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Abstract—This paper focuses on the issue of tracking the 

trajectory of a flexible arm. The purpose is to ensure the flexible 

arm follows the desired path in the joint space. To achieve our 

objective, we have three problems to solve: modeling, control, 

and trajectory planning. As in the case of rigid robots, the Euler-

Lagrange formulation remains valid with the exception of 

dividing the flexible arm into a finite number of elements to 

model the deformation. The iterative learning control scheme can 

be used to achieve perfect tracking throughout the movement 

period, a sufficient condition based on the bounded real lemma 

that guarantees the convergence error between iteration is given. 

All the results are presented in terms of linear matrix inequalities 

synthesis (LMIs). 
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I. INTRODUCTION 

Robotics, a discipline that has emerged over a few 
decades, owes its present development to the pooling and 
coordination of research results in several sciences. When 
designing a robot, problems with mechanics, electronics, 
automation, computer science, and language theory must be 
regulated. In the manufacturing industry, difficult and 
repetitive tasks are entrusted to articulated mechanical 
systems. 

Among the rigid and flexible manipulator types, attention 
is focused more recently towards flexible manipulators. This 
is due to various advantages such manipulators offer in 
comparison to their rigid counterparts [1], they require less 
material, are lighter in weight, have higher manipulation 
speed, lower power consumption, require smaller actuators, 
are more maneuverable and transportable, and are safer to 
operate due to reduced inertia. However, the control of 
flexible manipulators is more complicated by the complexity 
of the system dynamics, the residual vibrations, and, 
especially, the uncertainties of the final response of the end 
effector's extensibility due to deformation. Therefore, there is 
a need to continuously improve the mathematical models and 
control methods in order to fulfill conflicting requirements. 

Several research works focus on the modeling of the 
flexible arm, such as [2]-[4]. As it is introduced by [5], [6], the 
finite element method (FE) has proven to be one of the best 
methods to obtain a good description of the dynamics of the 
system because it is able to function with irregularities in the 
structure of the arm with managing mixed boundary 

conditions and it makes allowance for interaction between the 
gross motion and the flexible dynamics of the manipulator, 
which is not possible with use of methods based on frequency 
domain analysis. Unfortunately, the major disadvantage of the 
FE method is the computational complexity and the difficult 
software coding involved, this is the primary reason several 
works such as [7], [8] have been limited to two or three finite 
elements. Given that confidence in the accuracy of the model 
is crucial for utilization in subsequent investigations and 
development of control strategies, a dynamic model of a 
flexible arm including hub inertia and payload has been 
developed using four finite elements. 

Iterative learning control (ILC) is a preferable technique 
when it comes to dealing with robot manipulators because 
they execute the same task repeatedly over a finite time 
interval [9]. Iterative learning control has been shown to be 
effective in improving tracking performance of repetitive tasks 
and is widely used in motion control systems [10], [11]. Due 
to the fact that the majority of tasks realized by the flexible 
arm are repetitive like welding or picking and placing, the 
tracking problems in the joint-space can be treated under ILC 
framework. The main idea of ILC is to improve the 
performance from one iteration to another in the sense that the 
tracking error is sequentially reduced by using information 
from previous executions of the task. 

The obtained formulation when applying iterative learning 
control (ILC) control is transformed into a synthesis problem 
of a repetitive system [12]. Using the benefits of the bounded 
real lemma (BRL) from the Robust Control Theory the output 
error between the desired and the actual trajectory is 
monotonically convergent (MC) to zero with the progress of 
the learning process. The stability analysis is presented and the 
convergence conditions for the system are expressed by LMIs 
which can determine the switching learning gains. For the 
designs and simulations, the software MATLAB was 
employed. 

The remainder of this paper is organized into five sections. 
Section 2 is interested in the dynamic modeling of this flexible 
arm. Section 3 is dedicated to convergence analysis using ILC 
control, Monotonically Convergent conditions presented in 
Section 4. Simulation results of the trajectory tracking and the 
torques applied to the joint are presented in Section 5. Finally, 
concluding remarks are given in Section 6. 

Notation used in the paper is standard. In general capital 

letters denote matrices. For two symmetric matrices, TA  
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Denotes the transpose of A ,   ,  ,..diag x y  denotes the 

diagonal matrix obtained from vectors or matrices x , y ,... 

.Identity and null matrices will be denoted respectively by I  
and 0 . Furthermore, in the case of partitioned symmetric 

matrices, the symbol   denotes generically each of its 
symmetric blocks. 

II. DYNAMIC MODELING 

In this section we developed a dynamic model for one-link 
flexible arm using the FE method with four finite elements, a 
description of the system is given with the assumptions 
utilized in modeling, a MATLAB code is developed based on 
the theory of the finite element method (FEM). 

The main idea of FEM is to treat complex structures as a 
finite assembly of discrete elements with continuous 
structures; each element has its own kinetic and potential 
energy to consider in determining the total system energy and 
applying the Lagrange formalism. 

A. Assumptions 

Our system, the flexible arm, is pivotally connected to the 
support (the base) at the hub; this rotary linkage is performed 
by a direct current (DC) motor. A schematic representation of 
the single-link flexible manipulator system is shown in Fig. 1, 
with E , I , Im , A ,  , l ,   and m, respectively 

representing Young's modulus, the second moment of area, 
the hub inertia moment, the section, the mass density, the 
length, the rotation angle of the arm relative to the hub and the 
mass of the effector. 

To apply the FE, we begin by dividing the beam into a 
finite number of successive elements of equal length; the 
points of intersection between its elements are defined as 
articulations. Following this, we calculate the potential energy 
and the kinetic energy for each element to ascertain the total 
energy of the whole system. The determination of the kinetic 
and potential energy of the whole system (the beam divided 
into finite element, the effector and the motorized articulation) 
is essential in applying the Lagrange Formalism which permits 
us to attain the dynamic model. 
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Fig. 1. Flexible arm scheme. 

We assumed the following hypothesis: 

A1: The depth of the flexible arm is much smaller than its 
length. 

A2: The effect of the axial force and the rotational inertia 
are negligible. 

B. Finite Element Method 

For an angular displacement   and an elastic deflection 

w , the total displacement ( , )y x t  of a point along the 

manipulator at distance from the hub is donated by: 

     ,     ,y x t t w x t 
           (1)

 

As it defined in [1] the total displacement can be also 
described by: 

 
4

1

,   ( ) ( )i i

i

y x t N x u t


 
           (2)

 

Where,  u t  and  N x  are the nodal displacement and 

shape function correspondingly. In this work, the shape 
functions are Hermit cubic functions as it is defined in [2]. 
Using (2) we can obtain the expression of the energy for one 
element, where T  is the kinetic energy for one element and 
V  is the potential energy for one element. 

2
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2
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

 
  
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            (3) 

2
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2
0

1 ( , )
( )

2

L d y x t
V t EI dx
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 
  

 


            (4)

 

Based on the work of [4], [8], we can put the energy of the 
element in a matrix form and this is crucial for coding in 
MATLAB, the total kinetic energy of the flexible arm without 
considering the effector (mass m ) will be then the sum of n 

elementary kinetic energies and the total potential energy will 
be the sum of n  elementary energies: 

n

T

i i

i 1

1
Ec  q z q

2


 
             (5) 

n

T

i i

i 1

1
Ep  q s q

2


 
             (6)

 

With , , , ,Ep Ec z s q being the total potential energy, the 

total kinetic energy, the mass matrix for one element, the 

stiffness matrix for one element and 1 1[ ]T

i i i i iq w w     

being the vector of joint variables for each element. 

Applying the Lagrange formulation defined in (7), we 
obtain the system mass and system stiffness matrices, Z  and 
S . These matrices correspond to the flexible arm system 

(excluding the effector). 
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i i i

d dEc dEc dEp
- 0

dt dq dq dq
 

            (7)

 

Using these matrices we define the potential energy and 
the kinetic energy for the whole system (the beam divided into 
finite element, the effector and the motorized articulation) . 

   
T21 1

Egc Im q L Z q L
2 2

     
          (8) 

T1
Egp q S q

2


             (9)
 

Note that Egp  stands for the potential energy of the 

entire system, Egc  the kinetic energy of the entire system, 

and 
1 2[ ...... ]T T

nL L L L  the vector of the lengths. iL  

separating the node i  at the origin of the frame before the 

flexion of the arm. After determining Egp  and Egc , 

application of the Lagrange formalism is required in order to 
attain the dynamic model (10). 

i

i i i

d dEgc dEgc dEgp
-

dt dq dq dq
 

          (10)

 

With i  is the Torques or forces applied to the joint. 

The dynamic model acquired is characterized by (11) 

where q  is the vector of the joint variables, M  is the global 

mass matrix and K  is the global stiffness matrix. 

M q K q  
           (11)

 

For four finite elements the two matrices M and k are 
squares of size 9 and given by (17) and (18). 

III. CONVERGENCE ANALYSIS USING ILC CONTROL 

A. Problem Formulation 

The dynamic equations described in Section 2 can be 
presented in a state-space form of a repetitive system. 

     

     
 , 0 0, 0

k k k
k

k k k

x t Ax t Bu t
x t

y t Cx t Du t

 
 

      (12)

 

Where the state-space matrices are: 

(9*9) (9*9)

1

(9*9)

0

0

I
A

M K

 
  
            (13) 

(9*1)

1

0
B

M 

 
  
             (14) 

(1*17)(1 0 )C 
           (15) 

(0)D 
            (16) 

n
kx 

 is the state vector given by 
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n
ku 

is the input control given by ku
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The objective is to apply an ILC control to the system (12) 
to ensure stability and the trajectory tracking of desired 

trajectory  dy t  based on the following hypothesis. 

B1 : The desired trajectory  dy t  is iteration invariant. 

B2 : Every operation begins at an identical initial condition

 0 0kx  . 

In this section, the formulated problem is solved by using 
the ILC control described by the following form: 

       1 1 1 21k k k ku t u t K t K e t     
        (19) 

      1 1

0

1

t

k k kt x t x t dt    
         (20)

 

Where,      k d ke t y t y t   is the output tracking error, 

 1k t  denotes the state vector between two iteration, 1 2,K K  

are learning gains with appropriately dimensioned matrices to 
be designed, and   a positive scalar. Replacing (12) in (19) 

and respecting (20), we obtain the state space representation of 
the closed loop system. 
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The state space representation (21) includes two 
independent dynamic processes: one along the time axis t  and 

the other along the iteration axis k . As it is specified [13] we 

have bfG  the transfer from  ke t  to  1ke t . 

 

   

1 2

1 2

1

1

bf bf

k
bf

k

bf
bf

KA B KA B
G

B

A BC BD C K KC





 
 

   
  








   (22)

 

The design objective is to minimize the H -norm of the 

closed-loop transfer function bfG  for  ke t  to  1ke t  that is 

to say: 

1/ek ek

G 
 



          (23)
 

Remark1: In the remainder of this paper, it will be shown 

that the ILC law can help the tracking error 2l - norm 

monotonically converges to zero along the iteration direction. 

B. Tracking Error Convergence 

Due to the problem formulation producing the system (12) 
with ILC control (19) and respecting hypothesis B1) and B2), 

we found the appropriate learning gains 1 2,K K such that the 

monotonic convergence in (22) is achieved, and the output 

error  1ke t  converges to zero as k  , for 0t  , k IN . 
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Definition 1. [14] given the system (12) and ILC 
controller (19), with B1) and B2), then, (22) is monotonically 

convergent in  ke t  if there exists 0 1  , k IN   such 

that 

   
2 21k ke t e t  

          (24)
 

Where,  ke t  the output error of system in iteration k , 

and  1ke t  the output error of system in iteration 1k  .The 

norm  
2ke t is defined by: 

     
2

0

t
T

k k ke t e t e t dt
 

  
 
 


         (25)

 

IV. H MONOTONICALLY CONVERGENT CONDITION 

In this section, a sufficient MC condition for the new 
system (22) is introduced in terms of LMIs. 

Theorem 1: For given a scalar 0 1  , the system (12) 

with ILC control law (19), then (23) is convergent in  ke t , if 

there is symmetric positive matrix X , and the matrix 

1 1 2, ,N K K  with appropriate dimensions, and a scalar 

 0,1  , such that the following LMI conditions are 

satisfied: 

 

 

   

1

1

2

2

2

... * *

* 0
T

AX BN sym

B I

CAX CBN CB I

K

K 

   
 

  
 

   
          (26)

 

In this case 1K  are given by  
1

1 1K N X


 . 

Proof: First, we consider the increased system (24), if is 

 1k t   the input signal and  1ke t  is the output signal. The 

iterative learning control law can guarantee the monotonic 
convergence of the output error between the desired output 
and the actual output for the entire time interval through the 
iterative learning process. 

Applying the BRL [14] to (23), for sufficient condition for 

the convergence of bfG 

  it is necessary to determine 

the positive definite 0P   for the following inequality: 

   

 

    2
1

2

2

1 .. * *

* 0

T

T

T

A BK P sym

B P I

C A B KK CB I

K

 

  
 
  
 
    
      (27)

 

Given the matrix 1X P , and multiplying the condition 

(26) twice, once by  , ,diag X I I  (on the left) and, the other, 

by the transpose of  , ,diag X I I  (on the right), we have the 

condition (25). The proof is complete. 

V. RESULTS AND ANALYSIS 

In this section, we apply a motion profile as an input to the 
system (22), as it is proved in [15] the fifth-polynomial profile 
can provide smooth movement to the single-link flexible arm. 
This movement is called a minimum-jerk movement, jerk 
meaning the derivative of acceleration. A motion profile with 
limited jerk is remarkably similar to the movement of human 
joints and it reduces the excitation of natural modes. 

For the simulation we took: 

2 22 0.004 . , 0.00002 ,  3250 . 0, .6Im kg m A m kg m l m    

 
12 41.671  0I m  193 E Pa  

0.2and m kg
 

For illustration purposes, the resulting gains obtained by 
applying Theorem 1 guarantee the monotonic convergence of 
error as listed below: 

1 3.6264 2.2281 0.8060 0.2299 0.0006

0.0002 0.0017 0.001 0.002 0 0 0 0 0 0

[0

00 ]

K  

  

 

    (28) 

11
2 [9.1297 10 ]K 

          (29)
 

Fig. 2 shows the time and iteration evolution of the output 

error      k d ke t y t y t  . As shown in this figure, the 

tracking error converges to zero along the iteration and 
becomes more accurate as the iteration number increases. For 
error cancellation between the motion profile and the system 
response we needed ten iterations, the number of iterations is 
due generally to the size of the system, increasing the number 
of finite elements during modeling causes the increase of the 
size of the system since each element adds state variables. 

Fig. 3 shows the time evolution of the reference trajectory 
and the output, after the ninth iterative the system converges 
completely to the input, this convergence requires a time of 
0.45 seconds which shows the rapidity of the control law in 
the time domain in contrast with the iteration domain, this 
total convergence is nearly impossible with conventional 
control methods like the inverse dynamics control. 

 

Fig. 2. Evolution of tracking error between iteration. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

tr
a
c
k
in

g
 e

rr
o
r 

(r
d
/s

)

 

 

e
k=1

(t)

e
k=3

(t)

e
k=5

(t)

e
k=10

(t)



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 12, 2017 

327 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 1. Desired and measured output evolution 

 
Fig. 3. Desired and measured output evolution. 

VI. CONCLUSION 

In this paper, the complication of tracking trajectory for a 
smooth motion profile of a single-link flexible arm has been 
investigated. The dynamic model of the manipulator is 
obtained by using the finite elements method with four finite 
elements to ensure the accuracy of the model. The system is 
considered as a repetitive system and an ILC controller is 
employed to ensure the cancellation of error. Sufficient 
conditions for the existence of such controller are formulated 
in terms of a set of LMIs. A numerical example is displayed to 
illustrate the effectiveness of the proposed methods. In 
conclusion, the result depicted is an important step towards 
analyzing physical systems with infinite deformations such as 
flexible manipulator robots that are difficult to control due to 
the size of their state-space representation. 
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