
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

201 | P a g e

www.ijacsa.thesai.org

A New Parallel Matrix Multiplication Algorithm on

Tree-Hypercube Network using IMAN1

Supercomputer

Orieb AbuAlghanam,

Mohammad Qatawneh

Computer Science Department

University of Jordan

Amman-Jordan

Hussein A. al Ofeishat

Computer Science Department

Al-Balqa applied university Jordan

Amman-Jordan

Omar Adwan, Ammar Huneiti

Computer Information Systems

University of Jordan

Amman-Jordan

Abstract—The tree-hypercube (TH) interconnection network

is relatively a new interconnection network, which is constructed

from tree and hypercube topologies. TH is developed to support

parallel algorithms for solving computation and communication

intensive problems. In this paper, we propose a new parallel

multiplication algorithm on TH network to present broadcast

communication operation for TH using store-and-forward

technique, namely, one-to-all broadcast operation which allows a

message to be transmitted through the shortest path from the

source node to all other nodes. The proposed algorithm is

implemented and evaluated in terms of running time, efficiency

and speedup with different data size using IMAN1. The

experimental results show that the runtime, efficiency and the

speedup of the proposed algorithm decrease as a number of

processors increases for all cases of matrices size of 10001000,

20002000, and 40004000.

Keywords—MPI; supercomputer; tree-hypercube; matrix

multiplication

I. INTRODUCTION

Parallel matrix multiplication is considered as a backbone
for several scientific applications. Many studies developed
matrix multiplication from different perspective in [3], [6],
[7], [10], [14] the authors studied the limitation bandwidth for
memory-processor through communication and how to reduce
the gap between memory and processor speed, they present a
communication efficient mapping of a large-scale matrix
multiplication algorithm. In [1] parallel matrix multiplication
algorithm on hypercube multiprocessors, while in [2], [5], [6]
the authors applied a matrix multiplication with a hypercube
algorithm on multi-core processor cluster. In [3] the author
proposed a Distribution-Independent Matrix Multiplication
Algorithm called DIMMA which is new, fast, and scalable
matrix multiplication algorithm, for block cyclic data
distribution on distributed-memory concurrent computers. In
this paper we apply matrix multiplication on tree-hypercube
which was used before in adaptive fault tolerate in routing
algorithm [8], [11], [12], [17].

Many proposals for matrix multiplication algorithms were
done on different networks type whether it was homogeneous

or heterogeneous in order to reduce the time drastically to
improve the system performance. Matrix multiplication needs
high computation time especially when the size of the matrix
becomes huge, therefore some problems need years to be
solved using a personal computer. The interconnection
networks are the core of a parallel processing system which
the system’s processors are linked. Due to the big role played
by the networks topology to improve the parallel system’s
performance, several interconnection network topologies have
been proposed for that purpose; such as the tree, hypercube,
mesh, ring, and Hex-Cell (HC) [12], [13], [16].

Among the wide variety of interconnection networks
structures proposed for parallel computing systems is Tree-
Hypercube network which received much attention due to the
attractive properties inherited in their topology [4], [8], [9],
[15].

This paper aimed to design and analyze efficient matrix
multiplication algorithm on tree-hypercube network.
Experimentation of the proposed algorithm was conducted
using IMAN1 supercomputer which is Jordan's first
supercomputer. The IMAN1 is available for use by academia
and industry in Jordan and the region.

The rest of the paper is organized as follows. Section 2
summarizes the definition of Tree-Hypercube network. In
Section 3 the proposed algorithm is explained, Section 4 is an
overview of sequential and parallel matrix multiplication is
discussed. In Section 5, the evaluation results are illustrated.
Finally, section 6 is the conclusion for the paper.

II. DEFINITION OF TREE-HYPERCUBE NETWORK

Tree-hypercube can be defined as follows: each node is
labelled with the level number (L) and the node number (X)
with the form (L,X). It is mainly a tree which represents a
hypercube in each level because each level i in tree has s(i)
nodes that represents the number of processing element as a
hypercube [4], [9]. For very level L between 0 and d, each
node (L,X) in level L, where X= X(d logs)-1……X0 is
adjacent to the following s children nodes at level L+1 (L+1,
X.a) for a =0,…..,s-1 as shown in Fig. 1(a) and (b) [8].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

202 | P a g e

www.ijacsa.thesai.org

(a)

(b)

Fig. 1. Tree-hypercube (a) TH (2,2) and (b) TH (2,3).

III. PROPOSED ALGORITHM

Matrix multiplication is a simple and widely used
algorithm in many scientific applications. Matrix
multiplication is well structured in the sense that elements of
the matrices can be evenly distributed to the nodes and
communication among nodes which have regular pattern.
Therefore, exploiting data parallelism based on message
passing is suitable for solving the matrix multiplication
problem. Fig. 2 shows a sequential algorithm of an n x n
matrix multiplication consisting of three nested loops. As can
be seen, the complicity of the algorithm is n3.

Matrix-Multiplication(A,B)

n =A.rows

Let C be a new nn matrix

For i=1 to n

For j=1 to n

Cij=0

For k=1 to n

Cij=Cij + aik bkj

Fig. 2. A Sequential Multiplication Algorithm for two matrices [18].

In this section, we propose a new Parallel Matrix
Multiplication Algorithm on Tree-Hypercube Network Using
IMAN1 Supercomputer. The data distribution for matrix
multiplication can be divided either striped partitioning or
checkerboard partitioning. We use a block striped partitioning
distribution to study the performance of message passing
execution model. The column wise block striping of an (n x n)
matrix on p processors (P0, P1, …, Pp-1) processor Pi
contains columns: (n/p) (i), ((n/p) i)+1, …, ((n/p) (i+1)) – 1
[5].The proposed parallel matrix multiplication algorithm on
Tree-Hypercube network consists of three stages as shown in
Fig. 3. The first stage shows the distribution of data among
nodes (processors), second stage describe the multiplication
process at each processor, and finally the third stage represent
the collecting the data.

Input: Matrix A and B

Output: Matrix C on Tree-Hypercube using parallel

Matrix Multiplication

Stage 1: Broadcast matrix A and B

1. CN (Coordinator Node) generates a set of blocks of Matrix

A.

2. CN generates a set of blocks according to the Matrix B.

3. Wait for acknowledgment message from the coordinator

who received the data.

4. Send a message for the CN informing the process

completion.

5. CN stops the process of distribution and announces the

beginning of the next Stage

Stage 2: Do the multiplication in parallel

6. Multiply the stripes of matrix A with stripes of Matrix B

(for each block) of data.

7. Using sequential matrix Multiplication. Where all

processors perform Cij ∑

Stage 3: Collecting the data

A- Global Data Combining

8. In each level in the Tree-Hypercube interconnection, send

in parallel the multiplication matrix to the TH root nodes.

B- Combining Data in the Tree-Hypercube root nodes

9. CN combines the collected matrices correctly from roots

nodes in matrix C.

10. Exit

Fig. 3. Pseudocode Tree-Hypercube Algorithm for Matrix Multiplication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

203 | P a g e

www.ijacsa.thesai.org

Fig. 4. Parallel matrix multiplication tree-hypercube view.

Fig. 4 shows one-to-all broadcast on a Tree-Hypercube
(2,3). Broadcast communication operations are used in many
parallel algorithms; such as vector-matrix multiplication,
vector-vector multiplication, matrix multiplication, Gaussian
elimination, shortest paths, LU (lower–upper) factorization,
maximal vectors and prefix sums. Our one-to-all broadcast
algorithms on TH network are based on the E-Cube routing
algorithm, where this routing algorithm can be found in [1].
Each node can send a message while receiving another
message on the same or different link; that is bidirectional
links are used. Also, it can send or receive a message on only
one of its links at a time. Moreover, a store-and-forward
routing technique is used, where each intermediate node must
fully receive and store the entire message before sending it to
the next node. Fig. 4 presents one-to-all broadcast algorithm
which can be defined as broadcasting a message from a source
node to all other nodes in the network. Respectively, in matrix
multiplication which is applied in tree hypercube, the
coordinator creates the partitions depending on the number of
processors and the matrix size, once the data is received by
any processor it takes the part that it is responsible for and
then resends it again to the nodes that has a direct link with it.
In TH sending data acts as hypercube in each level, after the
data distribution is done. Each processor does it is own
computations and sends back the result to the parent from
which it got the data until all data is accumulated and sent
back to the coordinator.

A. Partition Procedure Analysis

In the first partitioning of the original array will take n/p,
assuming the partitioning is always balanced i.e. the number
of columns or the numbers of rows are equal to the number of
processors.

In our tree-hypercube network only one processor has
data, which is called the coordinator. In the first step part of
data will be sent from the coordinator to the directly connected
processor, secondly, both processors will start sending other
parts of data to the processors that are connected directly to

them. TH (2,2), each processor will receive a row form matrix
A and a column from matrix B, assuming the matrix size is
7x7. Canon algorithm is a distributed algorithm for matrix
multiplication for two-dimensional meshes. It is especially
suitable for computers laid out in an N × N mesh and it works
well in homogeneous 2D grids, so the main advantage of the
algorithm is that its storage requirements remain constant and
are independent on the number of processors. As shown in
Fig. 5, the matrix multiplication using Canon algorithm with
49 processor, it aligns the blocks of A and B in such a way
that each process multiplies its local sub-matrices. This is
done by shifting all sub-matrices Ai,j to the left (with
wraparound) by i steps and all sub-matrices Bi,j up (with
wraparound) by j steps [5].

B. Parallel Analysis

Parallel matrix multiplication is analyzed according to the
communication time, computation time and complexity.
Communication steps involve the distribution of data splitter
between the processors, and gathering results. First of all, the
number of processors will affect both the data scatter and the
communication time, to calculate the initialization time for the
tree-hypercube TH. The initialization time will equal the
number of steps to distribute data between the processor units.
We need 4 steps to scatter data among 7 processors and 6
steps for 15 processors, so we need (2L) for initialization time
and the same time to gather the results from all processors. So,
the total communication time equals (2L).

Complexity is the time required to perform matrix
multiplication in each processor for data size (n/p) which is
required for all processors, this means each processor needs
(n/p) x () time, which makes the total complexity (()/p).

Execution time depends on the number of processor and
the size of data as discussed previously the complexity is the
time needed for multiplication and the communication time
which is (2L) + (() / ()).

Fig. 5. Initial data distribution of matrix A 77, B 77 and C 77 on 49
processors (2,2).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

204 | P a g e

www.ijacsa.thesai.org

IV. EVOLUTION RESULT

Results are evaluated in terms of speedup, running time
and the parallel efficiency of matrix multiplication. The
proposed parallel matrix multiplication on the Tree-Hypercube
network is implemented by the library Message Passing
Interface MPI, in which MPI processes are assigned to the
cores. It will be parallel computation if the MPI process is
assigned to a core; but if more than one MPI process is
assigned to the same core, then it will be concurrent
computation. These results were produced in IMAN1 Zaina
cluster. Also, open access MPI library was used in our
implementation. The experiment was applied on tree-
hypercube topology with different size of matrices and
different number of processors in reference to the number of
nodes in a tree-hypercube, for example in the below table the
number of processors represent the number of nodes inside
tree-hypercube definition. After running this experiment
multiple times, the average was taken as result. The hardware
and software specifications are illustrated in Table I.

TABLE I. HARDWARE AND SOFTWARE SPECIFICATION

Hardware specification
Dual Quad Core Intel Xeon CPU with SMP

16 GB RAM

Software specification
Scientific Linux 6.4 with open MPI1.5.4

and C++ compiler

Matrix size 1000x1000, 2000x2000,4000x4000

Number of processors 1,3,7,15,31

A. Run Time Evaluation

Fig. 6 depicts run time for sequential matrix multiplication

in different size 10001000, 20002000 and 40004000 we
can see as the matrix size increase the runtime increases
proportionally.

Fig. 7 shows the run time for Parallel matrix multiplication

in different sizes 10001000, 20002000 and 40004000 as
illustrated in Fig. 7 when the number of processes increases
the time needed for multiplication decreases. On the other
hand, as shown below the run time at a certain number of
processes will stop decreasing because the problem becomes
smaller than the number of processors and the communication
time will increase because this will cause an overhead, the
general behaviour can be summarized with the following
points:

Scenario 1: When the processors number increases the run
time decreases due to parallelism and distribution of tasks on
more than one processor that are working together at the same
time. (This case is applied when we move from 3 processors
to 31 processors.)

Scenario 2: When the processors number increases the run
time increases due to communication overhead which is
caused from increasing the number of processors more than a
specific data size which in its turn decreases the benefits of the
parallelism. (This case is applied when we move from 15

processors to 31 processors in 10001000 matrices and also
may occur in number of processors larger than 31 in

20002000 and 40004000 matrices.)

Fig. 6. Runtime for sequential matrix multiplication with different matrix

size.

Fig. 7. Runtime of matrix multiplication according to the number of

processors and with different matrix size.

B. Speed up Evaluation

The speedup is the ratio of serial to parallel execution time
as depicted in Fig. 8. Using (1) the number of processors
values tested were 3,7,15 and 31. The speedup increases when
the number of processors increases but this is not always
applicable because we have limitations for parallelism that

appears in matrices with size 10001000.

Speedup = sequential processing time/ parallel processing

time (1)

Fig. 8. The Speedup of the three different sizes of matrices on different

number of processors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 12, 2017

205 | P a g e

www.ijacsa.thesai.org

C. Parallel Efficiency Evaluation

Efficiency is the ratio of speedup to the number of
processors. In an ideal parallel system S=P and E=1 but in
practice S<P and E is between 0 and 1. Equation 2 is used to
calculate the efficiency. Fig. 9 displays the parallel efficiency
for matrix multiplication according to different number of
processors and different matrix size. In small numbers of
processors between (3 and 7) efficiency was 97% for all

matrix multiplication of matrix size 40004000. On the other
hand, when the number of processors increased between (15
and 31) efficiency started to decrease i.e. reached 8% in

10001000 with 31 processors because the communication
time will increase between the processes. Total
communication time equals (2L), so the communication time
will increase when the number of processors increases.

The reason why the efficiency goes down, is that the
communication time equals 2L where L is number of levels
for tree hypercube, as long as the communications processes
are increasing the communication time will increase for
example when the number of processers is 3 the
communication time will be 2 on the other hand when we
have 31 processors the communication time will be 8 seconds
for the same data size. Also, as seen in equation 2 the number
of processes is in inverse relationship with efficiency.

Efficiency = speedup / number of processors (2)

Fig. 9. Efficiency of the three different sizes of matrices on different number

of processors.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we present Matrix multiplication using tree-
hypercube in terms of running time, speedup and efficiency.
The algorithm was implemented using MPI library, and the
results were produced by IMAN1 super computer. The
evaluation was based on matrix size and number of
processors. Results showed that runtime was in general
decreasing when the processer’s number is increased except

for matrix size 10001000 when the number of processors
exceeded 15 the runtime increased because of the
communication overhead. The speedup in all different
matrices size increased when the number of processors
increased except for the cases in which the communication
overhead increases. We achieved up to 97% efficiency in large

matrices such as 40004000 sized matrix.

In our future work we are aiming to proceed with a
comparative study for matrix multiplication using different
interconnection networks and it will be applied also on
different algorithms such as sorting, then see the performance
for each and compare the results with different studies.

REFERENCES

[1] P. Lee, “Parallel Matrix Multiplication Algorithms on Hypercube
Multiprocessors”, International Journal of High Speed Computing,
(1995).

[2] J. Zavala-Díaz, J. Pérez-Ortega, E. Salazar-Reséndiz, and L.
Guadarrama-Rogel matrix,“multiplication with a hypercube algorithm
on multi-core processor cluster”, DYNA,Vol (82), no(191). 2015

[3] J. Choi,“New Parallel Matrix Multiplication Algorithm on Distributed-
Memory” ,Concurrent Computers. High Performance Computing on the
Information Superhighway, 1997. HPC Asia '97.Pages: 224 -
 229, DOI: 10.1109/HPC.1997.592151

[4] M. Al-Omari, and H. Abu-Salem, “Tree-hypercubes: A multiprocessor
interconnection topology”, Abhath Al-Yarmouk, 6: 9-24. (1997).

[5] A. Grama, G. Karypis, and V. Kumar, “Introduction to Parallel
Computing,” Second Edition. Addison Wesley (2003).

[6] S. Panigrahiand, S. Chakraborty ,“Statistical Definition of an Algorithm
in PRAM Model & Analysis of 2 × 2 Matrix Multiplication in 2n
Processors Using Different Networks”, IEEE International Advance
Computing Conference (IACC),Pages: 717 -
724, DOI: 10.1109/IAdCC.2014.6779412. (2014)

[7] A. Haron, J. Yu, R. Nane, M. Taouil, S. Hamdioui, and K. Bertels,
“Parallel Matrix Multiplication on Memristor-Based Computation-in-
Memory Architecture”. International Conference on High Performance
Computing & Simulation (HPCS)Pages: 759-
766, DOI: 10.1109/HPCSim.2016.7568411

[8] M. Qatawneh, “Adaptive Fault Tolerant Routing Algorithm for Tree
Hypercube Multicomputer”.vol. 2, no. 2, pp. 124-126. (2006).

[9] M. Qatawneh. “Embedding Linear Array Network into the tree-
hypercube Network”, European Journal of Scientific Research, 10(2).
2005, pp. 72-76.

[10] Md. Nazrul Islam, Md. Shohidul Islam, M.A. Kashem, M.R. Islam, M.S.
Islam “An Empirical Distributed Matrix Multiplication Algorithm to
Reduce Time Complexity”, Proceedings of the International
MultiConference of Engineers and Computer Scientists Vol IIIMECS
2009, March 18 - 20, 2009, Hong Kong).

[11] M. Qatawneh. “Multilayer Hex-Cells: A New Class of Hex-Cell
Interconnection Networks for Massively Parallel Systems.”,
International journal of Communications, Network and System
Sciences, 4(11). 2011.

[12] M. Qatawneh. “Embedding Binary Tree and Bus into Hex-Cell
Interconnection Network”, Journal of American Science, 7(12). 2011.

[13] M. Qatawneh. “New Efficient Algorithm for Mapping Linear Array into
Hex-Cell Network”, International Journal of Advanced Science and
Technology, 90, 2016.

[14] M. Saadeh, H. Saadeh, M. Qatawneh, “Performance Evaluation of
Parallel Sorting Algorithms on IMAN1 Supercomputer”, International
Journal of Advanced Science and Technology Vol.95 (2016), pp.57-72.

[15] M. Qatawneh, A. Alamoush, J. Alqatawna. “Section Based Hex-Cell
Routing Algorithm (SBHCR)”, International Journal of Computer
Networks & Communications (IJCNC), 7(1). 2015.

[16] Qatawneh Mohammad, Hebatallah Khattab. “New Routing Algorithm
for Hex-Cell Network”, International Journal of Future Generation
Communication and Networking, 8(2). 2015.

[17] M. Qatawneh, A. Sleit, W. Almobaideen. “Parallel implementation of
polygon clipping using transputer”, American journal of Applied
Science 6 (2). 2009.

[18] A.Grama, A. Gupta, G.Karypis and V.Kumar. . “Introduction to Parallel
Computing,” second edition, Addison Wesley,January 16, 2003. ISBN:
0-201-64865-2.

