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Abstract—Nature-inspired swarm metaheuristics become one 

of the most powerful methods for optimization. In discrete 

optimization, the efficiency of an algorithm depends on how it is 

adapted to the problem. This paper aims to provide a 

discretization of the Firefly Algorithm (FF) for the scheduling of 

a specific manufacturing system, which is the mono processors 

two-stage hybrid flow shop (HFS). This kind of manufacturing 

system appears in several fields as the operating theatre 

scheduling problem. Results of proposed discrete firefly 

algorithm are compared to results of other methods found in the 

literature. Computational results with different numbers of 

fireflies and on a standard HFS benchmark of about 55 cases, 

generating about 1900 instances demonstrates that the proposed 

discretized  metaheuristic reaches the best makespan. 
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I. INTRODUCTION 

Scheduling is an essential decision making task. Short 
term scheduling consists into allocating resources as machines 
or persons to perform a set of jobs or tasks to minimize or 
maximize objective functions. In manufacturing systems, the 
scheduling objective may be minimization of makespan or 
Cmax, machine idle time, mean or total flow time and 
tardiness. Baker [1] addressed different types of scheduling 
environments in industries. Among them, the hybrid flow shop 
(HFS) or flexible flow shop problem. This environment, 
which is the generalization of a flow shop, is made of a set of 
manufacturing stages. At least one stage may contain several 
machines. The HFS has a variety of real-industrial 
applications including ceramic, operating theatre [2] and 
electronic. HSF scheduling problem was been the interest of 
many researchers since it was first proposed in [3]. It has been 
demonstrated to be NP-hard in [4]. Hence, exact methods 
cannot solve HFS problems. Several methods have been 
proposed so far to solve HFS scheduling problems. A hybrid 
heuristic algorithm was addressed to solve the multistage 
Hybrid Flow Shop problem [5]. A heuristic based on simulated 
annealing (SA) technique was proposed in [6]. The 
performance of heuristics in a flow shop scheduling with 
multiple processors was investigated in [7] where authors 
studied five heuristics for their performances on makespan and 
mean flow time criteria in a multiple processors HFS. A 
generic simulation model for the scheduling problem was 
detailed in [8] and the task priorities at each stage were 
established dynamically in order to make easier the 

performance evaluation of job dispatching priority strategies, 
concerning the makespan and mean flow time as well as other 
criteria like average queue length and average resource 
utilization. Botta-Genoulaz [9] lectured the time windowed 
multistage version of the problem with identical parallel 
recourses, when tasks are subject to precedence constraints. 
She investigated six heuristics to solve minimization of 
lateness. Hybridation of the Tabu search (TS) with another 
approach was presented in [10]. Authors considered the 
manufacturing of concrete blocks in a building industry 
factory as a hybrid flow shop with the purpose to minimize 
makespan. With the same purpose, a branch-and-bound 
algorithm was addressed in [11]. Several heuristics were 
studied to schedule multiprocessor tasks in the two-stage 
extension of the same problem in order to minimize makespan 
as simulating analytics (SA) and TS [12]. In [13] and with 
recirculation to minimize the weighted number of tardy tasks, 
authors compare a greedy algorithm with a genetic algorithm 
(GA) on solving a three-stage HFS scheduling problem. A GA 
has been applied to solve a more realistic problem with 
sequence dependent set-up times, numerous manufacturing 
stages with unrelated parallel machines at each stage and 
machine eligibility [15]. A hybrid constructive Genetic 
algorithm was made in [17], advanced GAs with some new 
machine assignment instructions in [19] and an efficient GA in 
[22]. Others bio-inspired metaheuristics as an ant colony 
optimization (ACO) in [16] were studied to solve the HFS 
scheduling problems. A bat algorithm was adapted in [14]. An 
effective parallel greedy algorithm (PGA) was addressed in 
[18] and a particle swarm optimization (PSO) algorithm was 
studied to solve the flexible flow shop scheduling problems 
[20]. The  PSO was also compared to a bottleneck heuristic to 
solve the HFS problems [23]. A hybrid artificial neural 
network (ANN) simulation approach is suggested for solving 
multi-attribute combinatorial dispatching (MACD) decision 
problem for scheduling a with multiple processors hybrid flow 
shop [21]. 

One can notice that most of papers in HFS literature were 
addressed to flexible flow shop with multi-processors tasks 
[55], [56]. In the other hand, some few manuscripts studied 
the mono processors HSF [24]-[27]. The standard hybrid flow 
shop or the HSF with mono-processors tasks can be 
considered as a typical example of scheduling problem and 
has several applications. One can quote, authors in [2], [28]-
[30] that define a surgeries scheduling problem as a standard 
hybrid flow shop of two to three stage that are induction stage, 
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operating rooms stage and post anesthesia care unit stage. In 
[31] authors studied an energy aware multi-objective 
optimization that has a mono-processor tasks flexible flow 
shop configuration. 

In the present paper, the firefly metaheuristic is discretised 
and adapted to the mono-processor hybrid flow shop problem. 
For that, in the second section the fireflies in the nature are 
described. We detailed the firefly algorithm giving a simple 
pseudo-code. In the third section, the hybrid flow shop 
problem (HFS) is presented and its notation according to the 
literature. In the fourth section, an adaptation of the firefly 
algorithm to the HFS problem and a discretization of fireflies 
are presented. Also, we describe briefly the particles swarm 
optimization for the same problem in order to compare it later. 
In the last section, the results of the discrete firefly algorithm 
and other implanted algorithms are discussed and compared 
on a benchmark using improvement rate and average 
percentage deviation from the lower bound. Finally, we give 
conclusion and perspectives. 

II. FIREFLY METAHEURISTIC 

In the section below, the firefly algorithm and its 
principles are described. 

A. Inspiration 

Fireflies, as a spice of Lampyridae are small insects with 
wings talented of producing a cold light flashes in order to 
attract mates. Their mechanism is supposed to slowly charges 
until the convinced threshold is obtained, at which they set 
free the power in the form of light, then the process repeats 
[32] Firefly algorithm that was first proposed by Yang [33] 
was inspired by the fireflies mutual attraction and the light 
decreasing over the distance rather than by the fireflies light 
flashing phenomenon. Algorithm considers what each firefly 
observes at the point of its position, when trying to move to a 
greater light-source. 

B. Algorithm 

The Firefly Algorithm is one of the recent nature-inspired 
metaheuristics developed by the author [33]-[38]. One can 
find limited articles concerning essentially continuous firefly 
algorithm [39]-[46]. Continuous firefly algorithm was 
validated on functions optimization in [36]. A resolution of 
chaos with firefly can be found in [47]. A hybridisation of the 
algorithm with genetic was done in [49]. The bi-objective 
version was proposed in [48]. The first discrete version was 
adapted to permutation problem in [50] where authors studied 
flowshop problem using a binary coding of solution and a 
probability formula for discretization. We can also find other 
discretization for economic problem such as [32], [51]-[52]. 

The main firefly algorithm distinctive feature is that it 
simulates an independent and parallel optimization strategy, 
where a population or swarm, in each iteration, has generated 
a number of fireflies. Each one works roughly independently 
and as a result, the metaheuristic will converge quickly with 
the fireflies aggregating closely to the optimal solution. The 
Firefly Algorithm was based on the idealized fireflies 
behaviour of flashing characteristics. These flashing 
characteristics were idealized as the three rules below: 

1) All fireflies are from the same gender so that one firefly 

is attracted to another despite their genders. 

2) The light intensity or brightness of a firefly is 

determined by the landscape of the objective function to be 

optimized. 

3) Brightness is proportional to their attractiveness, thus 

for any two flashing fireflies, the less brighter one will move 

towards the brighter one. The brightness of both will decrease 

as their distance increases. If there is not the brightest one than 

a firefly moves randomly. 
According to these three hypotheses, pseudo-code of the 

Firefly Algorithm (FF) may seem as follows: 

Algorithm 1. Pseudo code of the FF Meta-heuristic 

Procedure FF Meta-heuristic (GenerationNumber: 
the maximal number of generations) 

Begin 
γ: the light absorption coefficient 
Define the objective function of f(x), where 

x=(x1,........,xd) in domain d 
Generate the initial fireflies population  xi (i=1, 2 ,..., 

nb) 
Determine the light intensity Ii at xi via f(xi) 
While (t<GenerationNumber) 

For i = 1 to nb //all nb fireflies) 
Forj=1 to nb //nb fireflies) 

if(Ij> Ii) 
Attractiveness βi,j 

varies with distance ri,j 
move firefly i towards j 

with attractiveness βi,j 
else 

move firefly i randomly 
end if 
Evaluate new solutions 
update light intensity Ii 

End for j 
End for i 
Rank the fireflies and find the current best 
t++ 

End while 
End procedure 

There are four important principles in the Firefly 
Algorithm: 

1) Light Intensity 
In the simplest situation for minimum optimization 

problems, the brightness I of a firefly at a particular location x 
can be chosen as I(x) ∝ 1/f(x). 

2) Attractiveness 
The principal form of attractiveness function in the firefly 

optimization can be any monotonically decreasing function 
such as the generalized form in (1): 

β   = 𝛽 
 𝑒

      
 

             (1) 

r is the distance between positions xi and xj of two fireflies 
i and j 

𝛽 
  is the attractiveness at r = 0 and γ is a light absorption 

factor. 
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3) Distance 
The distance between two positions xi and xj of two 

fireflies i and j can be the Cartesian distance: 

    = √∑            
  

               (2) 

Where xi,k is the k
th

 part of the i
th

 firefly. 

4) Movement 
The attraction of a firefly i toward another brighter firefly 

j, is determined by 

   = (  𝛽   )   𝛽              
 ⁄            (3) 

where the first and second terms are due to the attraction 
while the third term is randomization with α being the 
randomization parameter and “rand” is a random number 
generator uniformly distributed in [0, 1]. 

III. TWO STAGE HYBRID FLOW SHOP PROBLEM (HFS) 

The Hybrid flow shop scheduling problem will be 
described in this section. 

A. Presentation 

A Hybrid Flow Shop (HFS) also called flexible flow shop 
is a structure composed of a set of stages, where each stage 
combines one or more parallel machines. The different tasks 
visit the stages in the same sequence. On each stage, a job is 
treated by only one machine. A machine can treat only one job 
at once. Between each stage, the jobs can wait or not in 
limited or unlimited buffers. 

Moreover, all jobs are assumed to be available at the 
system entry at date 0 (their release date). 

Scheduling in the HFS consists to choose an assignment of 
the tasks to the range of resources at the various steps and an 
appropriate sequencing. The purpose is the optimization of 
one criterion or several performance criteria in case of multi-
purpose optimization. One can quote the max flow time 
abbreviated as Fmax, the completion time of the last job on 
the last stage also called Makespan or Cmax, and due date 
related purpose. 

B. Notation 

Number of stages scheduled is M. Number of tasks 
scheduled is N. 

lk is the number of machines in stage k. 

Fig. 1 is an example of a hybrid flow shop with 2 stages 
and 3 machines on the first stage and 2 machines on the 
second one. One buffer of infinite capacity is incorporated 
between stages of the system. The processing time of job i in 
stage j if machines are identical is noted tij. 

Admitting as criterion the Cmax and using Vignier 
notation [54], the manufacturing shop can be defined by HFS2 
(3,2)||Cmax. 

C. Application 

One can quote as the example of surgeries scheduling in an 
operating theatre (Fig. 2). 

 
Fig. 1. Representation of HFS2 (l1=3,l2=2)| |Cmax. 

 

Fig. 2. Example of two stages HFS: operating theatre. 

IV. FIREFLY ALGORITHM FOR HSF PROBLEM 

A. Solution Notation 

An integer significant solution coding is adapted to the 
HSF scheduling. The coding contains two parts:  the sequence 
part s and the assignments part a as one can find in (4). 

 = {  |   }                       (4) 

       

         

B. Distance 

In this work and since it is a discrete version the distance is 
replaced by Hamming’s distance. The Hamming distance is 
defined as the number of non-corresponding elements in the 
sequence or in the assignments (5). 

    = ∑ (         )  ∑ ∑ (           )
   
   

    
   

   
        (5) 

C. Random Movement and Other Parameters 

The movement of a firefly i to another j follows (3) cited 
earlier. For the alpha coefficient, we choose α=N for the 
sequence part of the firefly and α=lk k= ..M for the 
assignments part of the firefly. 

The random movement of the best firefly uses a 
neighborhood system based on both sequence permutation and 
assignment change. 

D. Fireflies Discretization 

When the firefly i moves toward firefly j, the position of 

M11 

M21 

M31 

M12 

M22 

N jobs 

M=2 

l1=3; l2=2 

Stage1 

(3 machines) 

Stage2 

(2 machines) 
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firefly i changes from a binary number x to a real number x’ 
(formula 6) 

  = {s  |a   }     N   k  M            6) 

s    a      

To correct sequence, we sort jobs of s per their s’ values. 
To correct assignments a, we adjust a’ to unsigned integers in 
the domain 0 . . lk-1. 

E. Particle Swarm Optimization for HFS Problem 

In this sub-section, we describe briefly the particles swarm 
optimization to compare it with the firefly algorithm. 

The Particle Swarm Optimization algorithm (PSO) [53] is 
initialized with a population of random solutions which is 
similar in all the evolutionary algorithms. Each individual 
solution flies in the problem space with a velocity which is 
adjusted depending on the experiences of the individual and 
the population 

The pseudo code of PSO is given in Algorithm 2. 

Algorithm 2 PSO Meta-heuristic 

Procedure PSO Meta-heuristic(GenerationNumber: 
maximum number of generations) 

Begin 

φg, φp, ω: coefficients to be initialized 

Define the objective function of f(x), 
x=(x1...,xd) in domain d 

Generate the initial swarm of particles pi 
(i=1,...,n) 

decide the fitness fiti at pi via f(pi) 

Initialize the best fitness for each one 
fbesti=fiti and best positions besti=pi 

Determine the global best fitness 
fgbest=min(fbesti) and its position gbest 

While(t<GenerationNumber) 

Fori = 1 to n  //all particles 

 vi = ω vi +φp rand(besti-xi)+φg rand(gbest-xi) 
//velocity 

      Apply the velocity constriction in d 

pi =pi+vi//new position 

      Apply the position constriction in d 

End for i 

For i = 1 to n  //all particles 

     Evaluate fiti 

if(fiti<fBesti) 

fBesti=fiti 

best=pi 

Endif 

End for i 

decide the global best fitness fgbest=min(fbesti) and 
its position gbest 

t++ 

End while 

End procedure 

In this study, we retain the principles below: 

Fitness. The fitness can be simply the objective function. 

Velocity. We keep the equation of velocity vi of a solution 
pi as shown in (7). 

  =
              𝑒                   𝑒       

               (7) 

Where φg, φp, ω are coefficients initialized to 1. 

Position. The new position is calculated by (8). 

  =                    (8) 

We use the same codification and discretization principles 
as our Firefly algorithm. We add velocity constriction. 

V. COMPUTATIONAL RESULTS AND COMPARISON 

A. Hybrid Flow Shop Data 

As a typical sample for experimental comparison, the 
choice was directed on mono processors two stages hybrid 
flow shop with related machines  that admits that the 
processing duration of a task do not depend on machine in a 
stage. A buffer of infinite capacity is integrated between the 
two stages for each machine. Moreover N tasks are assumed 
to be available at the manufacturing shop entrance. The 
system has l1 recourses in the stage one and l2 in the second 
one. 

Three categories of instances of two-stage HFS have been 
randomly generated: 

 Category A: These samples were generated in a way 
similar as in [24]. The number of tasks n is taken from 
the set{20, 30, 40, 50 , 100}. The numbers of resources 
(l1, l2) are (2, 2), (2, 4) and (4, 2). The processing 
durations noted 2:4, 4:2, 4:4 are drawn randomly from 
a discrete uniform distribution either on [1,40] or [1, 
20]. These instances characteristics are combined to 
acquire nine different problem samples for each 
unchanging N. For each combination, 20 instances 
were produced which results in 900 instances for the 
Category A. The category A represents a diversified 
mix of shop and size setting. 

 Category B: It is produced in the same way as in [25]. 
The number of resources l1 and l2 were drawn 
randomly from the discrete uniform distribution on 
[2,6]. The processing durations on stage j were 
generated randomly from a discrete uniform 
distribution on [1, 5*lj](j= 1, 2). The number of task N 
was taken equal to 20, 30, 40, 50 and 100. For each 
fixed N, 50 instances were generated. Hence, Category 
B contains a total number of 250 instances. 

 Category C: In this set, the processing durations on 
both stages were drawn randomly from the discrete 
uniform distribution on [1,20] [25]. Their 250 instances 
were generated in a similar way as those of category B. 
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For the set C, the workloads are typically unbalanced 
while for the set B, the workloads at the two stages lean to be 
well balanced. The population size of particles or fireflies is 
set to 10. 

The proposed algorithms were implemented in C++ 32 on 
an Intel Core 2 Duo 2,53 Giga Hz with aRAM capacity of 6 
Giga Byte. If any optimal scheduling was found within the 
maximum CPU time limit of 15 seconds, the exploration is 
exited and the best scheduling and it evaluations are output. In 
order to get good comparison, the choice of the limit criteria 
lies on the computer setting similarity with these in [28]. 

B. Comparison Criteria 

In order to compare the proposed discretized algorithms, 
the measures below can assess their efficiencies: 

1) Lower bound LB. Lower Bound indicates the lower 

makespan can be reached for the HFS scheduling instance.  

The two stage hybrid flow shop LB retained in this work were 

presented  first time  in [24] 

  = ma  
       ∑    

 
   

  
 
       ∑    

 
   

  
            (9) 

Where spt(l1) is the minimum sum of completion times, on 
Stage 2, of  the l1 tasks whose processing times on the second 
stage  are the shortest. 

2) Average Percentage Deviation (APD). The deviation of 

a scheduling  makespan from the LB is specified in (10): 

   =
       

  
              (10) 

3) Improvement Rate. Improvement of the final best 

scheduling  from the initial best population is given in (11): 

      . =
                     

                     
             (11) 

4) Others. We use two other analysis measures: 

 TGB that is the average Time to Get the global Best 
(optimum) when Average Percentage Deviation =0. 

 NS that is the number of instances for which optimality 
was proved (Number of Solved). In [28], authors used 
UnSolved instances (US) factor which is the number of 
instances not solved. 

C. Results and Discussion 

First, we compare the firefly algorithms with Particle 
Swarm Optimization. Table I shows Average Deviations, 
average improvements and Makespan, min and max criteria 
values. We observe that Firefly algorithm solved to optimally 
all of instances in 86.67% of the problems (39 per 45). The 
most of Firefly Algorithm unsolved instances are with 
unbalanced workload from classes where there are less 
resources in the first stage. The problems are easier for 2x2 
and 4x2 cases. 

We try to compare our results (Table II) with those 
found in: 

 [24] using Tabu search. 

 [27] using climbing bounded discrepancy search 
(CDDS

L
). 

 [25] using Branch and Bound method (CPU time limit 
for the Backward or Forward  problems was set equal 
to 600s.) 

 [28] using Climbing Depth-bounded Discrepancy 
Search (CDDS

2
) (maximum time limit was 15s and the 

number of instances for each class was 20). 

The experiments on the first Category A as revealed in 
Table II match the previous conclusion and lend further 
confirmation. Remarkably, the proposed firefly metaheuristic 
provides the optimum makespans. It doesn’t deviate from 
lower bound in most of cases and their worst deviation are less 
than 0.1 while the average APD of all instances for 
respectively tabu search and B&B algorithm as examples are 
0.51 and 0.28. 

Indeed, we observe from Table III when comparing 
numbers of solved instances and times to get optimum that FF 
algorithm yields optimal or very near optimal solutions in 
most Instances (887 per 900) in 0.0331 second while PSO 
yields optimal solution in only 499 instances within 75.38 hs 
and respectively CDDS2 and CCDSL yield optimal solution in 
829 and 638 instances. 

The worst firefly TGB times can be noticed in the 2x4 
problems but do not exceed 40.63 hs while PSO ones reach 
86.29 and 1237 hs. 

In order to investigate the method on other workload 
categories, 50 instances were generated for each case either on 
set B or C. The results of sets B and C for N from 20 to 100 
are represented in Table IV. The global efficiency of the 
discretized firefly algorithm is corroborated by the 
computational results that were reported on the sets B and C. 
Table IV approves that the FF algorithm with only 10 fireflies 
can give an improvement from 11.74% to 25.51% and a 
deviation from 0.07 % to 0 face to PSO improvement which 
cannot exceed 20.74% and PSO deviation that can reach 
0.43%. 

The most striking result to emerge from Table V is that 
63.2 % of the Set B (balanced instances) and 82.2 % of the Set 
C (unbalanced instances) were significantly solved to 
optimality. Face to only 12.8% of set B and 36 % of set C 
solved by PSO. The average firefly algorithm TGB is only 131 
hundredth second while it is exceed 166 hundredth second by 
particles swarm algorithm. And even if the B&B has more 
solved instances especially for unbalanced hybrid flow shops, 
our Firefly Algorithm outperforms it in term of deviation in all 
of instances. Furthermore, the deviation from the best 
makespan is approximately null. Overall, our algorithm 
produced proven optimal solutions. 
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TABLE I. SET A, AVERAGE IMPROVEMENT, APD, CMAX, MIN AND MAX CMAX OF DIFFERENT METHODS 

Problem 

Cmax Improvement% APD% Minf Maxf 

PSO FF PSO FF PSO FF PSO FF PSO FF 

A100 

2x2 

2:4 1064.4 1064 5.22 5.24 0.04 0 1064 1064 1067 1064 

4:2 1005.3 1003 5.1 5.24 0.27 0 1003 1003 1078 1003 

4:4 1005.15 999 4.79 5.1 0.64 0 999 999 1080 999 

2x4 

2:4 591 526.95 7.46 13.11 12.36 0.02 544 490 642 578 

4:2 582.25 511.1 8.24 14.66 14.14 0.05 528 456 634 545 

4:4 585.95 512.85 7.18 13.75 14.46 0.08 533 463 630 544 

4x2 

2:4 988.6 987 4.86 4.94 0.17 0 987 987 1082 987 

4:2 1018.1 1018 4.6 4.62 0.04 0 1018 1018 1163 1018 

4:4 1011.75 1012 5.83 5.84 0.01 0 1012 1012 1085 1012 

A20 

2x2 

2:4 195.45 192 13.39 14.23 1.91 0 192 192 222 192 

4:2 206.6 204 11.98 12.53 1.15 0 204 204 238 204 

4:4 200.45 197 12.05 12.88 1.84 0 197 197 244 197 

2x4 

2:4 130.6 110 17.22 25.4 19.22 0 114 110 151 110 

4:2 128.7 107 16.05 24.99 21.54 0 109 107 147 107 

4:4 136.15 111 17.6 27.41 23.62 0 111 111 159 111 

4x2 

2:4 199 199 9.9 9.9 0 0 199 199 199 199 

4:2 203.75 204 11.45 11.51 0.14 0 204 204 242 204 

4:4 206.75 207 13.25 13.25 0 0 207 207 261 207 

A30 

2x2 

2:4 297.85 295 11.31 11.77 0.97 0 295 295 321 295 

4:2 308.8 305 10.62 11.33 1.48 0 305 305 367 305 

4:4 317.35 315 7.69 8.13 0.9 0 315 315 371 315 

2x4 

2:4 184.1 161 13.77 20.35 15.09 0 162 161 200 161 

4:2 182.95 161 16.86 22.8 13.39 0 161 161 222 161 

4:4 186.05 160.1 15.87 23.07 16.77 0.04 154 133 214 182 

4x2 

2:4 294.15 294 9.46 9.47 0.02 0 294 294 348 294 

4:2 295 295 9.19 9.19 0 0 295 295 347 295 

4:4 302.9 303 10.77 10.77 0 0 303 303 357 303 

A40 

2x2 

2:4 399.75 399 10.27 10.44 0.37 0 399 399 467 399 

4:2 403 402 8.97 9.17 0.4 0 402 402 456 402 

4:4 417.8 415 7.05 7.36 0.64 0 415 415 472 415 

2x4 

2:4 251.45 210.9 12.46 21.02 19.65 0.03 234 185 275 234 

4:2 238.6 210 13.72 19.83 13.77 0 215 210 262 210 

4:4 244.7 217 13.1 19.05 13.45 0 217 217 276 217 

4x2 

2:4 405.2 405 6.36 6.39 0.07 0 405 405 478 405 

4:2 409 409 9.71 9.71 0 0 409 409 470 409 

4:4 407.2 407 7.21 7.21 0 0 407 407 476 407 

A50 

2x2 

2:4 514.6 509 7.04 7.58 1.14 0 509 509 593 509 

4:2 498.05 493 7.39 7.89 1.09 0 493 493 552 493 

4:4 524.4 522 7.27 7.56 0.6 0 522 522 593 522 

2x4 

2:4 297.9 257.5 14.8 21.83 16.09 0.1 263 230 339 287 

4:2 303.35 266 12.6 19.09 14.54 0 274 266 338 266 

4:4 302 259 11.72 19.17 16.86 0 262 259 345 259 

4x2 

2:4 497.05 496 7.44 7.51 0.15 0 496 496 557 496 

4:2 505.15 505 7.48 7.49 0.02 0 505 505 609 505 

4:4 493.15 493 11 11.03 0.07 0 493 493 523 493 

Avg. 420.92 407.32 10.16 12.68 5.76 0.01 409.53 402.38 470.04 411.56 
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TABLE II. SET A, COMPARISON OF AVERAGE DEVIATION OF DIFFERENT METHODS* 

Problem 

APD% 

PSO FF B&B [25] TS [24] CCDS2 [28] CCDSL [27] 

A100 

2x2 

2:4 0.04 0.00 0.00 0.54 0.05 0.23 

4:2 0.27 0.00 0.00 0.26 0.00 0.09 

4:4 0.64 0.00 0.00 Na 0.01 0.16 

2x4 

2:4 12.36 0.02 0.00 0.19 0.06 0.3 

4:2 14.14 0.05 0.00 0.07 0.00 0.09 

4:4 14.46 0.08 0.00 0.11 0.00 0.15 

4x2 

2:4 0.17 0.00 0.00 0.02 0.00 0.09 

4:2 0.04 0.00 0.00 0.18 0 .03 0.35 

4:4 0.01 0.00 0.00 0.01 0.01 0.09 

A20 

2x2 

2:4 1.91 0.00 0.00 NA 0.05 0.16 

4:2 1.15 0.00 0.00 NA 0.03 0.08 

4:4 1.84 0.00 0 .88 NA 0.39 0.48 

2x4 

2:4 19.22 0.00 1.71 2.9 0.95 5.79 

4:2 21.54 0.00 0.00 0.56 0.03 0.09 

4:4 23.62 0.00 0.00 0.92 0.00 0.07 

4x2 

2:4 0.00 0.00 0.00 0.35 0.00 0.12 

4:2 0.14 0.00 6.31 1.22 0.75 5.70 

4:4 0.00 0.00 0.00 0.13 0.05 0.23 

A30 

2x2 

2:4 0.97 0.00 0.00 NA 0.02 1.61 

4:2 1.48 0.00 0.00 NA 0.00 0.16 

4:4 0.9 0.00 0.00 NA 0.1 0.63 

2x4 

2:4 15.09 0.00 1.68 1.43 0.92 5.61 

4:2 13.39 0.00 0.00 0.27 0.00 0.12 

4:4 16.77 0.04 0.00 0.57 0.07 0.08 

4x2 

2:4 0.02 0.00 0.00 0.06 0.00 0.12 

4:2 0.00 0.00 6 .36 1.46 0.96 5.69 

4:4 0.00 0.00 0.00 0.05 0.02 0.05 

A40 

2x2 

2:4 0.37 0.00 0.00 NA 0.00 0.04 

4:2 0.4 0.00 0.00 NA 0.00 0.06 

4:4 0.64 0.00 0.00 NA 0.08 0.26 

2x4 

2:4 19.65 0.03 0.00 0.96 0.21 0.97 

4:2 13.77 0.00 0.00 0.34 0 0.53 

4:4 13.45 0.00 0.00 0.5 0.02 0.14 

4x2 

2:4 0.07 0.00 0.00 0.12 0.00 0.56 

4:2 0.00 0.00 2.14 0 .89 0.28 1.01 

4:4 0.00 0.00 0.00 0.12 0.01 0.17 

A50 

2x2 

2:4 1.14 0.00 0.00 NA 0.00 0.07 

4:2 1.09 0.00 0.00 NA 0.00 0.56 

4:4 0.6 0.00 0.00 NA 0.00 0.28 

2x4 

2:4 16.09 0.1 0.00 0.54 0.15 0.70 

4:2 14.54 0.00 0.00 0.26 0.00 0.43 

4:4 16.86 0.00 0.00 NA 0.00 015 

4x2 

2:4 0.15 0.00 0.00 0.02 0.00 0.11 

4:2 0.02 0.00 0.00 0.04 0.37 0.69 

4:4 0.07 0.00 0.00 NA 0.02 0.05 

Avg. 5.76 0.01 0.28 0.51 0.13 1.36 

* “NA” means that the value is not available. 
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TABLE III. SET A, COMPARISON OF THE AVERAGE TGB AND THE NUMBER OF SOLVED INSTANCES 

Problem 
TGB NS 

PSO FF PSO FF CDDS2 [27] CDDSL [28] 

A100 

2x2 

2:4 3.33 1.75 15 20 19 16 

4:2 86.29 2.85 14 20 20 17 

4:4 21.47 1.2 15 20 20 11 

2x4 

2:4 519 16.68 1 19 18 14 

4:2 - 7.47 0 17 20 18 

4:4 - 11.33 0 15 20 19 

4x2 

2:4 47.95 0.85 19 20 20 15 

4:2 0.72 0.6 18 20 18 13 

4:4 3.24 0.2 17 20 18 11 

A20 

2x2 

2:4 0 0 14 20 18 17 

4:2 85.82 0 11 20 19 15 

4:4 0.45 0 11 20 15 9 

2x4 

2:4 1 0.05 2 20 12 20 

4:2 - 3.65 0 20 20 17 

4:4 - 35.4 0 20 20 13 

4x2 

2:4 0.5 0.25 20 20 20 16 

4:2 0 0 19 20 15 7 

4:4 0.4 0.05 20 20 20 17 

A30 

2x2 

2:4 0.2 0.05 15 20 19 13 

4:2 84 0 12 20 20 16 

4:4 0.77 0 13 20 16 8 

2x4 

2:4 11 0.05 2 20 14 3 

4:2 - 0.85 0 20 20 17 

4:4 - 0.32 0 19 20 12 

4x2 

2:4 0.47 0.25 19 20 20 17 

4:2 0.4 0 20 20 13 9 

4:4 9.35 0 20 20 19 15 

A40 

2x2 

2:4 0.44 0.65 16 20 20 18 

4:2 0.14 0 14 20 20 18 

4:4 1.75 0.3 16 20 17 11 

2x4 

2:4 - 40.63 0 19 16 12 

4:2 1237 2.2 1 20 20 17 

4:4 415 11.65 2 20 19 13 

4x2 

2:4 2.47 0.25 19 20 20 16 

4:2 0.3 0.2 20 20 17 11 

4:4 3.4 0.3 20 20 19 14 

A50 

2x2 

2:4 1.31 0.9 13 20 20 17 

4:2 0.17 2.3 12 20 20 17 

4:4 44.21 1.55 14 20 20 14 

2x4 

2:4 - 1 0 18 18 14 

4:2 - 1.7 0 20 20 18 

4:4 - 1.25 0 20 20 12 

4x2 

2:4 47.68 0.05 19 20 20 16 

4:2 1.39 0.05 18 20 12 10 

4:4 6.72 0.05 18 20 18 15 

75.38 3.31 499 887 829 638 

AVG. SUM. 

TABLE IV. SET B AND C. AVERAGE CRITERIA OF DIFFERENT METHODS WITH 10 PARTICLES 

Problem 
Cmax Improvement% APD% TGB NS 

PSO FF PSO FF PSO FF PSO FF PSO FF 

b20 60.66 54.62 20.74 25.51 0.21 0.00 84.67 130.53 12 38 

b30 89.30 81.56 18.05 22.33 0.13 0.00 201.11 174.83 9 42 

b40 123.62 108.60 15.85 21.99 0.31 0.07 388.14 194.90 7 29 

b50 148.82 134.82 15.02 19.66 0.43 0.00 290.75 146.21 4 24 

b100 301.68 266.82 8.40 14.37 0.30 0.02 0.00 285.44 0 25 

c20 85.16 81.00 17.74 20.88 0.00 0.00 58.73 87.70 26 47 

c30 110.76 105.22 18.52 21.35 0.01 0.00 130.82 73.58 17 36 

c40 167.22 159.56 14.09 16.72 0.01 0.00 177.67 35.45 18 44 

c50 219.18 210.68 10.37 12.72 0.13 0.00 109.52 98.36 21 45 

c100 388.14 356.64 7.04 11.74 0.20 0.01 222.25 83.60 8 35 

 

169.45 155.95 14.58 18.73 0.17 0.01 166.37 131.06 122 365 

Avg. Sum 
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TABLE V. SET B AND C. COMPARISON OF CRITERIA BETWEEN DIFFERENT METHODS 

Problem TGB NS APD 

SET N PSO FF PSO FF B&B [28] PSO FF B&B [28] 

b20 84.67 130.53 12 38 35 0.21 0.00 3.99 

b30 201.11 174.83 9 42 34 0.13 0.00 3.26 

b40 388.14 194.90 7 29 38 0.31 0.07 4.56 

b50 290.75 146.21 4 24 37 0.43 0.00 2.95 

b100 0.00 285.44 0 25 44 0.30 0.02 1.69 

c20 58.73 87.70 26 47 46 0.00 0.00 3.78 

c30 130.82 73.58 17 36 49 0.01 0.00 1.37 

c40 177.67 35.45 18 44 49 0.01 0.00 0.95 

c50 109.52 98.36 21 45 48 0.13 0.00 3.93 

c100 222.25 83.60 8 35 49 0.20 0.01 0.52 

 
166.366 131.06 122 365 429 0.173 0.01 2.7 

Avg. Sum. Avg. 

To test performance of the FF algorithm regarding to its 
CPU time to get the optimum, we schematize in Fig. 3 the 
average TGB. The Firefly Algorithm needs less time than PSO 
algorithm to reach the optimum. 

 

Fig. 3. Set B and C. Comparison of TGB between PSO and FF. 

VI. CONCLUSION 

The purpose of this work was the discretization of a Firefly 
Algorithm to resolve the two-stage mono-processors hybrid 
flow shop scheduling. This algorithm is a nature-inspired 
metaheuristic for continuous optimization and the most of the 
articles found in the literature used it in its continuous version. 
In this paper, a discretization of the algorithm is given. A 
meaningful solution encoding of sequencing and assignment is 
kept. We held Hamming’s distance between fireflies to find 
the more attractive taking that it is more significant for 
discrete values. 

In order to compare the efficiency of the discretized firefly 
algorithm a particle swarm algorithm was coded with the same 
principles. Moreover, a standard benchmark was used with 55 
scheduling HFS samples with either unbalanced and balanced 
workloads and heterogeneous settings. A good choice of 
comparison criteria applied was made as the average 
percentage deviation from the lower bound. 

The discretization and the good choice of attraction 
parameter permitted to our Firefly Algorithm to catch the best 
amelioration rate on minimizing makespan criteria in a 
reasonable execution time. 

In conclusion, the Firefly Algorithm was more appropriate 
to exploit the HSF search space by improving individuals 
scheduling and simultaneously obtaining the most attractive 
one. 

Additional investigation required to refine the work 
described in this paper. We are working on others variants of 
the manufacturing systems such as constrained hybrid flow 
shops without buffer minimizing blocking duration. 
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