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Abstract—Due to the ever-increasing efficiency of computer 

systems, symmetric cryptosystem are becoming more vulnerable 

to linear cryptanalysis brute force attacks. For example, DES 

with its short key (56 bits) is becoming easier to break, while AES 

has a much longer key size (up to 256 bits), which makes it very 

difficult to crack using even the most advanced dedicated 

cryptanalysis computers. However, more complex algorithms, 

which exhibit better confusion and diffusion characteristics, are 

always required. Such algorithms must have stronger resistance 

against differential and linear cryptanalysis attacks. This paper 

describes the development of an algorithm that implements a 

pseudo random number generator (PRNG) in order to increase 

the key generation complexity. Experimental results on both DES 

and AES cryptosystems complemented with the PRNG have 

shown an average improvement of up to 36.3% in the avalanche 

error computation over the original standard systems, which is a 

considerable improvement in the time complexity of both 

systems. 
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I. INTRODUCTION 

Governments, banks, universities, and regular individuals 
are sending and receiving colossal amounts of digital data over 
networks and through other digital means non-stop. The ever 
flowing torrent of data holds information of varying levels of 
importance and sensitivity, such of which is determined by the 
purpose to which it will be put to use by its sender and 
receiver, and the damage which results from it falling into the 
wrong hands. 

Keeping government, industrial, financial, and personal 
secrets safe is a paramount concern in a world controlled 
through digital communications and integrated data storage. 
Secrets flow from one computer to another until they reach 
their designated destinations. But what if those secrets were 
intercepted? 

Encryption is an ancient solution designed to protect 
information which can be intercepted by those who were not 
meant to receive it. Many algorithms were developed over 
thousands of years for that purpose. In the digital age, 
encryption algorithms are classified into symmetric algorithms 
(secret-key algorithms), and asymmetric algorithms (public-
key algorithms) [1, 2]. Symmetric algorithms require both the 
sender and the receiver of encrypted data to have the same key 

which will be used for both encryption and decryption, while 
for asymmetric algorithms, the key used to perform encryption 
of some data is different from the key which will be used to 
decrypt that data. 

This work is concerned with the enhancement of the secret 
key generation process using random number generator, that 
will be used with symmetric cryptographic systems, in 
particular data encryption standard (DES) and advanced 
encryption standard (AES). Hence only these two systems will 
be reviewed together with pseudo random number generators 
in the following sections. After the brief introduction and the 
literature review presented in sections 1 and 2, section 3 will 
include the methodology of the proposed algorithm. Section 4 
lists out the obtained results. Section 5 provides a 
comprehensive discussion of the obtained results. Finally, 
section 6 concludes the work. 

II. LITERATURE REVIEW 

This paper is concerned with the improvement of two 
widely used symmetric cryptosystems: the Data Encryption 
Standard (DES) and the Advanced Encryption Standard (AES), 
by the implementation of a pseudorandom number generator 
(PRNG). Hence, a brief literature review will be included in 
this section. 

A. The Data Encryption Standard (DES) 

The widely used DES crypto-system was first developed by 
an IBM team and modified by the National Security Agency 
(NSA) to be adopted by the National Bureau of Standards 
(NBS) in 1976. It is an iterative block cipher system with a 
block size of 64 bits. It implements 16 rounds using a 56-bit 
key that changes for each round according a key generation 
algorithm. Confusion and diffusion were guaranteed through 
various substitution and transposition steps [1-4]. It was 
standardized in 1977 by the National Institute of Standards and 
Technology, and used internationally since then. It was secure 
enough at the beginning, however, due to its comparatively 
small key space, the existence of some weak and semi-weak 
keys, and the vast increase in the computing power, breaching 
its security became an easy task. 

The DES algorithm weakness and vulnerability was 
exploited in the last decade of the twentieth century. Electronic 
Frontier Foundation was able to break DES in 1998 using the 
so called DES cracker [5]. Around the same period, 
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DESCHEALL project, led by Rocke Verser, Matt Curtin, and 
Justin Dolske, were also able to break DES. They used idle 
cycles of thousands of computers across the Internet. 

Encryption twice using DES (or 2DES) which doubles the 
key length to 112 bit was suggested as a modification to DES, 
but unfortunately, it suffered from man-in-the-middle attack. 
This drawback lead to a minor improvement in the key space 
by only increasing the key length from 56 to 57 bits [6]. 

The drawbacks of 2DES lead to the development of 3DESs 
which was a far more secure cryptosystem than DES. It was 
developed by an IBM team in 1999. The application of 3DES 
with three different keys extends the key space by practically 
achieving a key length of 168-bit, thus securing the system for 
few more years to come [7]. 

Many other variants of DES with less computational efforts 
were suggested, such as DES-X with key space enhanced by 
XOR’ing with other elements before and after the encryption 
process, and GDES that speeds up encryption. However, they 
were susceptible to differential cryptanalysis [8, 9]. 

The need arose for a successor to DES, and accordingly, 
National Institute of Standards and Technology (NIST) put 
forward a competition for designing a strong encryption 
algorithm. The criteria for the competing algorithms were to be 
efficient and easy to implement using both hardware and 
software, besides being royalty-free in order to be used 
internationally [10]. This competition was won by the Belgian 
cryptographers Joan Daemen and Vincent Rijmen in 2000 [11] 
and was named as the Rijndael algorithm, carrying the 
acronym of some characters of their names (pronounced 
"Rhine doll"). Then this algorithm wass termed Advanced 
Encryption Standard (AES) and defined by FIPS 197. It was 
approved by the US government to be used for secret and top 
Secret classified information [12]. 

B. The Advanced Encryption Standard (AES) 

AES is an iterative symmetric cryptosystem operating on 
128 bits data block size, i.e. double the data size for DES. 
There are three variants of AES according to the key lengths; 
128, 192 and 256 bits, and the number of rounds; 10, 12, and 
14 rounds. These increases in block size, key length and the 
number of rounds have given the AES algorithm dramatic 
security improvements as compared to DES when a brute force 
attack is used, besides no trace of "weak" and "semi-weak" 
keys are detected so far. 

Diffusion and confusion are achieved in the AES 
computation through four operations that are executed in every 
round. Those operations are: byte substitution, shift rows, mix 
columns and add round keys. Also, an excellent key generation 
algorithm is implemented to produce a different key for each 
round. It implements S-box tables resulting from 
transformation using the Galois Field GF(2

8
). It defines the 

transformation algebraically using the GF(2
8
) field with the 

irreducible polynomials (x
8
 + x

4
 + x

3
+ x + 1) [9, 10].  The 

detailed design and operation of the AES algorithm will not be 
listed here but can be found in the literature [9–12]. 

Although potential attacks against the AES algorithm, such 
as interpolation, saturation, Gilbert-Minier, truncated 

differential, and related-key attacks were suggested by 
Rijndael, most attacks have focused on the “side-channels”, 
which rely on weaknesses in the security of the application 
rather than the algorithm [11]. Besides the strength of its 
security, AES can efficiently be implemented in both hardware 
and software, which makes it safe and practically beneficial 
now and for years to come. 

C. Pseudo Random Number Generators (PRNGs) 

Deterministic or Pseudo-random number generators are 
algorithms used to generate sequences of numbers having an 
approximate random property [13]. Pseudo-random number 
generation is initiated using relatively small key seeds, and the 
numbers are easy to generate and reproduce. PRNGs are 
classified into integer generators, sequence generators, integer 
set generators, narrators, sequence generators, integer set 
generators, Gaussian generators, decimal fraction generators or 
row random byte generators. This classification is based on the 
type of data they produce, such as integers, integer sequences, 
sets of random integers, integers that fit normal distribution or 
numbers in the 0 and 1 range with configurable decimal places, 
respectively. Each of the mentioned types is useful for many 
cryptographic purposes [14]. 

Some PRNGs generate pseudo-random numbers using 
seeds supplied by chaotic systems (dynamic, iterative, 
decimation) to achieve high speed and good security [15-17]. 
They are advantageous in having unpredictability or disorder-
like, that are required for generating complex sequences. 
However, they have the problems of non-ideal distribution and 
short cycle length. 

Behnia et. al. proposed a cryptographically secure 
algorithm for the generation of PRNGs based on three coupled 
and mutually perturbed Lagged Fibonacci generators [18]. It 
includes bitwise XOR cross-addition of each generator output 
with the right-shifted output of the nearby generator. It showed 
enhanced entropy and acceptable repetition period than the 
conventional Lagged Fibonacci Generator. 

An enhancement to the work discussed above was done 
through a multi-stage PRNG algorithm that is based on 
Shannon’s concept of confusion and diffusion. This algorithm 
was designed and tested for randomness using NIST 
randomness tests by the authors [19, 20]. It implements bitwise 
manipulation in order to achieve adequate bit string confusion 
and diffusion by combining various processes such as bit 
swapping, modular operations and secret splitting techniques. 
This algorithm will be implemented in this work to improve 
the key generation and manipulation of symmetric 
cryptosystems, such as DES and AES. 

III. THE MULTI-THREADED BLOCK ENCRYPTION SCHEME 

This paper proposes a multi-threaded block encryption 
scheme (MTBES). It is designed with the notion to enhance 
symmetric cryptosystems by improving the diffusion and 
confusion processes. This will be done through the introduction 
of more randomness into the key generation algorithms and 
utilizing the multi-threaded features in modern computers. In 
this work, the two widely used cryptosystems, namely DES 
and AES will considered. Each of these systems includes a 
number of rounds, where each round requires a certain sub-
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key. These sub-keys are normally generated by an algorithm 
that starts with an input secret key. Basically, this research 
work suggests two modifications; first, the incorporation of a 
pseudo-random number generator that participates in the 
generation of the rounds sub-keys needed for either DES or 
AES cryptosystems. Second, splitting the original message into 
sets of packets through various threads in the processer, that 
will be encrypted concurrently, each thread uses the suitable 
PRNG sub-keys, and then in the end, they are mixed and 
transmitted to the recipient where the packets are sorted and 
then decrypted. These two modifications are described in the 
following sections. 

A. Sub-key Generation 

Generally, each cryptosystem requires a secret key of 
certain length, namely it is of 64 bits length for DES and 128, 
192, or 256 bits for AES. This key is normally used to generate 
a set of sub-keys K = {K1, K2, …, Kn} according to fixed 
procedure, where n is the number sub-keys required by the 
system. The number of sub-keys depends on the system used, 
namely 16 sub-keys for DES and 10, 12, or 14 sub-keys for 
AES different key length 128, 192 0r 256 bits, respectively (as 
shown in fig 1 for DES for example). 

In this paper, a PRNG is used to randomly generate another 
set of n sub-keys, S = {S1, S2, …, Sn}. To generate this set of 
sub-keys, PRNG requires a secret key, too to be used as seed. 
Each of these sub-keys length is the same as that for K and S. 
Next, the generated sub-keys, K and S are XOR’ed with each 
other producing a set of sub-keys Ki as illustrated in Figure I. 

 

Fig. 1. Block diagram for the proposed sub-key generation scheme 

This resulting set of sub-keys will be the one used for the 
successive rounds of the system under consideration. 

As an example, the PRNG implemented in this work that 
combines logical operation and bits manipulation to achieve 
the confusion and diffusion concept. It accepts a certain secret 
key (as a seed) of the required length consisting of any 
alphanumeric and special characters agreed upon by the 
communicating parties. The produced sub-keys lengths and the 
secret seed length depend on the cryptosystem under 
consideration, (for example, 48 bits for DES and 128, 196, or 

256 bits depending on the AES type used). This PRNG is 
designed and tested for accepted randomness using NIST 
randomness criterion [20]. 

B. Multi-threaded Operation 

A program is written to arrange the algorithm execution 
through a multi-threaded processor, which means that its 
operation is divided over a number of threads. The number of 
threads is determined by the size of the data to be encrypted, as 
each thread should be responsible for encrypting a piece of the 
original text. The number of threads is determined by reading 
the threading capability of the CPU from the OS and segment 
the data to fit such threading capability. This process has 
exhibited an efficient execution practice that is expected to 
enhance the time complexity measurement. 

Multi-threaded programming is used to enhance the 
performance of the algorithm when it is executed on a 
computer supporting multi-threading. However, the algorithm 
operates perfectly on a single core processor that does not 
support multi-threading. 

The algorithm utilizes multi-threading by splitting the data 
to be encrypted into a number of packet lists equal to the 
possible number of threads supported by the processor. Each 
packet of each packet list is then encrypted using a separate 
thread, and then added to a master packet array in their original 
order. This order is preserved regardless of unpredictability of 
thread execution behavior as a packet is placed in the correct 
location within the array. This master array of packets is then 
converted to a string representing the final encrypted message, 
which is finally sent to the recipient. 

IV. EXPERIMENTAL RESULTS 

The proposed algorithm is incorporated in both DES and 
AES cryptosystems in order to change them to modified 
versions, named randomized key DES (named RKDES) and 
randomized key AES (named RKAES). 

The criteria used for the test is the average avalanche effect. 
The avalanche phenomena may be defined as the percentage of 
change in the ciphertext contents when the input plaintext is 
altered. The resulting Average Avalanche Effect percentage 
(AAE) for these algorithms are compared with original DES 
and AES cryptosystems running on the same computing 
environment. Moreover, different input plaintext lengths were 
considered ranging from 512 bits to 1048576 bits with various 
number of iterations ranging from 100 to 10000 epochs. These 
experiments were repeated for three different combinations of 
input data, namely, numeric only, alphanumeric and Unicode. 
In the following, some selected results are displayed. 

The average avalanche effect (AAE) percentage for the 
original AES and the modified AES with random key RKAES 
are calculated for different data sizes ranging from 512 to 
1048576 bits, and for different numbers of iterations ranging 
from 100 to 10000 iterations. The obtained results for the case 
of 10000 iterations are listed in tables I, II, and III. A graphical 
representation of the data is shown in the figures II, III, and IV. 
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TABLE I. AVERAGE AVALANCHE EFFECT OF AES AND RKAES FOR 

NUMERIC DATA AFTER 10000 ITERATIONS 

Average Avalanche Effect of AES and RKAES for Numeric data after 
10000 iterations 

Data size AAE AES AAE RKAES 

512 36.50% 47.30% 

4096 37.00% 47.60% 

65536 37.10% 47.90% 

1048576 37.60% 52.90% 

Average 37.05% 48.93% 

TABLE II. AVERAGE AVALANCHE EFFECT OF AES AND RKAES FOR 

ALPHANUMERIC DATA AFTER 10000 ITERATIONS 

Average Avalanche Effect of AES and RKAES for Alpha-numeric data 
after 10000 iterations 

Data size AAE AES AAE RKAES 

512 36.80% 47.60% 

4096 36.80% 47.70% 

65536 36.90% 47.90% 

1048576 36.80% 53.80% 

Average 36.83% 49.25% 

TABLE III. AVERAGE AVALANCHE EFFECT OF AES AND RKAES FOR 

UNICODE DATA AFTER 10000 ITERATIONS 

Average Avalanche Effect of AES and RKAES for Unicode data after 
10000 iterations 

Data size AAE AES AAE RKAES 

512 36.50% 48.40% 

4096 36.70% 48.50% 

65536 36.80% 48.80% 

1048576 36.70% 54.20% 

Average 36.68% 49.98% 

 

Fig. 2. Average Avalanche Effect of AES and RKAES for Numeric data 

after 10000 iterations 

 
Fig. 3. Average Avalanche Effect of AES and RKAES for Alphanumeric 

data after 10000 iterations 

 
Fig. 4. Average Avalanche Effect of AES and RKAES for Unicode data 

after 10000 iterations 

Similarly, the average avalanche effect (AAE) percentage 
for the original DES and the modified DES with random key 
RKDES are calculated for different data sizes ranging and for 
different numbers of iterations as those for the AES 
cryptosystem and the obtained results for the case of 10000 
iterations are listed in tables IV, V, and VI, and illustrated in 
the figures V, VI, and VII for the three types of data. 
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TABLE IV. AVERAGE AVALANCHE EFFECT OF DES AND RKDES FOR 

NUMERIC DATA AFTER 10000 ITERATIONS 

Average Avalanche Effect of DES and RKDES for Numeric data after 
10000 iterations 

Data size AAE AES AAE RKAES 

512 23.90% 37.50% 

4096 23.80% 37.40% 

65536 23.70% 37.60% 

1048576 23.80% 38.10% 

Average 23.80% 37.65% 

TABLE V. AVERAGE AVALANCHE EFFECT OF DES AND RKDES FOR 

ALPHANUMERIC DATA AFTER 10000 ITERATIONS 

Average Avalanche Effect of DES and RKDES for Alpha-numeric data 
after 10000 iterations 

Data size AAE AES AAE RKAES 

512 24.20% 38.00% 

4096 24.40% 38.10% 

65536 24.70% 38.70% 

1048576 24.80% 39.40% 

Average 24.53% 38.55% 

TABLE VI. AVERAGE AVALANCHE EFFECT OF DES AND RKDES FOR 

UNICODE DATA AFTER 10000 ITERATIONS 

Average Avalanche Effect of DES and RKDES for Unicode data after 
10000 iterations 

Data size AAE AES AAE RKAES 

512 24.50% 39.00% 

4096 24.40% 39.00% 

65536 24.90% 39.70% 

1048576 25.10% 40.60% 

Average 24.73% 39.58% 

 

Fig. 5. Average Avalanche Effect of DES and RKDES for Numeric data 

after 10000 iterations 

 
Fig. 6. Average Avalanche Effect of DES and RKDES for Alphanumeric 

data after 10000 iterations 

 
Fig. 7. Average Avalanche Effect of DES and RKDES for Unicode data 

after 10000 iterations 

The average improvement of the avalanche effect when the 
key is randomized by the incorporation of the PRNG in the 
sub-key generation can be calculated by the formula shown in 
equation (1). 

Average improvement of the avalanche effect, 

    
      

   
    .   .    .    .      (1) 

Computing the average improvement of the avalanche 

effect,   for various combinations of data types, input sizes, 
and number of iterations performed produced the results listed 
in table III. 
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TABLE VII. AVERAGE IMPROVEMENT OF THE AVALANCHE EFFECT   

Table III indicates a considerable improvement in 
cryptographic strength or system security. The calculated 
average avalanche effect showed and improvement of more 
than 33%. Actually the average improvement when various 
parameters are considered for DES was 33.50% and for AES 
was 33.52 %, which are almost equal. Such improvement has 
resulted from the involvement of the PRNG involvement in 
generating the sub-keys, which indicates that such technique 
would prove useful in other block cipher systems. 

V. RESULTS ANALYSIS 

Application of the proposed PRNG algorithm modification 
as part of the sub-key generation process within AES and DES 
algorithms has resulted into considerable improvements in the 
diffusion attribute of both algorithms. This was observed 
through the considerable increase in the avalanche effect 
(AAF), which was measured using a custom software package, 
developed for the testing of encryption strength attributes of 
block ciphers. The avalanche effect measurements for DES 
showed an increase by 33.5% in the case of the modified 
algorithm compared to the original DES, while that for AES 
showed an enhancement of 33.52% in the avalanche effect in 
the case of the modified algorithm compared to the original 
AES. 

It can also be stated that the incorporation of PRNG as part 
of the sub-key generation process, can be considered a form of 
cryptography applied on the original key and subsequent sub-
keys, in a cascading manner. This leads to what is known as 
domino effect that enhances the confusion and diffusion 
attributes for block ciphers by applying a multi-stage sub-key 
generation process. 

Moreover, the incorporation of a key encryption algorithm 
exhibiting highly random outcomes, as measured by the NIST 
pseudo-randomness tests, such as the implemented PRNG in 
this work, would lead to enhanced bit diffusion behavior within 
multi-stage, multi-sub-key block ciphers such as DES and AES 
which were considered here. 

From tables VII, it can be observed that the average 
avalanche effect for data constructed from larger alphabets was 
greater than that observed for data constructed from smaller 
alphabets. Namely, data in Unicode format showed a larger 
enhancement in the average avalanche effect than alpha-
numeric data, and numeric data for the same data size and 
number of iterations involved. This is also manifested when 

comparing the average avalanche effects for numeric and 
alpha-numeric data, i.e. alpha-numeric data, shows better 
enhancement than numeric data. Besides, when different data 
sizes are compared, larger data samples showed better 
enhancement in the average avalanche effect than smaller data 
samples. 

VI. CONCLUSIONS 

Significant improvement has clearly resulted due to the 
incorporation of pseudo-random number generation into the 
sub-key generation process for both DES and AES algorithms. 
This means that such a process significantly enhances the 
diffusion property of the algorithm. This in turn has led to a 
higher level of security than those obtained using the original 
algorithms. Moreover, it was noticed that the average 
avalanche effects get better as one goes from numeric to 
Unicode through alphanumeric data with increasing number of 
iterations. 

Furthermore, security is achieved by splitting the original 
message into packets, where each set of packets is encrypted 
using a pseudo-random sub-key. Using different sub-keys for 
encrypting sets of packets increases the difficulty of 
cryptanalysis through differential attacks which require the 
presence of a large number of original messages and their 
corresponding cipher texts. 
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