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Abstract—The tree-hypercube (TH) interconnection network 

is relatively a new interconnection network, which is constructed 

from tree and hypercube topologies. TH is developed to support 

parallel algorithms for solving computation and communication 

intensive problems. In this paper, we propose a new parallel 

multiplication algorithm on TH network to present broadcast 

communication operation for TH using store-and-forward 

technique, namely, one-to-all broadcast operation which allows a 

message to be transmitted through the shortest path from the 

source node to all other nodes. The proposed algorithm is 

implemented and evaluated in terms of running time, efficiency 

and speedup with different data size using IMAN1. The 

experimental results show that the runtime, efficiency and the 

speedup of the proposed algorithm decrease as a number of 

processors increases for all cases of matrices size of 10001000, 

20002000, and 40004000. 
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I. INTRODUCTION 

Parallel matrix multiplication is considered as a backbone 
for several scientific applications. Many studies developed 
matrix multiplication from different perspective in [3], [6], 
[7], [10], [14] the authors studied the limitation bandwidth for 
memory-processor through communication and how to reduce 
the gap between memory and processor speed, they present a 
communication efficient mapping of a large-scale matrix 
multiplication algorithm. In [1] parallel matrix multiplication 
algorithm on hypercube multiprocessors, while in [2], [5], [6] 
the authors applied a matrix multiplication with a hypercube 
algorithm on multi-core processor cluster. In [3] the author 
proposed a Distribution-Independent Matrix Multiplication 
Algorithm called DIMMA which is new, fast, and scalable 
matrix multiplication algorithm, for block cyclic data 
distribution on distributed-memory concurrent computers. In 
this paper we apply matrix multiplication on tree-hypercube 
which was used before in adaptive fault tolerate in routing 
algorithm [8], [11], [12], [17]. 

Many proposals for matrix multiplication algorithms were 
done on different networks type whether it was homogeneous 

or heterogeneous in order to reduce the time drastically to 
improve the system performance. Matrix multiplication needs 
high computation time especially when the size of the matrix 
becomes huge, therefore some problems need years to be 
solved using a personal computer. The interconnection 
networks are the core of a parallel processing system which 
the system’s processors are linked. Due to the big role played 
by the networks topology to improve the parallel system’s 
performance, several interconnection network topologies have 
been proposed for that purpose; such as the tree, hypercube, 
mesh, ring, and Hex-Cell (HC) [12], [13], [16]. 

Among the wide variety of interconnection networks 
structures proposed for parallel computing systems is Tree-
Hypercube network which received much attention due to the 
attractive properties inherited in their topology [4], [8], [9], 
[15]. 

This paper aimed to design and analyze efficient matrix 
multiplication algorithm on tree-hypercube network. 
Experimentation of the proposed algorithm was conducted 
using IMAN1 supercomputer which is Jordan's first 
supercomputer. The IMAN1 is available for use by academia 
and industry in Jordan and the region. 

The rest of the paper is organized as follows. Section 2 
summarizes the definition of Tree-Hypercube network. In 
Section 3 the proposed algorithm is explained, Section 4 is an 
overview of sequential and parallel matrix multiplication is 
discussed.  In Section 5, the evaluation results are illustrated. 
Finally, section 6 is the conclusion for the paper. 

II. DEFINITION OF TREE-HYPERCUBE NETWORK 

Tree-hypercube can be defined as follows: each node is 
labelled with the level number (L) and the node number (X) 
with the form (L,X). It is mainly a tree which represents a 
hypercube in each level because each level i in tree has s(i) 
nodes that represents the number of processing element as a 
hypercube [4], [9]. For very level L between 0 and d, each 
node (L,X) in level L, where X= X(d logs)-1……X0 is 
adjacent to the following s children nodes at level L+1 (L+1, 
X.a) for a =0,…..,s-1 as shown in Fig. 1(a) and (b) [8]. 
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(a) 

 
(b) 

Fig. 1. Tree-hypercube (a) TH (2,2) and (b) TH (2,3). 

III. PROPOSED ALGORITHM 

Matrix multiplication is a simple and widely used 
algorithm in many scientific applications. Matrix 
multiplication is well structured in the sense that elements of 
the matrices can be evenly distributed to the nodes and 
communication among nodes which have regular pattern. 
Therefore, exploiting data parallelism based on message 
passing is suitable for solving the matrix multiplication 
problem. Fig. 2 shows a sequential algorithm of an n x n 
matrix multiplication consisting of three nested loops. As can 
be seen, the complicity of the algorithm is n3. 

Matrix-Multiplication(A,B) 

n =A.rows 

Let C be a new nn matrix  

For i=1 to n 

For j=1 to n 

Cij=0 

For k=1 to n 

Cij=Cij + aik bkj 

 

Fig. 2. A Sequential Multiplication Algorithm for two matrices [18]. 

In this section, we propose a new Parallel Matrix 
Multiplication Algorithm on Tree-Hypercube Network Using 
IMAN1 Supercomputer. The data distribution for matrix 
multiplication can be divided either striped partitioning or 
checkerboard partitioning. We use a block striped partitioning 
distribution to study the performance of message passing 
execution model. The column wise block striping of an (n x n) 
matrix on p processors (P0, P1, …, Pp-1) processor Pi 
contains columns: (n/p) (i), ((n/p) i)+1, …, ((n/p) (i+1)) – 1 
[5].The proposed parallel matrix multiplication algorithm on 
Tree-Hypercube network consists of three stages as shown in 
Fig. 3. The first stage shows the distribution of data among 
nodes (processors), second stage describe the multiplication 
process at each processor, and finally the third stage represent 
the collecting the data. 

Input: Matrix A and B 

Output: Matrix C on Tree-Hypercube using parallel 

Matrix Multiplication 

Stage 1: Broadcast matrix A and B 

 

1. CN (Coordinator Node) generates a set of blocks of Matrix 

A. 

2. CN generates a set of blocks according to the Matrix B. 

 

3. Wait for acknowledgment message from the coordinator 

who received the data. 

 

4. Send a message for the CN informing the process 

completion. 

 

5. CN stops the process of distribution and announces the 

beginning of the next Stage  

 

Stage 2: Do the multiplication in parallel 

 

6. Multiply the stripes of matrix A with stripes of Matrix B 

(for each block) of data. 

 

7. Using sequential matrix Multiplication. Where all 

processors perform Cij ∑           
   

   
 

 

Stage 3: Collecting the data 

A- Global Data Combining 

 

8. In each level in the Tree-Hypercube interconnection, send 

in parallel the multiplication matrix to the TH root nodes. 

 

B- Combining Data in the Tree-Hypercube root nodes 

 

9. CN combines the collected matrices correctly from roots 

nodes in matrix C. 

 

10. Exit 

Fig. 3. Pseudocode Tree-Hypercube Algorithm for Matrix Multiplication. 
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Fig. 4. Parallel matrix multiplication tree-hypercube view. 

Fig. 4 shows one-to-all broadcast on a Tree-Hypercube 
(2,3). Broadcast communication operations are used in many 
parallel algorithms; such as vector-matrix multiplication, 
vector-vector multiplication, matrix multiplication, Gaussian 
elimination, shortest paths, LU (lower–upper) factorization, 
maximal vectors and prefix sums. Our one-to-all broadcast 
algorithms on TH network are based on the E-Cube routing 
algorithm, where this routing algorithm can be found in [1]. 
Each node can send a message while receiving another 
message on the same or different link; that is bidirectional 
links are used. Also, it can send or receive a message on only 
one of its links at a time. Moreover, a store-and-forward 
routing technique is used, where each intermediate node must 
fully receive and store the entire message before sending it to 
the next node. Fig. 4 presents one-to-all broadcast algorithm 
which can be defined as broadcasting a message from a source 
node to all other nodes in the network. Respectively, in matrix 
multiplication which is applied in tree hypercube, the 
coordinator creates the partitions depending on the number of 
processors and the matrix size, once the data is received by 
any processor it takes the part that it is responsible for and 
then resends it again to the nodes that has a direct link with it. 
In TH sending data acts as hypercube in each level, after the 
data distribution is done. Each processor does it is own 
computations and sends back the result to the parent from 
which it got the data until all data is accumulated and sent 
back to the coordinator. 

A. Partition Procedure Analysis 

In the first partitioning of the original array will take n/p, 
assuming the partitioning is always balanced i.e. the number 
of columns or the numbers of rows are equal to the number of 
processors. 

In our tree-hypercube network only one processor has 
data, which is called the coordinator. In the first step part of 
data will be sent from the coordinator to the directly connected 
processor, secondly, both processors will start sending other 
parts of data to the processors that are connected directly to 

them. TH (2,2), each processor will receive a row form matrix 
A and a column from matrix B, assuming the matrix size is 
7x7. Canon algorithm is a distributed algorithm for matrix 
multiplication for two-dimensional meshes. It is especially 
suitable for computers laid out in an N × N mesh and it works 
well in homogeneous 2D grids, so the main advantage of the 
algorithm is that its storage requirements remain constant and 
are independent on the number of processors. As shown in 
Fig. 5, the matrix multiplication using Canon algorithm with 
49 processor, it aligns the blocks of A and B in such a way 
that each process multiplies its local sub-matrices. This is 
done by shifting all sub-matrices Ai,j to the left (with 
wraparound) by i steps and all sub-matrices Bi,j up (with 
wraparound) by j steps [5]. 

B. Parallel Analysis 

Parallel matrix multiplication is analyzed according to the 
communication time, computation time and complexity. 
Communication steps involve the distribution of data splitter 
between the processors, and gathering results. First of all, the 
number of processors will affect both the data scatter and the 
communication time, to calculate the initialization time for the 
tree-hypercube TH. The initialization time will equal the 
number of steps to distribute data between the processor units. 
We need 4 steps to scatter data among 7 processors and 6 
steps for 15 processors, so we need (2L) for initialization time 
and the same time to gather the results from all processors. So, 
the total communication time equals (2L). 

Complexity is the time required to perform matrix 
multiplication in each processor for data size (n/p) which is 
required for all processors, this means each processor needs 
(n/p) x (   ) time, which makes the total complexity ((   )/p). 

Execution time depends on the number of processor and 
the size of data as discussed previously the complexity is the 
time needed for multiplication and the communication time 
which is (2L) + ((   ) / (   )). 

 

Fig. 5. Initial data distribution of matrix A 77, B 77 and C 77 on 49 
processors (2,2). 
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IV. EVOLUTION RESULT 

Results are evaluated in terms of speedup, running time 
and the parallel efficiency of matrix multiplication. The 
proposed parallel matrix multiplication on the Tree-Hypercube 
network is implemented by the library Message Passing 
Interface MPI, in which MPI processes are assigned to the 
cores. It will be parallel computation if the MPI process is 
assigned to a core; but if more than one MPI process is 
assigned to the same core, then it will be concurrent 
computation. These results were produced in IMAN1 Zaina 
cluster. Also, open access MPI library was used in our 
implementation. The experiment was applied on tree-
hypercube topology with different size of matrices and 
different number of processors in reference to the number of 
nodes in a tree-hypercube, for example in the below table the 
number of processors represent the number of nodes inside 
tree-hypercube definition. After running this experiment 
multiple times, the average was taken as result. The hardware 
and software specifications are illustrated in Table I. 

TABLE I. HARDWARE AND SOFTWARE SPECIFICATION 

Hardware specification 
Dual Quad Core Intel Xeon CPU with SMP 

16 GB RAM 

Software specification  
Scientific Linux 6.4 with open MPI1.5.4 

and C++ compiler  

Matrix size  1000x1000, 2000x2000,4000x4000 

Number of processors  1,3,7,15,31 

A. Run Time Evaluation 

Fig. 6 depicts run time for sequential matrix multiplication 

in different size 10001000, 20002000 and 40004000 we 
can see as the matrix size increase the runtime increases 
proportionally. 

Fig. 7 shows the run time for Parallel matrix multiplication 

in different sizes 10001000, 20002000 and 40004000 as 
illustrated in Fig. 7 when the number of processes increases 
the time needed for multiplication decreases. On the other 
hand, as shown below the run time at a certain number of 
processes will stop decreasing because the problem becomes 
smaller than the number of processors and the communication 
time will increase because this will cause an overhead, the 
general behaviour can be summarized with the following 
points: 

Scenario 1: When the processors number increases the run 
time decreases due to parallelism and distribution of tasks on 
more than one processor that are working together at the same 
time. (This case is applied when we move from 3 processors 
to 31 processors.) 

Scenario 2: When the processors number increases the run 
time increases due to communication overhead which is 
caused from increasing the number of processors more than a 
specific data size which in its turn decreases the benefits of the 
parallelism. (This case is applied when we move from 15 

processors to 31 processors in 10001000 matrices and also 
may occur in number of processors larger than 31 in 

20002000 and 40004000 matrices.) 

 
Fig. 6. Runtime for sequential matrix multiplication with different matrix 

size. 

 

Fig. 7. Runtime of matrix multiplication according to the number of 

processors and with different matrix size. 

B. Speed up Evaluation 

The speedup is the ratio of serial to parallel execution time 
as depicted in Fig. 8. Using (1) the number of processors 
values tested were 3,7,15 and 31. The speedup increases when 
the number of processors increases but this is not always 
applicable because we have limitations for parallelism that 

appears in matrices with size 10001000. 

Speedup = sequential processing time/ parallel processing 

time             (1) 

 
Fig. 8. The Speedup of the three different sizes of matrices on different 

number of processors. 
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C. Parallel Efficiency Evaluation 

Efficiency is the ratio of speedup to the number of 
processors. In an ideal parallel system S=P and E=1 but in 
practice S<P and E is between 0 and 1. Equation 2 is used to 
calculate the efficiency. Fig. 9 displays the parallel efficiency 
for matrix multiplication according to different number of 
processors and different matrix size. In small numbers of 
processors between (3 and 7) efficiency was 97% for all 

matrix multiplication of matrix size 40004000. On the other 
hand, when the number of processors increased between (15 
and 31) efficiency started to decrease i.e. reached 8% in 

10001000 with 31 processors because the communication 
time will increase between the processes. Total 
communication time equals (2L), so the communication time 
will increase when the number of processors increases. 

The reason why the efficiency goes down, is that the 
communication time equals 2L where L is number of levels 
for tree hypercube, as long as the communications processes 
are increasing the communication time will increase for 
example when the number of processers is 3 the 
communication time will be 2 on the other hand when we 
have 31 processors the communication time will be 8 seconds 
for the same data size. Also, as seen in equation 2 the number 
of processes is in inverse relationship with efficiency. 

Efficiency = speedup / number of processors          (2) 

 
Fig. 9. Efficiency of the three different sizes of matrices on different number 

of processors. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we present Matrix multiplication using tree-
hypercube in terms of running time, speedup and efficiency. 
The algorithm was implemented using MPI library, and the 
results were produced by IMAN1 super computer. The 
evaluation was based on matrix size and number of 
processors. Results showed that runtime was in general 
decreasing when the processer’s number is increased except 

for matrix size 10001000 when the number of processors 
exceeded 15 the runtime increased because of the 
communication overhead. The speedup in all different 
matrices size increased when the number of processors 
increased except for the cases in which the communication 
overhead increases. We achieved up to 97% efficiency in large 

matrices such as 40004000 sized matrix. 

In our future work we are aiming to proceed with a 
comparative study for matrix multiplication using different 
interconnection networks and it will be applied also on 
different algorithms such as sorting, then see the performance 
for each and compare the results with different studies. 
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