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Abstract—In this paper, a distributed collective movement 

control method is proposed for a swarm robotics system based on 

an internal energy thermodynamic model. The system can move 

between obstacles with a changing aggregation suitable for 

confronting obstacle arrangements in an environment. The 

swarm robot shape is a fixed aggregation formed by virtual 

attraction and repulsion forces based on the proposed method. It 

follows a leader agent while retaining its shape. When the swarm 

robot aggregation shape cannot be maintained during movement 

though narrow spaces with obstacles, the swarm robot flexibly 

changes shape according to that of the local environment. To this 

end, it employs virtual thermal motion, which is made possible 

with directives and enables continuous movement. A simulation 

confirmed the capability of the proposed method in enabling the 

solidity and flexibility collective movement of swarm robots. The 

results furthermore showed that the parameter setting range is 

important for applying the proposed method to collective 

movement. 
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I. INTRODUCTION 

Swarm robotics systems implement swarm intelligence in 
multi-robot systems. These systems are thereby suitable for 
cooperative and parallel tasks and are thus expected to have 
applications in real-world tasks, such as object transportation 
and environment exploration. To realize these applications, 
swarm robotics systems must be capable of flocking motion 
and collective movement, in which many agents move 
simultaneously as a flock in various environments [1]. During 
such movement, all agents must cooperate to change the 
aggregation shape. The systems must also have “scalability” 
[2]; that is, the system can be controlled even if the number of 
active agents change. In other words, the system must be 
capable of collective movement and maintaining or changing 
the aggregation shape in accordance with the environment 
without requiring information about all agents. 

In recent years, many studies of multi-robot system 
flocking have employed cooperative control, whereby 
numerous agents given random velocity vectors produce a 
common motion by setting the acceleration to zero and the 
velocity vector to a constant other than zero [3]-[6]. To enable 
this control, [3], [4] achieved the convergence of all agents to 
motion of a virtual agent (virtual leader) using the dynamic 
pinning control algorithm (DPCA). In addition, [5] achieved 
fixed flocking by interactions without using the above-
mentioned reference agent; a model prediction control (MPC) 

method for a multi-robot system was employed. These control 
methods enable collective movement at a constant velocity in a 
certain direction; however, they do not address obstacle 
avoidance. The study in [6], on the other hand, considered 
obstacle avoidance. Obstacle avoidance and movement to a 
target in cooperation with other agents using the potential 
functions of aggregation, obstacle avoidance, and trajectory 
were achieved. This approach involves a simple numerical 
calculation. Thus, the calculation of one agent is small. 
Nonetheless, the environment and route information as known 
information are required. 

Next, we focus on studies about collective movement for 
multi-robot systems. Considering the environment with 
obstacles, the study provides control to move a changing or 
maintained aggregation shape in accordance with the 
environment [7]-[11]. To achieve this goal, [7]-[9] proposed 
collective movement that flexibly adapts to the environment by 
applying dynamics systems, such as fluid dynamics and 
analytical mechanics.  These methods are similar to the 
approach presented in [6]. In all of these methods, it is 
necessary to know in advance the global environment 
information, such as the goal point and/or obstacle points. 
However, since the formation is constantly updated according 
to the swarm and surrounding environment, it is difficult to 
maintain a certain shape. References [10,11], on the other 
hand, achieved collective movement to maintain the given 
formation by assigning each agent a position in which the 
agent should fit. This control requires global coordinates and 
information to provide a fitting position. Therefore, the number 
of controllable units depends on the computing capacity of the 
central control unit and the network performance. 

Flocking motion respectively using MPC [5] and the 
potential function [6], as well as collective movement applied 
to a dynamics model [7]-[9], are distributed control methods 
that produce common actions or movement to a known target 
point based on global information. Consequently, it is difficult 
for an operator to freely control the swarm in real time. 
Flocking motion using DPCA [3], [4] and the formation 
control model [10], [11], on the other hand, can solve this 
problem. However, this approach does not consider obstacle 
avoidance and distributed control, and it lacks flexibility, 
which is a feature needed to accommodate a swarm robot. 

In this paper, we therefore propose a collective movement 
method for distributed control that compensates the limitations 
of the respective dynamics and formation control model. To 
realize this objective, our approach is based on the microscopic 
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viewpoint of thermodynamics and deals with quantitative 
states, including solid, liquid, and gas. Of these states, the solid 
and liquid phases have the solidity required to fix a shape and 
the flexibility to change a shape. Therefore, if they are applied 
to a swarm robot, it is possible to maintain a formation and 
adapt it to an environment by interactions based on local 
information. The proposed method controls the internal energy 
and knowledge of the phase transition [12] to control these 
states. In addition, we herein propose a collective movement 
method controlled by a leader (one real agent) by applying the 
properties of internal energy since thermodynamics do not 
consider object movement. 

This paper is structured as follows: Section II introduces 
the thermodynamic models we focused on. In Section III, the 
swarm robot deal with this paper and some variables for the 
proposed method are defined. Section IV presents approaches 
for applying the thermodynamic models to agents and proposes 
control models. Next, Section V describes the parameter design 
for the proposed model. Section VI presents the performance 
evaluation of a collective movement by the proposed method, 
and Section VII concludes this paper. 

II. THERMODYNAMICS MODEL 

The micro-dynamics of thermodynamics mainly include 
interactions between molecules and the thermal motion due to 
heat input from outside the system. Molecules move by using 
the internal energy obtained from these components. Internal 
energy produces various intermolecular interactions. Among 
these interactions, this study focused on the Lennard–Jones 
potential. This potential converges at a position where 
attractive and repulsive forces are in balance according to the 
distance between the molecules, and this potential serves to 
promote collective aggregation. The equation of this potential 
model is given as 
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where r is the relative distance between molecules; 
exponents 12 and 6 are strength parameters of attractive and 
repulsive forces; ε denotes a parameter that gives the depth of 
potential; and ζ represents the molecule diameter. 
Differentiating this potential model with respect to the distance 
gives the motion model φ' of the molecule [13], which has a 
balanced distance r0 where the momentum is φ' (r0) = 0. 

 

(a) Solid phase (b) Liquid phase (c) Gas phase 

Fig. 1. Molecular structure of each phase. Circles indicate molecules. 

Brownian motion is random oscillatory molecular motion 
produced by the internal energy resulting from heat input from 
outside the system. This motion arises from random oscillatory 
motion F(x, t) due to collisions with neighbors caused by heat. 
As this motion occurs in the entire aggregation, it may cause a 
change in the quantitative state. Brownian motion is 
proportional to the temperature, and it is given as 
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Where, T is the absolute temperature of the molecule; m 
denotes the mass; and k represents a molecule-specific 
parameter, such as thermal conductivity. 

The internal energy, W, is given by a simple expression that 
combines the potential according to the distance between 
molecules and the thermal energy as a function of temperature: 

)()( TKrW                (3) 

As described above, the internal energy of the molecule 
combines the actions of collective aggregation and state 
change. Therefore, the swarm energy is determined by the 
temperature, which is the magnitude of the state change. 

Three basic states exist in thermodynamics: the solid phase 
(Fig. 1(a)), in which the temperature is very low and only the 
potential works; the liquid phase (Fig. 1(b)), in which the 
temperature is relatively higher and both the potential and 
thermal energy work; and the gas phase (Fig. 1(c)), in which 
the temperature is very high and the potential does not work. 

By applying these states to the swarm robotics system, 
“solidity,” “flexibility,” and “discreteness,” which are the 
respective features of each state in thermodynamics, can be 
mathematically expressed and realized. 

III. SWARM DEFINITION AND PRELIMINARIES 

The swarm robotics system uses identical mobile robots 
that can move flexibly and omnidirectionally. These robots 
have a distance measurement function for adjacent robots and 
obstacles and a communication function for adjacent robots. 
Furthermore, these robots are circular for minimizing the 
distance measurement error in the distance measured from all 
directions. Robot swarm consists of followers, which employ a 
distributed interaction based on thermodynamics, and a leader, 
which moves freely by following the followers. In addition, 
each robot has anonymity and is not assigned an identifier. 

It is desired that a swarm robot is initiated with a starting 
state from cluttered velocities and positions, such as in flocking 
[3]-[6]. However, since the present approach involves the solid 
and liquid phases of thermodynamics, the initial shape is 
already aggregated and is a hexagonal-lattice shape of the most 
stable structure. This shape can be easily changed to other 
lattice shapes (triangle, square, etc.) by adjusting the density of 
the network topology [14]. Furthermore, the hexagonal-lattice 
shape is stabilized during collective movements, which was 
also confirmed in the control models proposed by Shimizu et 
al. [7] and Pimenta et al. [9]. 

Each agent is assumed to apply thermodynamics, the 
diameter is ζ, and the maximum moving speed is Vmax. The 
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distance measurement function should be able to obtain the 
local coordinates in the range of rmax , where the attractive force 
of the Lennard–Jones potential becomes the maximum (φ'' (rrm) 
= 0). Agent i identifies adjacent agents  j   RS and obstacles 
 l   OS within its sensing range, and it measures the shortest 
distance rij and ril to them. 

The swarm robotics system can use centralized or 
distributed communication management. However, centralized 
management causes communication delays and communication 
packet losses because the communication traffic increases with 
the number of robots. Therefore, we adopt communication 
between adjacent agents within each sensing range. However, 
the leader must have a global communication function to 
receive a command from an operator. 

IV. PROPOSED METHOD 

Based on the thermodynamic model, we propose a 
collective movement method for the swarm robotics system 
that provides solidity and flexibility in the solid and liquid 
phases. To achieve this objective, the aggregation, obstacle 
avoidance, and collective movement algorithms must be 
considered [15]. Therefore, the proposed model consists of a 
collective aggregation model that changes the aggregation 
shape according to the environment by using the internal 
energy as in (3). It also consists of a collective movement 
model that moves the swarm by the ratio of the potential 
change according to the leader’s direction. This model requires 
both leader and follower models. 

In Section II, we outlined the energy dimension 
thermodynamics. However, velocity and/or motion must be 
addressed to control swarm robot movement. Let us consider 
the velocity from the internal energy represented in (3). On the 
right, the potential term is velocity φ' by differentiation. 
Although the thermal energy term is motion by solving (2), we 
consider that the phase transition is related to both momentum 
ratios and we control temperature T as motion. The motion of 
each agent is determined by 
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where pi and vi are the position and velocity of any agent i. 
In vi, fi

P
 is a potential model and fi

T
 is a thermal energy model. 

These models are herein presented. 

A. Collective Aggregation Model 

To maintain the aggregation shape, the swarm robot must 
maintain a constant distance between agents and change the 
aggregation shape according to the environment. We use the 
Lennard–Jones potential to maintain the constant distance 
between agents, and we employ thermal energy to change the 
aggregation shape by obstacle avoidance. This model uses 
controlled variables in each model to form an aggregation 
according to the local environment. Fig. 2 shows a schematic 
representation of the proposed approach. 

 
Fig. 2. Outline of the clustering model. 

1) Potential Model: This model determines the motion of 

any agent i based on the Lennard–Jones potential to maintain 

the distance to the neighbor constant. The motion model of the 

agent is given as 
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Where,  ⃗ is a distance vector. This model is required for 
designing the maximum value of the attractive force as the 
maximum moving speed. This is because the maximum value 
of the repulsive force diverges to infinity and the maximum 
value of the attractive force is a constant. Therefore, ε is 
designed to be the maximum moving speed at distance rrm, 
where attractive force is the maximum, φ'' (rrm) = 0, and is 
given as 
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Equation (5) sets the upper limit for the maximum moving 
speed. 

2) Thermal Energy Model: The thermal energy model 

supplies virtual heat to obstacles and realizes the addition and 

divergence of energy according to temperature. By controlling 

the amount and direction of energy divergence, the agent can 

avoid obstacles and change the aggregation shape. The change 

in temperature (thermal energy) caused by Brownian motion 

(2) over time can be expressed by Newton’s law of cooling. 

When this law is expressed as an integral of elapsed time t, it 

is given as 
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Where, T(t, Tenv(t)) is the temperature of the target object, 
and Tenv(t) is the environment temperature at t. 

Each agent can control the amount of energy (i.e., motion). 
In the proposed method, this energy is used for avoiding 
obstacles. To apply this model, the surroundings of obstacles 
are defined by a virtual temperature distribution with obstacles 
as heat sources. The respective temperatures of an agent and 
environment increase as an agent approaches an obstacle. We 
thus propose a model that controls the motion of agent i 
according to this environmental temperature, which is given by 
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This motion is controlled from zero to Vmax by the 
temperature distribution model T(ril). 

Meanwhile, Bilbeisi et al. proposed the “agoraphilic” 
algorithm [16], which determines the collision avoidance 
direction according to the surrounding environment. This 
method can be applied to the swarm robot in this paper. To 
confirm the basic movement, the agents diverge in the normal 
direction to an obstacle. When multiple obstacles are present, 
they diverge in the synthesized vector direction of the 
temperature distribution. 

B. Collective Movement Model 

When the Lennard–Jones potential in (5) operates between 
two agents, the convergence point is the center value of the 
distance between them. This does not serve as an interaction to 
enable collective movement; however, it is an important 
function in thermodynamics and it is necessary to retain it. 
Therefore, a ratio is set to the potential, and an approach is 
adopted that enables movement by changing the convergence 
point while retaining the thermodynamics effects. We hence 
present a collective movement model based on distributed 
control using leader directivity for relating this deviation and 
agent followers that convey the relationships. 

1) Collective Movement Model for Followers: To follow 

the movement of the leader, each follower must act more 

strongly than the leader and the follower near the leader. This 

collective movement can be achieved by converging the 

deviation caused by the movement of the leader. Therefore, 

each follower must know the direction in which this deviation 

has occurred (the presence of the leader) from an adjacent 

agent. 
We propose a recursive numbering algorithm that 

dynamically provides one agent’s distance from the leader. 
This algorithm assigns reference numbers NL and Ni to the 
leader and follower i, respectively, according to the algorithm 

1)|(  RSjNminN ji             
(9) 

Where, Nj is the number of each element in the neighbor set 
RS. This algorithm sets a follower’s number by adding one to 
the smallest value from among its neighbor set. It can 
recursively provide the distance and direction between the 
leader and all followers, as shown in Fig. 3. 

We propose the following potential model in which the bias 
is changed by using this number: 

 

Fig. 3. Numbering algorithm for collective movement. For example, 

follower A communicates a number with neighbors in the dashed circle, and it 
is assigned a “2” by adding one to the smallest number “1” in its neighbors. 

This recursively produces the distance and direction of the robot unit between 

the leader and all followers. 
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This potential model is the same as the bias model δi 
introduced in (5). The bias value set by the bias model can 
follow the leader if Pr ≥ 1 ≥ Pw ≥ 0 is satisfied. 

By applying the model      
   ⃗              used by 

this potential model to the internal energy in (4), the follower 
follows the leader. 

2) Collective Movement Model for the Leader: The leader 

must cooperate with the follower’s velocity model. Because 

the model is considered dependent on the ratio (Pr to Pw) of 

the potential, the leader engages in control by giving a 

coefficient to adjust the controlled value from the operator. It 

is given as 

opeopeL vpv



           
(11) 

Where,  ⃗ope indicates the mobile vector commanded by the 
operator (movement controlled value ranges from zero to Vmax). 
By limiting this controlled value by Pope, we cooperate with the 
movement of followers. Pope must satisfy 0 < Pope < 1. Because 
it is clear that this parameter is related to Pr and Pw set by the 
follower’s model, it will be verified and discussed in detail in 
the described experiments. 

V. PARAMETER DESIGN 

The parameters of the proposed model are shown in 
Table 1. Table 1(a) presents the robot specifications. The 
sampling frequency should be sufficiently high. The 
parameters of the proposed model (Table 1(b)) are designed 
and determined according to the robot performance. 

Leader 

Follower 

Follower A 
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TABLE I. PARAMETERS IN THE PROPOSED METHOD 

(a) Parameters of the Robot 

Parameter Symbol Condition 
Setting value for 

simulation 

Diameter ζ >  0 30 pixel 

Maximum moving speed Vmax >  0 200 pixel/s 

Sampling frequency fs >  0 500 Hz 

(b) Parameters of the proposed method 

Parameter Symbol Condition 
Setting value for 
simulation 

Heat transfer rate k >  0 0.002 

Reinforcement coefficient Pr >  0 Variable or 1.5 

Weaken coefficient Pw >  0, ≤ 1 Variable or 0.5 

Coordination coefficient Pope >  0, ≤ 1 Variable or 0.5 

Here, k is directly related to the speed of heat propagation, 
that is, the speed of collision avoidance. Therefore, this 
parameter is set based on 1/fs because the set value is the rate of 
the speed change in the sampling interval. Moreover, Pr, Pw 
and Pope can be arbitrarily set. Considering the normal 
Lennard–Jones potential in (5), it is recommended that Pr +  Pw 

= 2 be satisfied. 

VI. SIMULATIONS 

The performance of the proposed method was verified by a 
collective movement simulation using swarming of two-
dimensional omni-directional mobile robots. The specifications 
of the robot to be generated are given in the setting value 
column in Table 1. For the performance assessment, we 
evaluated the characteristics of movement parameters Pr, Pw 
and Pope. Then, we confirmed that the swarm robot that set 
parameters based on the evaluation collectively moved. 

A. Characterization of Collective Movement Parameters 

Characteristics of parameters Pr, Pw and Pope relating to the 
collective movement were evaluated. The evaluation method 
calculated the error between the barycentric coordinates of the 
follower swarm and the leader coordinates after the swarm 
robot with the leader at the swarm center moved linearly 300 
pixels. If its error was close to zero, it could be determined that 
the swarm moved while maintaining the aggregation shape. 
Since this evaluation did not consider the success rate of the 
collective movement, it was calculated as five times the 
average. The number of robots was 217 units (1 leader, 216 
followers), and the initial shape was an ideal hexagonal-lattice 
with the leader as the center of gravity. 

The result for each ratio (Pr to Pw) of the 0.1 interval to 
satisfy Pr + Pw = 2 are shown in Fig. 4. From the results, there 
are points where the shape clearly changes in any of the setting 
values, and it is possible to move collectively at Pope below this 
point. Since Pope determines the moving speed of the swarm, it 
is directly linked to the movement efficiency. Therefore, when 
the difference between Pr and Pw is large, its efficiency is good. 
Considering the relation of Pr, Pw and Pope, the upper limit of 
the design of Pope is around the ratio to the normal time given 
by Pr and Pw: (Pr − Pw)  . An approximate calculation can be 
performed when designing with consideration of the collective 
movement efficiency. However, it is necessary to consider that 
Pr − Pw is 1.1−0.9 to 1.4−0.6, and 2.0−0.0 are smaller than this 

relation, and 1.0−1.0, 1.5−0.5, and 1.9−0.1 are larger than this 
relation. 

 
Fig. 4. Parameter characteristics in collective movement. In any ratio, the 

function shape changes when the error is around ten. Collective movement 
can be achieved in a function below this value. 

 
Fig. 5. Velocity chart of a leader and followers. The black line denotes the 

leader’s velocity, which moves at 100 pixel/s; the red and green lines are the 

followers’ average velocity and maximum/minimum velocity. 

 
Fig. 6. Trajectory of the swarm robot applying the proposed method in an 

open environment. The circles are the final positions of each agent. The line 
extending from the circle center is the trajectory of the agent (the red line is 

the leader; the black line is the follower). 
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Fig. 5 and 6 show the velocity and coordinates when Pr, Pw 
is set to 1.5, 0.5, which is the median value of the parameter 
setting range, and Pope is set to 0.5 as a state of collective 
mobility. In Fig. 5, because the followers change velocity 
independently of the leader’s velocity, there is always a large 
error. Nevertheless, the average value converges to the leader’s 
velocity. Additionally, because the trajectory is similar 
between the leader and followers in Fig. 6, the collective 
movement maintaining the shape is achieved. 

B. Collective Movement in an Environment with Obstacles 

In the previous experiment, we confirmed the state of the 
collective movement using the median of the parameters. Here, 
we compare the “synthetic” collective movement by the 
proposed method. The proposed method enables movement 
while maintaining the aggregation shape in an open 
environment, and it enables movement of the aggregation by 
changing the shape in an environment with obstacles. To verify 
these functions, the swarm robot collectively moved in the 
environment shown in Fig. 7(a), and the latter state was 
observed (the former state was already observed in the 
previous experiment). 

The results of Figs. 7(a) and (b) show that a part of the 
swarm that detected the obstacle (that is, the thermal energy 
increased), moved to the rear of the aggregation and achieved 
collision avoidance. Next, the results in Figs. 7(c) to (d) show 
that the agent avoiding obstacle re-aggregated, formed a 
hexagonal-lattice, and moved. 

From the results of the previous experiment and this 
experiment, the proposed method achieved collective 
movement with both solidity and flexibility. However, when 
avoiding obstacles, some agents collided with other agents 
and/or obstacles. This is because the upper limit of the 
proposed model depends on the maximum moving speed of the 
agent; there is not sufficient motion to handle it. Therefore, this 
problem must be solved by virtually enlarging the agent’s 
diameter. 

 
Fig. 7. Time series variation of environment with collective movement. t is 

the elapsed time. Red circle and yellow circles are the leader and followers, 
and black rectangles are obstacles. The leader moves along the red arrow 

while following the followers. 

VII. CONCLUSION 

In this paper, we proposed a swarm-robot collective 
movement method that does not require global information 
based on a thermodynamic model. The proposed method 
enables collective movement of a swarm in both a clear 
environment and one with obstacles by operating an agent. The 
method is expressed by a local mathematical model conveying 
solidity and flexibility. It focuses on the internal energy, which 
is the micro-operation of thermodynamics. These solidity and 
flexibility properties enable realization of swarm-robot 
collective movement while maintaining a formation and 
changing an aggregation shape corresponding to obstacles. In 
addition, the swarm can collectively move by moving one unit 
(leader) controlled by the operator. 

Simulation results showed that the proposed method moved 
the whole swarm robot while maintaining the aggregation 
shape in an open environment, and it flexibly changed the 
shape in an environment with obstacles. It was determined that 
the collective movement efficiency of the method can be 
adjusted by the ratio of the potential model required for the 
collective movement. Thus, the method is expected to be 
applicable to searching unfamiliar environments. In the future, 
consideration of remote operation, environmental condition 
recognition, and other attributes is needed to complete this 
application system. 

Limitations exist, however. Agents collided with other 
agents and/or obstacles in an environment with obstacles. 
Because the proposed method was limited to the robot’s 
maximum velocity, it thus did not ideally work. This problem 
must be solved before actual machine experiments. One 
solution may be to virtually expand the agent diameter. 
Furthermore, this study did not examine parameters and 
functions for thermal motion, and the operation of the shape 
changing is unconfirmed. These aspects will be addressed in 
future work. 
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