
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

184 | P a g e

www.ijacsa.thesai.org

Teaching Programming to Students in other Fields

Ivaylo Donchev

Department of Information Technologies

St Cyril and St Methodius University of Veliko Tarnovo

Veliko Tarnovo, Bulgaria

Emilia Todorova

Department of Information Technologies

St Cyril and St Methodius University of Veliko Tarnovo

Veliko Tarnovo, Bulgaria

Abstract—It is a fact that programming is difficult to learn.

On the other hand, programming skills are essential for each

program in the field of computing and must be covered in the

curriculum, regardless of the profile. Our experience in the last

3-4 years shows a noticeable downward trend in students’ results

in computer science and similar programs. In this article, we

comment on the reasons that have led to such a decline and we

are looking for solutions by experimenting with motivated

students from other areas of knowledge and comparing their

progress in mastering basic concepts and mechanisms of

programming with that of computer specialists.

Keywords—Programming curricula; objects-first; teaching

programming; object-oriented; education; programming; problem

solving skills; politology

I. INTRODUCTION

As a result of the modified admission model, there is
already a significant number of students in the undergraduate
programs at the Faculty of Mathematics and Informatics (FMI)
at our university who do not have a good basis for studying the
abstract matter of programming and the results shown are
noticeably weaker than those of 5 or 6 years ago. Admission is
now possible without a pre-selection through a math or
informatics competition to ensure an acceptable level of
problem solving skills and mathematical background. The
courses thus formed are no longer a homogeneous group, and
the differences in the level of knowledge and skills acquired
and the potentialities, motivations and expectations of
individual students are great. This challenge for teachers
requires consideration and changes in the teaching
methodology.

The lower level of applicants is mainly due to weaknesses
in primary and secondary education. In different schools, even
if they have the same profile, in the lessons of Informatics and
Information Technology different material is studied, most
often in line with the teacher's competences, and not with the
pupils' specificities. Due to shortage of staff in education
finding well-trained teachers is also a problem that is expected
to deepen further in the coming years as there is a lack of
interest at national level in programs preparing mathematics
and computer science teachers.

Another negative factor for us is the tendency students from
mathematical high schools, whose training is significantly
better, to go to universities abroad believing that they will
receive better education there. The motivation of a part of our
students is only high incomes in the IT sector, without taking
into account the necessary knowledge and skills to provide
these incomes. Quite often this is accompanied by a

misconception about IT technology – it is not uncommon for
an IT professional to be considered a person who can install
and customize an operating system and work with an office
package. No account is taken of the fact that work with ready-
made applications is not sufficient for a highly remunerated
position.

Increasingly, computing in general and programming in
particular are essential for students in other fields [1, p. 40].
Through them it is easy to develop critical thinking and
problem solving skills that all students need to develop
throughout their undergraduate career. Despite the accumulated
more than 60 years of experience, however, teaching
programming is still considered quite a challenge [11, p. 111]
especially with regard to introductory courses [12]. Many
researchers refer to learning programming as extremely
difficult activity [13], [14]. Our faculty traditionally provides
training of students from other faculties in elective and
facultative disciplines related to informatics and information
technologies. Our observation, in particular, of our
longstanding work with students from Politology
undergraduate program held by the Faculty of Philosophy
shows that they are smart, literate and disciplined and can learn
almost everything if it is properly presented to them. Believing
that programming may be useful for students from other areas
of study who wish to use it as a tool in cross-disciplinary work
[1, p. 42], we decided to experimentally teach programming in
the eighth semester (of eight semesters) in two consecutive
academic years (2015-2016 and 2016-2017), with the consent
of both students and teaching department.

Our hypothesis is that by solving simple, carefully selected
practical tasks using pure object-oriented language, it is
possible for a limited number of lessons and more
extracurricular work to acquire fundamental procedural and
object-oriented programming concepts including data types,
control structures, functions, objects, classes, inheritance, and
polymorphism, as well as design concepts and principles like
abstraction, decomposition, encapsulation and information
hiding, separation of behavior and implementation. The
experience from this experiment will help us to decide how to
reorganize our CS1 and CS2 courses to improve the knowledge
and results of our students at the Faculty of Mathematics and
Informatics (FMI).

The article is further structured as follows. In Section II we
review the model of training in the introductory courses in
computer science programs at our faculty. In Section III we
argue the changes we have made in the Computer Technology
course in order to be able to compare the achievements of
Politology students with those of Informatics students as well

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

185 | P a g e

www.ijacsa.thesai.org

as the teaching methods. In Section IV we analyze the results
of experimental training. In the conclusion, we point out the
possibilities for further development of the experiment and
draw conclusions that experimental training of non-specialists
can help in improving the training of our faculty students.

II. INTRODUCTORY PROGRAMMING COURSES

The bachelor degree programs in the field of computing at
FMI are: Informatics, Computer Science and Software
Engineering. In [2], the six main implementation strategies for
introductory courses are described, covering the first two years
of training that are current today: imperative-first, objects-first,
functional-first, breadth-first, algorithms-first and hardware-
first. We apply the traditional imperative-first model with three
main courses, which sequence, workload and content vary
from one program to another (see Table I).

The Informatics and Computer Science programs use the
C++ hybrid language for introductory courses, which until now
we considered to be a good choice for several reasons:

 In secondary schools this was the most commonly used
language and the students had experience with it;

 The language is powerful enough for both procedural
and object-oriented programming;

 Using a hybrid language is easier to make paradigm
shift from procedural to object-oriented programming;

 Students had a good foundation and coped with the
heavier C++ syntax, including pointer manipulation and
memory management;

 The availability of good textbooks and C++ tools in the
language of our country.

Objects are introduced at the latest to Informatics students.
The course of ADS (Algorithms and Data Structures) here is
entirely procedurally implemented. Computer Science program
introduces the OOP (Object-Oriented Programming) concepts
in the second semester and the ADS course uses them actively.
The algorithms and abstract data structures in the STL library
are also considered here. In the fourth semester a second
language is added: Java. For both programs in the 4th semester
a new paradigm – declarative, is also studied (logic and
functional programming).

Our newest bachelor degree program is Software
Engineering. It is developed in cooperation with IT business
and its curriculum is strongly influenced by its specific needs.
It started in 2016-2017 academic year. Here the first language
is the pure object-oriented C#, but again the procedural
concepts are first studied. The OOP course in the second
semester is complemented by .NET Web Development, which
uses the same development environment and the same
language (C#). In the third semester a second language
(optionally and a third) is introduced. The ADS course comes
late in the 4th semester and relies on the already well-trained
C#. The training is complemented by UML, JavaScript, Logic
and Functional Programming Courses, Android Mobile Apps.

TABLE I. CS1-CS2 PROGRAMMING CURRICULA

Program Course / Language
Workload

(lectures/practice)

se
m

e
st

e
r

Informatics

CS1: Foundations of

programming (C++)
45/45 1

CS1: Algorithms and Data

Structures (C++)
45/45 2

CS2: Object-Oriented

Programming (C++)
45/45 4

CS2: Logic Programming

(Prolog)
30/15 4

CS2: Functional

Programming (Lisp/Haskell)
15/15 4

Computer

Science

CS1: Foundations of

programming (C++)
30/30 1

CS1: Programming in C++

(C++)
30/30 2

CS2: Algorithms and Data
Structures (C++)

30/45 3

CS2: Programming in Java

(Java)
30/30 4

CS2: Nonprocedural
programming (Prolog, Lisp)

30/30 4

Software

Engineering

CS1: Introduction to

Programing (C#)
30/60 1

CS1: Object-Oriented

Programming (C#)
30/30 2

CS2: Web Programming

with .NET (C#)
15/45 2

Elective C++ / PHP 15/30 3

Elective Java / Event-driven
programming (C#)

15/30 3

CS2: Algorithms and Data

Structures (C#)
30/45 4

Elective UML / Mobile
Android Applications

15/30 4

Elective JavaScript / Logic

and Functional Programming
15/30 4

For Software Engineering, it is still early to draw
conclusions, but in the other two programs as a result of the
above-mentioned problem with the changed kind of our
students, this model already shows weaknesses and the
curricula need reconstruction. This of course is relevant not
only to the introductory courses.

III. MODIFIED COURSE IN COMPUTER TECHNOLOGY

The elective course ―Computer Technology‖ for the
Politology undergraduate program is in the 8th semester and
has 30 academic hours of lectures and 30 hours of laboratory
lessons – a normal amount for an introductory course in
programming. In our case, however, we wanted to compare
students‘ achievements with those of their Informatics

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

186 | P a g e

www.ijacsa.thesai.org

colleagues who passed the three CS1 courses. It is clear that
even if the last did not make enough effort, with such a
difference in the workload, Informatics students have a great
advantage. If we consider the fact that following the
imperative-first approach with parallel running courses on
Operating Systems and Fundamentals of Informatics, they
learn well the mechanics of running, testing and debugging and
have a clear idea of how a computer is running the program,
how the processor works, what is happening in memory, their
advantage becomes even greater – there is evidence to support
the thesis that students who have inaccurate and incomplete
understanding of the process of implementing a program face
greater difficulties in their learning [3]. An additional
advantage for Informatics students is the study of methods of
program verification according to the methodology described
in [15]. Since this methodology relies on good mathematical
knowledge, we are limited with nonspecialists (Politology
students) only to testing with Visual Studio tools. It makes
sense to compare the achievements of the two groups of
students only by some criteria. We have chosen these to be the
degree of perception of object-oriented concepts and their
application in practice in the design and implementation of
program solutions from a familiar to students‘ problem area. A
natural choice of approach in this case is the object-first
approach that emphasizes the early use of objects and object-
oriented design. This avoids focusing on the syntax of the
programming language and the details of procedural constructs
implementation. A pure object-oriented language is appropriate
for such an approach. We chose C# in order to be able to apply
our experience in Software Engineering bachelor program as
well as to compare the difficulties encountered in the two
groups. The development environment is the same for all
students – Visual Studio. Though this is an industrial integrated
development environment, its code editing features, including
code completion, parameter info, quick info, and member lists,
are extremely helpful in learning syntax and avoiding errors
(both syntactic and logical). The environment encourages
writing good code, has the ability to generate code from UML
diagrams, to refactor and analyze code. In addition, through
this environment students can touch on important aspects of
real-world software development.

It should be noted that objects-first is not a well-defined
term [6]. Different authors have their own understanding of
this concept. It is our understanding that from the very
beginning students have to get a clear idea of the essence of the
two concepts of this paradigm – object and class, to distinguish
between them, to find suitable for modeling classes and objects
in the problem area, to discover and present the relations
between them. Therefore, the first lecture is purely theoretical
and is focused on object-oriented analysis and design.

Our course develops knowledge and skills from the
Software Development Fundamentals (SDF), Programming
Languages (PL) and Software Engineering (SE) knowledge
areas, taught in direct relationship to C# language constructs.
In order to solve practical tasks, little knowledge of Algorithms
and Complexity (AC) is needed, focusing on the use of ready
library implementations – search, sort, select. We will mention
that the SDF knowledge area differs from the old Programming
Fundamentals form CC2001 [2]. It focuses on the entire

software development process, including algorithms and data
structures and basic software development methods and tools.

Given a limited number of hours and our desire to develop
practical skills, lectures do not run in their typical format.
Along with the presented theoretical material, code and
diagrams are loaded in the development environment. The
lecturer develops in live examples, runs, debugs, modifies,
refactors, demonstrates how to use environment tools, analyzes
the quality of code (commented on automatically calculated
code metrics). During lectures practical skills are acquired, not
only theoretical knowledge. Students can ask questions at any
time. The examples shown in the lectures are then further
developed in the laboratory sessions and variations of them are
given for homework tasks.

The sequence of topics is as follows:

1) Overview lecture on object-oriented technology: The

object model – foundations, major elements of this model

(Abstraction, Encapsulation, Modularity, Hierarchy); Classes

and objects – state, behavior and identity of the object;

operations with objects, roles and responsibilities; relations

between classes.

2) Working with variables, operators and expressions –

statements, identifiers, primitive data types, arithmetic

operators, assignment.

3) Creating and managing classes and objects –

encapsulating, defining and using classes, access control;

defining methods (parameters, parameter passing by reference

and by value, out parameters, default value, named

arguments).

4) Using decision statements (if, switch) and iteration

statements (while, for, do).

5) Constructors and destructors: Predefined constructors;

Garbage collection; Static methods and data.

6) Properties (read-only, write-only, auto): Partial class

definitions; Anonymous types; Refactoring.

7) Values and references: Nullable types; the class

System.Object; Organization of memory; Boxing and

unboxing; safe conversion of types.

8) Structures: Enumerations; Arrays; Generic types.

9) Collections: List, Dictionary; Collection initializers,

find methods, predicates, and lambda expressions; Querying

in-memory data using query expressions (LINQ – selecting,

filtering, ordering).

10) Inheritance: Declaring a derived class; Calling

constructors of a base class; Assignments between objects in

class hierarchy.

11) Virtual methods: Polymorphism.

12) Theoretical lecture: Classification; the Importance of

Proper Classification; Identifying Classes and Objects; Key

Abstractions and Mechanisms.

13) Managing: Errors and exceptions.

14) Interfaces: Definition, implementation, referencing a

class via interface, explicit implementation, implementation of

multiple interfaces.

15) Abstract classes: Sealed classes and methods.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

187 | P a g e

www.ijacsa.thesai.org

Two of the lectures are highly theoretical and fully
language independent (1 and 12). The first introduces the
object-oriented technology and the second comes after the
students have gained practical experience in order to
summarize the lessons learned and to provide guidance for its
proper implementation.

The difference with the object-oriented course for Software
Engineering students is that no overloading, extension
methods, reflection, indexers, delegates, events are included
here. These language capabilities, although very useful, are not
key to object-oriented technology. Their lack is not a problem
for the experiment, as the results will be compared to those of
Informatics students who study C++ (the implementation of
such concepts is on a radically different basis). The test tasks
are selected so as not to imply the use of these concepts.

Although our approach is objects-first, in order to be able to
solve practical problems, and students to understand the code
generated by the environment or written by the instructor,
some fundamental programming concepts common to all
paradigms are also introduced early, although not in details.
These are variables and primitive data types, expressions and
assignments, conditional and iterative control structures,
functions and parameter passing.

The laboratory works are mostly focused on the use of C#
features and their application for the implementation of object-
oriented models. We start with .NET and Visual Studio 2015
environment. The examples are an important part of the course
for both labs and lectures. In an object-first curriculum, the
objects presented by the instructor play a key role in motivating
and explaining an object-oriented approach [4]. For this reason,
we chose tasks from everyday life, games and such related to
students' work on case studies in their program (Politology).
The first examples of exercises are semi-finished projects in
which students must add functionality – a method, property, or
change object behavior by modifying an already implemented
functionality. In this way students immediately see the
outcome of their work on the code, and this works
motivatingly. In the examples we try to show good
programming practices without commenting that these are
classic programming patterns, going into details about their
nature and summarizing the situations in which they are
applied. We rely on students to build an intuitive notion. We
took some ideas of tasks of those presented at the Nifty
Assignments session at the annual SIGCSE meeting [5]. Some
examples are developed and expanded into several lectures and
exercises, and in the process of study of a new concept or
mechanism the implementation changes (and sometimes the
overall design). Such is the example of the card game
discussed in [7].

When starting a new task, first, with the help of the
instructor, object-oriented analysis of the problem area is made,
the classes and objects are designed, the use cases are
examined, which helps to clarify the roles and responsibilities
of the objects. To document ideas and design, we use a
lightweight and often informal UML notation. We rely,
especially in the initial exercises, on wizards to create classes
and their components, including those made from class
diagrams. This helps a lot in avoiding syntax errors and

learning a good style of writing and structuring code. Another
very useful feature of Visual Studio is Code Snippets that are
designed and used by professionals as a means of speeding up
code writing, but in our case the benefit of them in
combination with code completion, parameter info, quick info,
and member lists was rather in the direction of learning the
syntax of the language and avoiding syntax errors.

In the laboratory work we apply pair programming, which
has long been used in industry [8] and is increasingly applied
in training. Research has shown that it improves both code
quality and efficiency of student pairs compared to individual
work [9], [10]. This was also useful in extracurricular work,
which we relied on to compensate for the smaller number of
lesson for lectures and exercises compared to this for the
informatics students. Learning to work in pairs, discussing
tasks, tracking the work of their partner, changing their roles,
have worked well in developing homework projects in teams of
2 or 3 students.

IV. ANALYSIS OF LEARNING OUTCOMES

Prior to conducting this experimental training, we
conducted pedagogical studies with students from FMI to track
the degree of mastering of key concepts and mechanisms in
programming. Informatics and Computer Science students
from upper classes have also been observed, that is a delayed
check. The results show a good and comparatively persistent
level of proficiency in procedural concepts, but more problems
with object-oriented design. The concepts of a class and an
object are perceived almost entirely from a language point of
view – the class is a user-defined data type, and the object is a
variable of that type. Definition of individual classes and
implementation of their methods according to a predetermined
exact specification do not hinder students (about 80% of them),
but there are serious difficulties in creating an adequate object-
oriented model of a problem area, finding the necessary classes
and the exact relationships between them, building
communication between objects (only 30% do well with this
task). We attribute these results to the imperative-first model
applied to the training of these students.

In order not to stress the Politology students with multiple
tests and quizzes, in the experimental training we did not
conduct a three-stage classical pedagogical experiment to
formally compare their achievements with those of Informatics
students. Due to the small number involved, the statistical
processing of data from such an experiment would not yield
reliable results. Instead of this, we gathered empirical data
from teachers‘ notes of activity during the sessions,
achievements, difficulties encountered by each student, results
of homeworks, a test and a final test, the same for the
―specialists‖ (Informatics undergraduate program who play the
role of the control group) and ―non-specialists‖ (4th year
Politology students). Both tests involved solving a task on a
computer.

The results shown in the final test (on one and the same
problems) are similar to the average result with a slight lead in
favor of the Politology students (Table II), but here we have to
keep in mind that the test was so prepared as to cover only the
material that they know best.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

188 | P a g e

www.ijacsa.thesai.org

TABLE II. TEST RESULTS

Grade
Politology Informatics

First Test Final Test Final Test

A 16% 18% 23%

B 46% 46% 23%

C 22% 20% 12%

D 12% 14% 27%

F 4% 2% 15%

It is noteworthy the low number of poor assessments of
Politology students, as well as the rather high number of F and
D grades for the Informatics students. There is no clearly
expressed average level among the second – the largest groups
are those of excellent and poor marks. We believe that this is
due to the free admission to the program. Some of the
undergraduates drop out after the second year and look for a
job elsewhere. In the group of Politology students, predominate
estimates B, with the percentage of A being also high (18% of
the final test). Poor scores are a minimum – 2 on the first test
and 1 on the second. We attribute this to the efforts all made
and their responsible approach to the tasks.

Our observations of lectures and exercises, teamwork on
projects, and analysis of scripts we can determine as common
difficulties for ―nonspecialists‖, which lead to the bound up
with them mistakes in logic and design, the following:

 Passing of parameters to a function – ref and out
parameters.

 Constructing more complex Boolean expressions.

 They do not understand the essence of the task and from
there they cannot judge when to use static components
of the classes.

 They do not detect quickly when polymorphism is
suitable for use, but start solving using conditional
logic.

 Casting and type conversions (including boxing and
unboxing).

 Using an interface as a type.

Compared to the Software Engineering students who study
the same language, nonspecialists find it more difficult to use
procedural constructs of C#. This is natural, as this is an
introductory course for them. Thanks to the Visual Studio
environment, we have reduced not only syntax errors but also
some other often noticed in the past – defining a variable from
a missing class, calling a missing method, a field of undefined
or inaccessible type, an attempt to access private components.
The environment immediately notifies of such situations.

Politology students are dealing better with design and, in
particular, with choosing the right relationships between related
classes. Informatics students often confuse and generally prefer
inheritance as a key concept for object oriented programming
without exploring the possibility of implementation with a
lighter mechanism. Inheritance is often used only as a means of
achieving re-usability of code without the presence of true ―is-
a‖ relationship between classes. Informaticians in turn are
better at working with generic types and algorithms.

Looking for success indicators, we conducted a poll about
the school the students graduated from, their results in Maths,
Informatics, Information Technologies, as well as average
grade from school and average grade at the university. For the
specialists, we also studied their exam results at our faculty. An
indisputable indicator of success in studying programming for
both groups of students has been good Maths results. Maths
skills help to cope with the high degree of abstraction of the
material studied and the building of proper models and
algorithms. Among Politology students, there were also some
who graduated from mathematical high schools and some of
the concepts (mainly procedural) studied there were familiar to
them. It was easier for them to build upon their old knowledge.
High results in programming have been shown by students
who have high average grades at the university. This shows
that programming is not that difficult if one is ready to make
efforts. For the Informaticians expectedly a high correlation
between the results in Fundamentals of Informatics,
Fundamentals of Programming and Object-Oriented
Programming was found.

V. CONCLUSION

The results achieved give us reasons to believe that the
experimental training was successful. Politology students have
mastered enough of the basic concepts and acquired practical
programming skills. It will be interesting to track if some of
them will change their profession and with additional
qualification in the master degree to effectuate in the field of
software development.

In the future, we are preparing to expand the experiment
with formal statistical processing of accumulated empirical
data, and to include experimental training in ―Operating
Systems‖ of students from the newly created hybrid faculties of
Applied Linguistics and IT and History and IT, and also to
compare the achievements with those of Informatics students.

As long as we cannot influence the quality of our students‘
selection, we will try to apply the accumulated teaching
experience and successful methods of training non-specialists
to the introductory courses of the computer specialties where,
as we have discussed above, in recent years, we have very
heterogeneous in interests and potential students.

The first conclusion is that it is necessary to replace the
C++ language with C# and go entirely to objects-first
approach. We expect this to bring good results for weaker
students once it has worked with non-professionals. C# is
easier for first language, especially for object oriented
programming.

Efforts should also be made towards motivating students‘
learning and their greater engagement in the learning process.
This is possible by selecting examples and solving tasks,
working on semi-finished projects so that the results of the
work are immediately visible. We will give up all
mathematical tasks and focus on more entertaining samples for
students, like examples in [5].

Another useful technique that we will apply is
programming in pairs in lab sessions and working in small
teams on homework projects. In the experiment, the Politology

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

189 | P a g e

www.ijacsa.thesai.org

students‘ teamwork helped weaker members of the teams to
gain confidence and fill the gaps in their knowledge.

In spite of the sufficient number of academic hours for
programming in computer programs, we believe that it will be
beneficial to engage students with more extracurricular
activities including work on a course project from the first year
of study.

REFERENCES

[1] Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society, Computer Science
Curricula 2013. Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science, ACM, New York, 2013

[2] Joint Task Force on Computing Curricula, Association for Computing
Machinery (ACM) and IEEE Computer Society, Computing Curricula
2001. Computer Science. Final Report,
http://www.acm.org/education/education/education/curric_vols/cc2001.
pdf

[3] Ma, L., Ferguson, J., Roper, M., Wood, M., Investigating and improving
the models of programming concepts held by novice programmers,
Computer Science Education 21 (1), pp. 57 – 80, 2011

[4] Hummel, J., Caspersen, M., Alphonce, C., Hansen. St., Bergin, J.,
Heliotis, J., Kölling, M., Nifty Objects for CS0 and CS1, ACM SIGCSE
Bulletin - SIGCSE 08 Volume 40 Issue 1, March 2008, pp. 437-438,
ACM New York

[5] Nifty Assignments, http://nifty.stanford.edu/

[6] Bennedsen, J., Caspersen, M., Model-Driven Programming, in
Reflections on the Teaching of Programming, LNCS 4821, pp. 116–129,
2008, Springer-Verlag, Berlin, Heidelberg, 2008

[7] Sharp, J., Microsoft Visual C# 2013 Step by Step (Step by Step
Developer), Microsoft Press, 2013

[8] Cockburn, A., Williams, L., The Costs and Benefits of Pair
Programming, Extreme Programming Examined, Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2001, pp. 223–243

[9] McDowell, Ch., Werner, L., Bullock, H., Fernald, J., The Effects of
Pair-Programming on Performance in an Introductory Programming
Course, In Proceedings of the 33rd ACM Technical Symposium on
Computer Science Education (SIGCSE ‗02), Cincinnati, Kentucky —
February 27 – March 03, ACM, New York, 2002, pp. 38–42

[10] Radermacher, A., Walia, G., Investigating the Effective Implementation
of Pair Programming: An Empirical Investigation. In: Proceedings of the
42nd ACM Technical Symposium on Computer Science Education
(SIGCSE ‗11), Dallas, TX, USA — March 09 - 12, 2011, ACM New
York, 2011, pp. 655–660

[11] Caspersen, M., Bennedsen, J. (2007). Instructional design of a
programming course: a learning theoretic approach. In: Proceedings of
the Third International Workshop on Computing Education Research,
Atlanta, Georgia, USA, pp. 111–122.

[12] Meyer B. (2004) The Outside-In Method of Teaching Introductory
Programming. In: Broy M., Zamulin A.V. (eds) Perspectives of System
Informatics. PSI 2003. Lecture Notes in Computer Science, vol 2890.
Springer, Berlin, Heidelberg, pp. 66–78.

[13] Simon, S., Fincher, S., Robins, A., Baker, B, Box, I., Cutts, Q., de
Raadt., M., Haden, P., Hamer, J., Hamilton, M., Lister, R., Petre, M.,
Sutton, K., Tolhurst, D., Tutty, J. (2006). Predictors of success in a first
programming course. In: ACM International Conference Proceeding
Series; Proceedings of the 8th Australian conference on Computing
Education, Hobart, Tasmania, Australia, pp. 189–196.

[14] Gomes, A., Mendes, A. (2007). Learning to program – difficulties and
solutions. In: Proceedings of the 2007 International Convergence on
Engineering Education, Coimbra, Portugal.

[15] Todorova. M., Applying Program Verification Methods in Software
Specialists Education, 7th International Technology, Education and
Development Conference, Valencia, Spain, 2013, pp. 6260-6270.

