammar is 
encoded by using PPMD, and the resulting compressed text is 
then sent to the receiver. The receiver then decodes the 
grammar by using PPMD to decompress the compressed file 
that was sent. The reverse mapping is then facilitated by using 
the decoded grammar to regenerate the original source text. 

Table 3 illustrates the process of GRW-PPM using a 
sentence referring to the song by Manfred Mann: “The song 
‘Do Wah Diddy Diddy Dum Diddy Do’ was recorded on 11 
June 1964 and released on 10 July”.  First, the original text 
will be parsed from left to right and new non-terminal word 
and digit symbols (S1 S2 S3 S4 S5 S5 S6 S5 … S12 S9 D3 S13) will 
be substituted for each unique n-gram (defined as being 
separated by the intervening space and punctuation symbols). 
For this example (and for the experiments described below), 
we use single words (unigrams), although the method works in 
a similar way for word bigrams and trigrams. Referring to 
Table 3, we replace the unigram “The” with non-terminal 
symbol S1, unigram “song” with non-terminal symbol S2, 
unigram “Do” with non-terminal symbol S3 and so on. We use 
bullet points for spaces to make them visible. Spaces (white-

space) and punctuation define the word boundaries (i.e. each 
word is made up of sequences of anything that is not white-
space or punctuation). 

 
Fig. 1. The complete compression and decompression process of GRW-

PPM. 

 

Fig. 2. Example of Arabic text. 

 AN EXAMPLE OF HOW GRW-PPM WORKS FOR A SAMPLE TABLE III.
ENGLISH TEXT 

Sequence: 

The•song•“Do•Wah•Diddy•Diddy•Dum•Diddy•Do”•was•recorded•on•11•June

•1964•and•released•on•10•July. 

Grammar: 

S → S1 S2 S3 S4 S5 S5 S6 S5 S3 S7 S8 S9 SD 

S10 SD S11 S12 S9 SD S13 

V → S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S13 

D → D1 D2 D3 

P → P1 P2 P1 P1 P1 P1 P1 P1 P3 P1 P1 P1 P1 

P1 P1 P1 P1 P1 P1 P4 

S1 → “The” 

S2 → “song” 

S3 → “Do” 

S4 → “Wah” 

S5 → “Diddy” 

S6 → “Dum” 

S7 → “was” 

 

S8 → “recorded” 

S9 → “on” 

S10 → “June” 

S11 → “and” 

S12 → “released” 

S13 → “July” 

D1 → “11” 

D2 → “1964” 

D3 → “10” 

P1→ “•” 

P2 → “•”” 

P3→ ““•” 

P4→ “.” 
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Table 4 shows the same process for a sample Arabic text 
(Fig. 2) which translates into English as follows: “The number 
of shares traded in the market, „Saudi‟ were more than 277 
thousand shares, and the number of transactions were more 
than 132 thousand transactions.” However, in this case the n-
grams are generated from right to left instead. Each unique 
Arabic unigram has a non-terminal symbol associated with it. 
For instance, words “عدد“ ,”ّبلغ” and “الأسِن” are replaced by 
non-terminal symbols S1 to S3, respectively. 

In the grammar examples, the S rule is used to represent the 
word and digit symbols sequence. Separate rules (S1, S2, S3 …) 
are used, one for each word, to specify each symbol‟s contents 
directly using a non-terminal (denoted by characters 
surrounded by “ ‟s). The V rule enumerates each of these 
words in order; it is used to represent the vocabulary (the 
sequence of unique words as they occur in the text). Each digit 
sequence is encoded within the S sequence by using a special 
symbol to indicate the positions of the digits in the sequence 
(as represented by SD in the above examples). The actual 
contents of each digit symbol is specified by the D rule and 
encoded separately to the word and digit symbols. We also 
process spaces and any punctuation characters in order to be 
able to fully decode the original text back. These are 
represented by the P rules for the grammars in the above 
examples and are similarly encoded separately to the word and 
digit unigram symbols. Moreover, the grammar will be 
transmitted to the receiver once it has been constructed after all 
unigrams are substituted in the original text with their non-
terminal symbols.  

The grammar represents a complete description of the text 
and therefore it is possible to devise a lossless text compression 
scheme by directly encoding it in some manner since it is 
possible for the decoder to regenerate the complete source text 
losslessly once the grammar has been decoded. 

 ANOTHER EXAMPLE GRAMMAR GENERATED BY GRW-PPM TABLE IV.
FOR A SAMPLE ARABIC TEXT 

Sequence: 

ألف • 722•هي•أكثس“•السعْدٕ•”السْق•فٖ•الأسِن•عدد•ّبلغ
صفقة.•ألف•237•هي•أكثس•الصفقات•عدد•ّبلغ•سِن•  

Grammar: 

S → S1 S2 S3 S4 S5 S6 S7 S3 S7 S8 SD S9 S10 S1 S2 

S11 S7 S8 SD S9 S12 

V → S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

D → D1 D2 D3 

P → P1 P1 P1 P1 P2 P3 P1 P1 P1 P1 P1 P1 P1 P1 P1 P1 
P1 P1 P4 

S1 → “ ّبلغ  ”  

S2  → “عدد” 

S3 → “الأسِن”  

S4 → “ٖف” 

S5 → “السْق” 

S6 → “ٕالسعْد” 

S7 → “أكثس” 

 

S8 → “هي” 

S9 → “ألف”  

S10 → “سِن”  

S11 → “الصفقات” 

S12 → “صفقة” 

D1 → “277” 

D2 → “132” 

P1→ “•” 

P2→ ““•” 

P3 → “•”” 

P4→ “." 

As stated, we have found one effective means for encoding 
the grammar is to use PPM. Specifically, the grammar is 
encoded by using PPMD to separately encode the four main 
elements (words, vocabulary, digits and spaces/punctuation as 
represented by the S, V, D and P rules). For Rule S, we can 
encode the sequence of symbol numbers or letters that appear 
in the rule. For example, in Table 3, the sequence of symbol 
numbers/letters for Rule S is as follows: 1 2 3 4 5 5 6 5 3 7 8 9 
D 10 D 11 12 9 D 13. This represents the sequence of id 
numbers assigned to each unique word with id numbers 
starting from 1 and incrementing by one whenever a new word 
is encountered. The letter D indicates when a digit sequence 
has occurred. Clearly, the sequence for rule S will be highly 
repetitive for long sequences of natural language text because 
of the presence of repeated words and frequent function words 
(such as “the” and “and” for English and “هي” and “ ٖف” for 
Arabic as shown in Table 1). More specifically, we have found 
PPMD to be very effective at encoding this sequence. 

However, unlike W|W (which uses similar PPM-like 
methods to encode word symbols in this manner), our method 
simply uses PPMD with a fixed maximum alphabet size (since 
this is known when the grammar has been fully constructed for 
the whole text). Also, our method does not need to encode an 
escape down to a separate character-level as W|W does in order 
to encode novel words when they occur. 

Instead, it uses the standard PPMD encoding mechanism 
(where a novel symbol will be encoded using a default order -1 
model where all symbols are equiprobable). 

For practical purposes, rule V and rules S1, S2, S3, … can 
simply be represented as a string of text that contains all the 
unique words as they appear in the source text one after 
another with a separator (such as a space character) used to 
indicate the end of the previous word and the beginning of the 
next one. Similarly, we can use the same encoding technique 
for the digit sequences for rule D and rules D1,D2,D3,… and for 
the spaces and punctuation for rule P and rules P1,P2,P3,…. 
That is, both the digits and punctuation can be encoded 
effectively by using PPMD to encode one text string that 
contains all the unique digit sequences and another text string 
that contains the unique space and punctuation sequences 
respectively. A space character can be used as a separator for 
the digits, but for the punctuation, a different separator is 
needed. We use the letter “W” as the separator in this case to 
mark where the words are. 

As an illustration, Table 5 presents the symbols or text that 
is being encoded for the four elements (symbols, vocabulary, 
digits, spaces and punctuation) for the beginning of the Brown 
corpus. All are encoded directly by PPMD as text except for 
the Symbols element which is treated as a sequence of numbers 
instead. 

The decompression process first uses PPMD to decode the 
four separate elements and then re-constructs the full grammar 
from them. During the subsequent regeneration phase, the 
grammar is then used to exactly regenerate the original source 
text character for character (i.e. the method is completely 
lossless). Whenever a previously unseen symbol is encountered 
as the sequence specified by the S rule is being processed, the 
current word is read from the sequence specified by the V rule 
and then the position is moved along to the next word. 
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 WHAT THE DIFFERENT TEXT ELEMENTS LOOK LIKE FOR THE BEGINNING OF THE BROWN CORPUS TABLE V.

Brown Corpus (text at the start of the corpus): 

   The Fulton County Grand Jury said Friday an investigation 

of Atlanta‟s recent primary election produced “no evidence” that 
any irregularities took place.  The jury further said in term-end 

presentments that the City Executive Committee, which had over-all 

… 

Symbols Vocabulary Digits Spaces & Punctuation 

2 3 4 5 6 7 8 9 10 11 12 13 14 

15 16 17 18 19 20 21 22 23 24 

2 25 26 7 27 28 29 30 20 31 32 

33 34 35 36 37 38 39 11 31 16 

40 31 41 42 43 11 31 32 11 12 

44 31 45 27 35 31 16 46 47 2 

48 49 28 25 36 50 51 52 3 53 

54 55 56 57 58 59 60 11 61 … 

The Fulton County Grand Jury said 

Friday an investigation of Atlanta s 

recent primary election produced no 

evidence that any irregularities took 

place jury further in term end 

presentments the City Executive 

Committee which had over all 

charge … 

1 1 2 2 1913 71 74 637 1937 1923 1 

13 1962 8 1961 100 30 3 4 1958 50 

10 87 31 29 5 13 1 119 402 18 17 

63 31 300 000 6 13 451 500 157 

460 88 000 182 17 000 1 000 12 3 

81 65 4 22 1 4 250 114 4 5 000 000 

15 000 000 24 12 30 24 4 150 13 

1961 62 10  

… 

   W W W W W W W W W 

W W'W W W W W "W W" W 
W W W W.   W W W W W W-W 

W W W W W W, W W W-W 

W W W W, "W W W W W W W 
W W W" W W W W W W W W W. 

   W W-W W W W W W W W 
W W W W W W W W W W 

"W" W W W-W W W W W W 

W-W W W W&.   "W W W W 
W W W W W", W W W, "W W 

W W W W W, W W W W W W W 

W W W".   W W W W W W W… 

The P rule is used to insert the punctuation between the 
word and digit symbols as they are encountered in the S rule. 
Whenever a digit is signified by the SD symbol for this rule, the 
current digit symbol is read from the sequence specified by the 
D rule, which is then inserted into the decoded output sequence 
and the position then moves along to the next digit symbol. 

Algorithm 1 summarizes the algorithm using pseudo-code. 
Lines 1 through 15 are for the n-gram tokenizer. Line 3 starts 
the for loop to read the n-grams in the input file. Lines 4 
through 9 check if the n-gram is a word; if it is, it prints the n-
gram to the Grammar file, assigns each id numbers with ids for 
unique n-grams increasing with each new n-gram that is found 
and also prints a W to the Spaces & Punctuation file. Lines 10 
through 13 checks if this n-gram is a digit; if it is, it adds this 
digit to the digit file and prints W to the Spaces & punctuation 
file. Lines 14 and 15 checks if this n-gram is punctuation or 
space; if so these are added to the Spaces & Punctuation file. 
Line 16 compresses the final text for the four files by using 
PPMD. 

 

A further improvement of our approach, both in terms of 
compression and execution speed, can be gained by further 
processing the files in the following manner. The main 
disadvantage of the Symbols file is that it consists of many 
singletons that occur only once in the text and doubletons that 
occurs only twice [18]. Singletons and doubletons are 
detrimental to the encoding efficiency because they do not give 
any useful reference information [19]. In addition, singletons 
incur an unnecessary extra cost in our scheme because their 
symbol numbers are unique and therefore cause the alphabet 
size to be incremented by 1 each time they occur (which is 
frequently due to the Zipf‟s Law-like nature of natural 
language text). As a result, the alphabet size can be 
substantially higher when these are present. A large alphabet 
for PPM is undesirable when using the full exclusions 
mechanism [1] that PPM uses for its encoding as it 
substantially slows down execution speeds due to the need to 
exclude symbols already seen in the higher orders from lower 
order predictions. 

In order to overcome these problems and therefore improve 
our new method, we process the Symbols file to replace all 
singletons in the Symbols file with the same special symbol 
wherever they occur. For example, for the Symbols stream “1 6 
7 6 7 7 4 5” there are three singletons – 1, 4 and 5. These 

singletons get replaced by a special symbol (, say) and the 

Symbols sequence being encoded becomes “ 6 7 6 7 7  ‟. 
Each singleton can be readily decoded once the special symbol 
is encountered in the Symbols stream which signals to the 
decoder to read the characters for the word from the next set of 
characters in the Vocabulary stream up until the next word 
separator character. For our example, let‟s say that the 
characters in the Vocabulary stream are “one six seven four 
five”. When replacing just singletons in the Symbols stream, 
there is no need to change this Vocabulary stream since the 
decoder will have all the necessary information to decode each 
word since singletons only occur once. The only effect is that 
the Symbols stream becomes slightly more compressible with a 
much smaller alphabet which significantly speeds up 
compression speeds when performing full exclusions as shown 
below. 
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We also have an option to replace doubletons and tripletons 
(and so on) wherever they occur in the Symbols file if we wish. 
However, when replacing non-singletons in this case, there is 
no way to decode the characters when the word is being 
replaced the second time or subsequent times (for tripletons 
etc.) so a simple expedient is to repeat the word character for 
character in the Vocabulary stream whenever it occurs again. 
Using the previous example again, if we were to replace 
singletons and doubletons (but not tripletons), then the 

Symbols sequence would now be encoded as “  7  7 7  

” since the symbol 6 appears twice (i.e. it is a doubleton) but 
symbol 7 appears three times (i.e. it is not a singleton or 
doubelton). In the Vocabulary stream in this case, the 
characters for symbol 6 would appear twice, i.e. it would now 
become “one six seven six four five” since the word “six” is a 
doubleton and therefore appears again in this sequence. 
Clearly, the size of the Vocabulary stream now will grow 
because of the presence of the repeated words and this can 
affect the overall compression, but this is offset by the 
significantly faster processing since the alphabet size in the 
Symbols stream is much smaller. 

In the experimental results below, we use the following 
labels for the variants of our algorithm: GRW-PPM for our 
standard algorithm; GRW1-PPM for when singletons are 
replaced by the special symbol; GRW2-PPM for when both 
singletons and doubletons are replaced; GRW3-PPM for when 
all the singletons, doubletons and tripletons are replaced; and 
GRW4-PPM for when all the singletons, doubletons, tripletons 
and quadrupletons are replaced. 

IV. EXPERIMENTAL RESULTS 

This section discusses experimental results using GRW-
PPM and its variants described above for compression of 
various text files. We compare our new method with other 
compression schemes. Also, we discuss in this section the 
encoding execution times for GRW-PPM with and without 
using the full exclusions mechanism that PPM uses for its 
encoding. 

In this experiment, the GRW-PPM encoding is divided into 
four parts. The four parts are for the Grammar, the Symbols, 
the Digits and the Spaces and Punctuation. Order 5 PPMD is 
used for the Grammar, order 1 PPMD for the Symbols, order 4 

PPMD for the Digits and for Spaces and Punctuation, order 4 
PPMD is used. Experiments showed these different orders 
were the most effective at compressing the different text 
elements. 

Table 6 illustrates the compression ratio for the four parts. 
The compression ratio is calculated by multiplying the 
compressed output size in bytes times 8 divided by the original 
input file size in order to determine the contribution each part 
has to the overall encoding cost. As shown in the table, the 
Digits part has the smallest compression rate for the different 
languages. Also, the compression rate for Grammar and Spaces 
and Punctuation are small compared to the Symbols part for 
the Brown, LOB, CEG, Hamshahri and BACC corpora. 

As shown in Table 7, order 1 GRW3-PPM significantly 
outperforms order 1 GRW-PPM as it has the best compression 
ratio for the corpora being compressed. The improvement of 
GRW3-PPM over GRW-PPM occurs for all texts and ranges 
from over 2% to 4.2% for the BACC corpus of Arabic text. 

From our experiments as shown in Tables 7 and 10 for 
different text files, we found that full exclusions improves the 
compression rate. However, this increases the execution time 
slightly because for full exclusions all symbols are removed for 
prediction in the lower order level if they have already been 
seen in the higher order. (There may be many symbols needing 
to be excluded depending on the context.) The configuration of 
our test machine is 4 GB GHz intel Core i5, with 4GB internal 
memory. 

It is clear from Tables 8 and 9 that not using full exclusions 
result in a worse compression rate. The improvement of 
GRW1-PPM and GRW2-PPM with full exclusions over 
GRW1-PPM and GRW2-PPM without using full exclusion 
ranges on average from just over 4% to 5.4% for all texts. 
However, the advantage in not performing full exclusions is 
that this runs on average 3% to 20% more quickly for different 
texts. 

Table 11 shows an interesting result when comparing 
GRW-PPM and GRW3-PPM with PPMD and W|W. It is clear 
that GRW3-PPM on average significantly outperforms W|W. 
GRW3-PPM shows an average 7.1% improvement over W|W. 
Also, it illustrates that there are significant differences between 
each of the compression methods for different languages. 

 COMPRESSION RATIOS FOR GRW-PPM IN THE FOUR ELEMENTS FOR THE DIFFERENT SAMPLE TEXTS TABLE VI.

File 
Language or 

Dialect 
Size 

Symbols 

(bpc) 

Vocabulary 

(bpc) 

Digits 

(bpc) 

Spaces & 

Punct. 

(bpc) 

Overall 

(bpc) 

Brown American English 5968707 1.698 0.226 0.014 0.278 2.21 

LOB British English 6085270 1.628 0.217 0.016 0.191 2.05 

BACC Arabic 31018167 1.078 0.143 0.006 0.173 1.40 

Hamsh. Persian 1120834 0.982 0.311 0.042 0.101 1.43 

CEG Welsh 6753317 1.284 0.147 0.089 0.214 1.73 
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 COMPRESSION RATIOS FOR GRW-PPM WITH FULL EXCLUSIONS COMPARED WITH GRW1-PPM, GRW2-PPM AND GRW3-PPM PERFORMANCE TABLE VII.
FOR DIFFERENT NATURAL LANGUAGES 

File GRW-PPM (bpc) GRW1-PPM (bpc) GRW2-PPM (bpc) GRW3-PPM (bpc) GRW4-PPM (bpc) 

Brown 2.21 2.16 2.15 2.14 2.14 

LOB 2.03 1.99 1.98 1.98 1.98 

BACC 1.40 1.35 1.34 1.34 1.34 

Hamsh. 1.43 1.41 1.40 1.39 1.39 

CEG 1.73 1.70 1.69 1.69 1.69 

Average 1.76 1.72 1.71 1.71 1.71 

 GRW-PPM WITHOUT FULL EXCLUSIONS COMPARED WITH GRW1-PPM, GRW2-PPM AND GRW3-PPM PERFORMANCE FOR DIFFERENT NATURAL TABLE VIII.
LANGUAGES 

File GRW-PPM (bpc) GRW1-PPM (bpc) GRW2-PPM (bpc) GRW3-PPM (bpc) GRW4-PPM (bpc) 

Brown 2.35 2.33 2.23 2.23 2.23 

LOB 2.14 2.11 2.07 2.06 2.06 

BACC 1.49 1.45 1.43 1.43 1.43 

Hamsh. 1.52 1.48 1.46 1.46 1.46 

CEG 1.80 1.76 1.76 1.75 1.75 

Average 1.86 1.82 1.79 1.79 1.79 

 EXECUTION TIMES FOR GRW1-PPM, GRW2-PPM, AND GRW3-PPM WHEN NOT USING FULL EXCLUSIONS TABLE IX.

File GRW1-PPM (seconds) GRW2-PPM (seconds) GRW3-PPM (seconds) GRW4-PPM (seconds) 

Brown 722.25 481.15 389.04 320.10 

LOB 596.83 583.66 353.13 296.02 

BACC 5655.20 4156.35 2339.16 3179.45 

Hamsh. 2544.21 1375.30 965.34 843.35 

CEG 275.82 198.56 193.31 138.03 

 EXECUTION TIMES FOR GRW1-PPM, GRW2-PPM, AND GRW3-PPM WHEN USING FULL EXCLUSIONS TABLE X.

File GRW1-PPM (seconds) GRW2-PPM (seconds) GRW3-PPM (seconds) GRW4-PPM (seconds) 

Brown 760.83 600.05 471.92 342.59 

LOB 670.20 436.98 328.12 329.57 

BACC 6149.99 5292.56 3693.99 3320.88 

Hamsh. 3260.91 2062.56 1268.33 916.22 

CEG 302.71 264.58 239.56 173.57 

 COMPARING THE PERFORMANCE OF THE PPMD, PPM WORD-BASED, GRW-PPM AND GRW3-PPM MODELS TABLE XI.

File Size PPMD Order4 (bpc) W|W Order4 (bpc) GRW-PPM Order1 (bpc) GRW3-PPM Order1 (bpc) 

Brown 5968707 2.22 2.13 2.21 2.14 

LOB 6085270 2.03 1.96 2.05 1.98 

BACC 31018167 1.57 1.59 1.40 1.34 

Hamsh. 1120834 1.75 1.79 1.43 1.39 

CEG 6753317 1.69 1.70 1.73 1.69 

Avg.  1.85 1.83 1.76 1.70 
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For instance, for American English text, W|W achieves the 
best compression rate compared with other models, with a 
3.6% improvement over GRW-PPM and a 0.45% improvement 
over GRW3-PPM. For British English text, W|W achieves a 
4.3% improvement over GRW-PPM and a 1.0% improvement 
over GRW3-PPM. For Welsh, GRW3-PPM and PPMD attain a 
2.3% improvement over GRW-PPM and approximately a 1.0% 
improvement over W|W. For Arabic text, GRW3-PPM 
outperforms the other models, attaining a 14.6% improvement 
over PPMD and a 15.7% significant improvement over W|W. 
For Persian text, GRW3-PPM exceeds the other models, with a 
22.3% improvement over W|W (see Fig. 3). 

 
Fig. 3. Comparing the compression performance between the various 

methods for different languages. 

V. CONCLUSIONS 

In this paper, a new word-based grammar scheme (GRW-
PPM) has been described for compressing natural language 
text. Our method creates a context-free grammar by replacing 
words and repeated sequences of digits, spaces and punctuation 
represented as non-terminal symbols in the text as it is 
processed from beginning to end in a single pre-processing 
pass. The PPM text compression algorithm is then used as the 
compression algorithm to encode the sequences of non-
terminal sequences once they have been constructed for the 
whole text. Unlike PPM which is an online method, our 
method is off-line during the phase which generates the 
grammar. 

In our experimental evaluation, GRW-PPM (and further 
such as variants GRW2-PPM and GRW3-PPM) have been 
compared with other well-known schemes on various language 
corpora for the English, Welsh, Arabic and Persian languages. 
The best performing scheme for the languages that use Arabic 
script (Arabic and Persian) is GRW3-PPM, followed by the 

previous best performing word-based PPM models (W|W) then 
the standard character-based PPMD scheme. For the English 
language, our experiments show that the word-based PPM 
models (W|W) is the best compared with standard PPM and 
GRW-PPM. For Welsh text, the best results are achieved using 
the standard character-based PPMD scheme and GRW3-PPM. 
Also, GRW3-PPM significantly outperforms GRW-PPM itself 
for different languages. 
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