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Département ITI

Brest, France

Sana Boussetta
Regional Hospital of Ben Arous

Tunis, Tunisia

Abstract—According to the World Health Organization, breast
cancer is the main cause of cancer death among women in
the world. Until now, there are no effective ways of preventing
this disease. Thus, early screening and detection is the most
effective method for rising treatment success rates and reducing
death rates due to breast cancer. Mammography is still the most
used as a diagnostic and screening tool for early breast cancer
detection. In this work, we propose a method to segment and
classify masses using the regions of interest of mammographic
images. Mass segmentation is performed using a fuzzy active
contour model obtained by combining Fuzzy C-Means and the
Chan-Vese model. Shape and margin features are then extracted
from the segmented masses and used to classify them as benign
or malignant. The generated features are usually imprecise and
reflect an uncertain representation. Thus, we propose to analyze
them by a possibility theory to deal with imprecise and uncertain
aspect. The experimental results on Regions Of Interest (ROIs)
extracted from MIAS database indicate that the proposed method
yields good mass segmentation and classification results.
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fuzzy active contour; mass classification; possibility theory

I. INTRODUCTION

Breast cancer is the most common form of cancer in the
world. It has become the second cause of death by cancer
in women after lung cancer. According to the World Health
organization (WHO), in 2012, there were 1.7 million newly
diagnosed breast cancer cases in the world [1]. Moreover,
between the years 2008 and 2012, breast cancer incidence has
increased by 20%, while mortality has augmented by 14%.
Such statistics motivate researchers to design new tools for
early detection and diagnosis of breast cancer.

Computer-Aided Diagnosis (CADx) systems have been
developed to reduce the experts’ workload and to help them
in early detection of breast cancer [2]. Such systems involve
generally four phases: preprocessing, segmentation, feature
extraction and selection, and classification [3]. Each of these
phases should be performed appropriately. In fact, the perfor-
mance of each stage can affect that of the subsequent stages
[4].

Breast masses are the most important indicators of ma-
lignancy that can be present in mammography. It is often
difficult to distinguish this type of abnormality from the
surrounding parenchymal. Thus, its automated segmentation
and classification is a challenging task. There is extensive
literature on mass segmentation methods. They can be divided

into several techniques such as: thresholding-based techniques,
region growing-based techniques, clustering-based techniques
and active contour-based techniques.

Thresholding-based techniques can be classified into global
and local thresholding. Global thresholding focuses on global
information such as the histogram of the mammograms [5].
When masses are sufficiently brighter than surrounding tissue,
it is possible to use a global threshold. However, local thresh-
olding determines a local threshold value for each pixel based
on neighbor pixels intensity values. Thresholding techniques
has been widely used for mammographic mass segmentation
[6]–[8].

Region growing-based techniques start from initial seed
point and regroup pixels of similar characteristics to divide
the mammographic image into homogeneous regions. Cao et
al. [9] proposed an adaptive region growing method with hy-
brid assessment function combined with maximum likelihood
analysis and maximum gradient analysis. This method is used
to segment mammographic masses. Berber et al. [10] proposed
an extension of the classical seeded region growing for mass
segmentation in mammographic regions of interest. In fact, in
this work the threshold value is adjusted adaptively based on
mass size estimation to prevent over- and under-segmentation.

Clustering-based techniques classify mammogram pixels
by grouping those with similar properties into a set of clusters.
Sampaio et al. [11] use cellular neural networks to develop a
computational methodology for mass segmentation. In [12],
the authors propose an extension of the K-means method. The
disadvantage of Clustering-based techniques is that they need
to set manually the number of clusters.

Active contours-based techniques can be classified into
snakes and level sets. The difference between these two types
is their mathematical implementation. In fact, the boundary in
snake evolves explicitly. However, it evolves implicitly in level
set. There are numerous studies on mass segmentation using
level set methods [13]–[15].
Mass classification is a key technology in CADx systems. It is

very useful in early breast cancer detection and it can prevent
unnecessary biopsy [2]. Several researches have investigated
mass classification. Gorgel et al. [16] use the support vector
machine (SVM) method to classify the segmented masses as
benign or malignant. The segmentation was performed using
a local seed region growing (LSRG) algorithm. In [17], the
authors combine both texture and shape features to classify
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Fig. 1. Flowchart of the proposed method.

masses by using SVM and ELM networks with modified
kernels. Liu et al. [2] performed mass classification using
selected geometry and texture features, and a new SVM-based
feature selection method.

In this paper, we propose a novel method for auto-
matic mass segmentation and classification of mammographic
masses. A general flowchart of the proposed method is outlined
in Fig. 1. Mass segmentation is based on the Chan-Vese
model. Considering the fact that masses have fuzzy boundaries,
we propose to deal with this problem using fuzzy logic by
integrating fuzzy membership values in the Chan-Vese model.
This leads to a fuzzy Chan-Vese model. The estimation of
the fuzzy membership values is performed using the fuzzy C-
Means method.

The classification of the segmented masses depends es-
sentially on their shape. In fact, benign masses are usually
round and oval having smooth contours. Nevertheless, malig-
nant masses have generally irregular shape with lobulated or
spiculated margins. This knowledge suffers from imprecision
and ambiguity. Thus, we propose to deal with the problem
of mass classification using geometry features while taking
into account the uncertainty linked to the degree of truth of
the available information and the imprecision related to their
content.

This paper is organized as follows: In Section II, we de-
scribe the proposed method for mass segmentation. In Section
III, we present the extracted features from the segmented
masses. In Section IV, we provide the followed steps to
build a possibility knowledge basis and we present the used
method for mass classification. In Section V, we provide the
results obtained using the proposed method. Finally, Section
VI presents a conclusion of this work.

II. MASS SEGMENTATION

The proposed mass segmentation method is based on
the Chan-Vese active contour which is a region-based active
contour capable of segmenting objects whose boundaries are
not defined by gradient. Nevertheless, the disadvantages of
this model are the problem of leaking which arises when the
mass margins are fuzzy and ambiguous and the problem of
increase of false positives in presence of tissue homogeneity.
To overcome these problems, we propose a fuzzy version of the
Chan-Vese model which is able to reject “weak” local minima

and to handle objects with discontinuous boundaries. The
fuzzy C-Means method is used to build the fuzzy Chan-Vese
model. In this section, we start by presenting the conventional
Chan-Vese model and the fuzzy C-Means method.

A. Previous Methods and Background

a) The Chan-Vese Model: Chan and Vese [18] proposed
an active contour model without edges which allows segment-
ing objects whose boundaries are not defined by gradient. This
model assumes that the image is formed by two approximately
piecewise-constant intensities [19]. The energy function of the
model is defined as follows:

E (c1, c2, C) = µ.L (C) + λ1

∫
in(C)

|I (x, y)− c1|2dx dy (1)

+λ2

∫
out(C)

|I (x, y)− c2|2dx dy

where µ, λ1 and λ2 are fixed positive parameters; c1 and c2 are
the mean values inside and outside the curve C, respectively.

b) The Fuzzy C-Means method: The Fuzzy C-Means
[20] is an iterative unsupervised fuzzy clustering algorithm
which uses the concepts of fuzzy set theory and fuzzy logic
to provide a fuzzy partition of the image. It is based on
minimizing the following objective function:

J =

C∑
j=1

N∑
i=1

µmij‖xi − νj‖
2
=

C∑
j=1

N∑
i=1

µmijD
2
ij (2)

Where,

• C is the number of classes and N is the number of
pixels;

• µij is the degree of membership of the pixel xi to the
class j;

• m ∈ [1,∞[ is a fuzziness factor which is used to
control the fuzziness of the obtained partitions;

• Dij is the euclidian distance between the pixel xi and
the class center νj .
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Membership functions µij and class centers νj are updated
iteratively using the following formulas:

µij =
1

C∑
k=1

(
Dij

Dik

)2/m−1 (3)

νj =

N∑
i=1

µmijxi

N∑
i=1

µmij

(4)

The iteration will stop when the following condition is reached:∣∣J t+1 − J t
∣∣ ≤ ε (5)

The proposed mass segmentation method consists of mainly
three steps: Firstly, the ROI is preprocessed to enhance the
contrast. Next, two fuzzy membership values are estimated
based on fuzzy C-Means algorithm. These fuzzy membership
values are finally used to modify the energy of the Chan-Vese
model and to perform the final segmentation.

B. Preprocessing

Since mammographic images are poor in contrast, a pre-
processing step is necessary to enhance the contrast of ROIs.
Thus, gamma correction which is a non linear transformation
process is applied to change the luminance of these ROIs. The
mathematical form of its transformation function is as follows
[21]:

Iout = c.Iγ (6)

where I is the input image, Iout is the output image, c and
γ are parameters controlling the shape of the transformation
curve. Fig. 2 shows how intensity values are mapped with
different values of γ. From this figure, it can be seen that a
γ value greater than 1 allows having an image with a higher
contrast. In our experiment, we set the value of γ to 4.

Fig. 2. Transformation curves with different values of γ.

C. Fuzzy Membership Estimation

The aim of this step is to determine the membership
degrees µM (x, y) and µB (x, y) of each pixel of coordinates
(x, y) to the class “Mass” and “Background”. In this paper,
we propose an estimation process based on Fuzzy C-Means

algorithm [20]. The followed steps to achieve this objective
are:

1) Initialization of the fuzzy membership matrix µij ;
2) Calculating the cluster centers using (4);
3) Updating the fuzzy membership matrix µij using (3);
4) Return to Step 2 until convergence or maximum

number of iterations is reached.

D. Segmentation using a Fuzzy Active Contour Model

After estimating the fuzzy memberships, the proposed
method performs mass segmentation using a fuzzy active
contour model. This model is based on the Chan-Vese model.
In fact, the energy of each pixel which is formulated as
|I (x, y)− c1|2 or |I (x, y)− c2|2 in the Chan-Vese model is
weighted by the corresponding membership value µM (x, y) or
µB (x, y) so that the formula of the energy formula becomes
as follows:

E (c1, c2, C) = µ.L (C) (7)

+λ1
∫

in(C)

µM (x, y) .|I (x, y)− c1|2dx dy

+λ2
∫

out(C)

µB (x, y) .|I (x, y)− c2|2dx dy

III. FEATURE EXTRACTION

Shape and margin features are the most important features
to differentiate between benign and malignant masses. In fact,
malignant masses have spiculated or microlobulated bound-
aries and irregular shape. However, benign masses appear
smooth in the boundary and round in shape [22] (Fig. 3). In this

Fig. 3. Classification of breast masses according to their contours.

paper, nine shape features are extracted, including circularity,
compactness, rectangularity, normalized radial length (NRL)-
based features (mean, standard deviation, entropy, area ratio,
zero crossing, roughness). These features are listed in Table I.

IV. BUILDING THE POSSIBILITY DISTRIBUTIONS OF THE
FEATURES AND MASS CLASSIFICATION

In order to build a possibility knowledge basis, the
mass description which is formulated by the extraction of
shape and margin features should be transformed into a
possibility description. Thus, a possibility distribution should
be estimated for each feature and each class. In this work, the
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TABLE I. EXTRACTED FEATURES FROM MAMMOGRAPHIC MASSES

Feature Description Equation

Circularity [23] Represents how a mass is
similar to a circle.

C = A
AC

where A is the
area of the mass given by the
number of pixels inside its
contour and AC is the area
of the circle having the same
perimeter as the mass.

Compactness [24] A measure of contour
complexity versus the
enclosed area.

Com = P2

A with P is the
perimeter of the mass
measured by summing the
number of pixels on the
contour’s mass:P =∑
pixels ∈ Contour and

A is its area.

Rectangularity [23] Represents the degree of
resemblance between the
mass and a rectangle.

Rect = A
AR

with A is the
area of the mass and AR is
the area of the minimum
bounding rectangle.

NRL Mean [25] Mean of the Normalized
Radial Length

dmean = 1
N

N∑
i=1

d (i)

where d (i) is the Euclidian
distance from the mass
center to each of the
boundary points normalized
by dividing by the maximum
radial distance.

NRL standard
deviation [25]

Represents the variance of
the NRL around a circle
defined by NRL Mean as
radius.

σ =√
1
N

N∑
i=1

(d (i)− dmean)
2

NRL entropy [25] A probabilistic measure
determining how well the
mass’s radial length could be
estimated. It includes both
the idea of roundness and
tumor roughness.

E =
100∑
k=1

pk log (pk)

where pk is the probability
of a NRL to the number of
whole radials.

NRL area ratio [25] Evaluates the percentage of
the mass proportion located
outside the circle defined by
NRL Mean. Thus, it allows
discriminating between
masses with smooth and
spiculated contours.

AR = 1
dmean.N

N∑
i=1

(d (i)− dmean)

NRL zero crossing
[25]

Represents the number of
times the line plot crossed
the mean NRL.

NRL roughness
[25]

Allows isolating the
macroscopic mass shape
from the structure of the fine
contours.

R (j) =
L+j∑
i=j
|d (i)− d (i+ 1)|

generation of the initial possibility distributions, the choice
of their shape and their parameters are performed based on
the knowledge expressed by the expert. Fig. 4 shows the
possibility distributions of the circularity feature.

The obtained distribution functions are then modified by
considering the score feature evaluating its pertinence. Plenty
of feature selection methods which use ranking criterion to
score the features are available in the literature [26]. In our
proposed method, the fisher score is used for feature selection
due to its good performance. In fact, it evaluates each feature
individually by measuring the degree of class separability with
the following formula:

F (i) =

∑C
c=1 ηc

(
µic − µi

)2∑C
c=1 ηc(σ

i
c)

2
(8)

where, ηc is the number of elements belonging to the class c;
µic and σic are the he mean and the standard deviation of the
ith feature in the class c, respectively; µi is the global mean
of the ith feature.

The obtained Fisher scores are used to adjust the possibility
distributions as follows:

πi
′ (B) = max (πi (B) , 1− F (i)) (9)

πi
′ (M) = max (πi (M) , 1− F (i)) (10)

After adjusting the possibility distributions, a fusion step is
performed in order to combine all the information relative to
extracted features and to obtain information of better quality.
Thus, a conjunctive operator (minimum operator) is applied
to the possibility distributions associated with the different
features to get only one distribution for each class. The final
possibility distributions are obtained as follows:

π (B) = π′1 (B)⊕ . . .⊕ π′i (B)⊕ . . . .⊕ π′M (B) =

min (π′1 (B) , . . . , π′i (B) , . . . , π′M (B))

π (M) = π′1 (M)⊕ . . .⊕ π′i (M)⊕ . . . .⊕ π′M (M) =

min (π′1 (M) , . . . , π′i (M) , . . . , π′M (M))
(11)

The possibilistic decision can be made based on the maximum
possibility measure, the maximum necessity measure or on
the maximum confidence index. In this work, the decision-
making is based on the maximum possibility value because it
is the most intuitive and the most used decision in possibilistic
classification.

V. EXPERIMENTAL RESULTS

A. Dataset

All the images used in this paper are belonging to a
publicly available digital mammography dataset, which is the
Mini Mammographic Image Analysis Society (MIAS) dataset
[27]. It consists of 322 medio-lateral oblique (MLO) views
of 161 patients. The images are digitized to 200 micron pixel
edge and clipped/padded so that every image is 1024×1024
pixels.

A set of 57 ROIs were extracted from this dataset. These
ROIs contain masses with different margin types such as CIR-
Cumscribed (CIRC), SPICulated (SPIC), and MISClassified
masses (MISC). Fig. 5 shows the distribution of the different
mass margin types based on their severity. The contours of
these masses were manually annotated by an expert radiologist
to serve as ground truth (GTR).

B. Evaluation Metrics

We have used the accuracy, precision and sensitivity mea-
sures to evaluate the performance of the proposed segmentation
and classification methods. These measures are defined as
follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision =
TP

TP + FP
(13)
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Fig. 4. Possibility distributions of the circularity feature (a) Possibility distribution of the class benign; (b) Possibility distribution of the class malignant.

Fig. 5. Distribution of different mass margin types in the MIAS database.

Sensitivity =
TP

TP + FN
(14)

where:

• True Positives TP: Pixels that are correctly segmented
as Mass for the segmentation method (SR∩GTR) and
the number of malignant masses correctly classified as
malignant for mass classification method.

• False Positives FP: Pixels that are segmented as Mass
but they are not labeled so as in GTR for segmentation
(SR∩GTR) and the number of benign masses falsely
classified as malignant for classification.

• True Negative TN: Pixels that are correctly segmented
as background for segmentation (SR∩GTR) and the
number of benign masses correctly classified as benign
for classification.

• False Negative FN: Pixels classified as normal tis-
sue in the SR but they are labeled as Mass in the
GTR for segmentation (SR ∩GTR) and the number

of malignant masses falsely classified as benign for
classification.

C. Segmentation Results

Fig. 6 shows the results of preprocessing, the results of
fuzzy membership estimation and also the final segmentation
results of four ROIs extracted from the MIAS database. From
this figure, we can note that the proposed method reduces
the false positives. In fact, even though the benign tissue
exhibits in-homogeneity, no noisy regions have been falsely
detected outside of mass regions. The values of the quantitative
evaluation measures for the ROIs are also given in this figure.
We can notice that the proposed method gives satisfactory
results both for benign masses (sample 2 and sample 4) and
for malignant masses (Sample 1 and Sample 3).

To prove that the combination of the Chan-Vese model
and the FCM method improves the segmentation results, we
give in Table II the performance results on the whole database
of the Chan-Vese model, the FCM method and the proposed
method. We can note from this table that our proposed method
has the highest accuracy and precision. However, the highest
sensitivity is obtained by the Chan-Vese model. This can be
justified by the overestimation of mass boundaries caused by
this model.

TABLE II. OVERALL PERFORMANCE RESULTS OF MASS
SEGMENTATION APPLIED ON MIAS DATABASE

Method Accuracy Precision Sensitivity

Proposed segmentation
method

94.66% 81.87% 78.94%

FCM 89.55% 69.37% 71.08%

Chan-Vese model 89.27% 61.22% 81.73%
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Original ROI Preprocessed ROI FCM result Final result

Sample1
Accuracy=98.31%
Precision=97.20%

Sensitivity=91.73%

Sample2
Accuracy=98.67%
Precision=96.12%

Sensitivity=89.43%

Sample3
Accuracy=95.82%
Precision=99.18%

Sensitivity=83.73%

Sample4
Accuracy=96.29%
Precision=99.44%

Sensitivity=79.59%

Fig. 6. Obtained results with the application of the proposed method on four samples.

D. Classification Results

Table III is a comparison between our proposed possibilis-
tic classification method and other state-of-the-art classification
methods. We can notice that our method outperforms the other
methods in terms of accuracy when applied to MIAS database.
The promising results should be due to the possibilistic reason-
ing which represents a means of simulating human reasoning.

VI. CONCLUSION

In this paper, we have investigated and have presented the
results of segmentation and classification of breast masses with
a data set of 57 ROIs extracted from MIAS database. The

TABLE III. COMPARISON BETWEEN THE PROPOSED MASS
CLASSIFICATION METHOD AND THE STATE-OF-THE-ART METHODS

Reference Method Accuracy

Proposed
classification
method

Possibilistic classification using
geometric features

91.52%

[28] Classification using neural networks
and shape and density features.

89.28%

[29] Classification using SVM with
directional features.

82.30%

proposed segmentation method estimates fuzzy membership
values to the class Mass and the class Background. These
values are then used to modify the Chan-Vese model. Thus,
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the motion of the evolving contour will be guided by the pixel
fuzzy memberships. This allows obtaining an accurate segmen-
tation even for masses whose boundaries are not defined by
gradient. The proposed mass classification method is based on
the possibility theory which can handle the uncertainty inherent
to the available knowledge.

The obtained results show that the proposed method rep-
resents an efficient tool that can automatically segment and
classify masses in an accurate way.

A limitation of our method is related to the ROI detec-
tion which is not performed in an automatic way. Thus, as
perspectives, we propose to deal with other stages of CAD
systems such as automatic ROI detection. Furthermore, we
will investigate the possibility of introducing other features
such as intensity and textural features to improve the mass
classification results.
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