
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

171 | P a g e

www.ijacsa.thesai.org

Virtual Observation System for Earth System Model:

An Application to ACME Land Model Simulations

Dali Wang, Fengming Yuan

Climate Change Science Institute

Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

Benjamin Hernandez

National Center for Computational Science

Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

Yu Pei, Cindy Yao

Department of Electric Engineering

and Computer Science

University of Tennessee, Knoxville, TN 37996, USA

Chad Steed

Computational Science Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

Abstract—Investigating and evaluating physical-chemical-

biological processes within an Earth system model (EMS) can be

very challenging due to the complexity of both model design and

software implementation. A virtual observation system (VOS) is

presented to enable interactive observation of these processes

during system simulation. Based on advance computing

technologies, such as compiler-based software analysis, automatic

code instrumentation, and high-performance data transport, the

VOS provides run-time observation capability, in-situ data

analytics for Earth system model simulation, model behavior

adjustment opportunities through simulation steering. A VOS

for a terrestrial land model simulation within the Accelerated

Climate Modeling for Energy model is also presented to

demonstrate the implementation details and system innovations.

Keywords—Earth System Modeling; Accelerated Climate

Modeling for Energy; In-Situ Data Analytics; Virtual Observation

System; Functional Unit Testing

I. INTRODUCTION

Over the past several decades, several Earth system models
(ESMs) have been developed to understand Earth system
dynamics and to project future climate scenarios. Among these
ESMs, the Accelerated Climate Modeling for Energy (ACME)
model, funded by the US Department of Energy (DOE), is a
national effort to address the challenging and demanding
climate-change research imperatives. Due to the complexity of
EMSs in both model design and software implementation, the
validation and verification of the Earth system process with
EMSs are quite challenging, especially at the scales and levels
of organization wherein many relevant field measurements and
experiments are made (Wang et. al., 2014a). Scientists
routinely use post-simulation approaches to analyze results.
These include visual exploration to detect anomalies or
interesting patterns and statistical data analysis for further
investigation. Generating data for post-simulation earth system

process investigation quickly becomes a cumbersome task once
a simulation reaches a fairly large scale with a huge amount of
data and daunting input/output cost. For these reasons, an
interactive, run-time simulation monitoring system, or a virtual
observation system (VOS), is needed. In this paper, author
first scribe key functions of a VOS and then describe its major
components based on advanced computing technologies (such
as compiler-based software analysis, automatic code
instrumentation, and high-performance data transport). At last,
for the demonstration purpose, authors present implementation
details on a VOS for a terrestrial land model that is the ACME
Land Model (ALM) which is a process-based model with a
collection of key bio geophysical and biogeochemical
functions that represent the energy-water-biogeochemical
interactions between the atmosphere and the terrestrial
landscape. The VOS software system for ALM provides the
capabilities of real-time observation and in-situ data analytics
for model simulation.

II. VIRTUAL OBSERVATION SYSTEM DESIGN

Key functions of A VOS are 1) to setup a “watch point” for
a specific physical-chemical-biological function and 2) to
capture the input and output data streams of a target function.
Therefore, users can quantify the relationship between input
and output data streams of a target function and identify
variables that are can be observed at desired sampling
frequencies. This information can be used to guide data
collections in real world observation systems. A VOS also
provides interactive tracking capability over user-selected key
model variables throughout model simulation, so that users can
“observe” changes in model variable values, and explore the
relationship among Earth system functions (related to these
user-selected model variables) over a specific spatial-temporal
domain.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

172 | P a g e

www.ijacsa.thesai.org

Fig. 1. Major software components of a VOS, including software analysis and code instrumentation, in-situ data infrastructure, and interactive data analysis. Two

typical uses of the VOS are function-specific data monitoring and variable tracking throughout the simulation

Figure 1 shows two typical uses of a VOS. First, the VOS
allows users to define a specific function (an individual
subroutine or a group of related subroutines) and an
observation period, then the VOS collects input and output data
streams of the target function and transports these data out of
the simulation system for visualization and analysis. Second,
the VOS helps to track specific key model variables throughout
the simulation system over a user-defined period. Figure 1 also
illustrates the major components of a VOS, including software
analysis and code instrumentation, in-situ data communication
infrastructure and interactive data analysis.

A. Software analysis and automated instrumentation

The main purpose of this VOS component is to collect
information on software structures and workflow. Authors
adopted a similar workflow procedure used in a scientific
function test platform (Wang et. al., 2015, 2014b; Yao et. al.,
2016). The procedure has several steps: First, authors use
software dependency analysis to identify methods to reduce
software dependency on parallel computing and external
libraries. This step simplifies the model software dependency
by using production compilers without an optimization option.
Next, authors perform a compiler-assisted workflow analysis to
capture the internal data structure and scientific workflow of
the simulation source code. For a given function or module,
authors use a programming language parser to analyzes the
source code, break it into tokens, and store the program
internally as an abstract syntax tree (AST). Then, authors
conduct recursive name resolution through the AST to capture
the input and output data streams of a target function in the
simulation source code. Finally, authors instrument code
segments into the source code to pack all the data of interest
into a continuous memory buffer ready for in-situ data
infrastructure. Since the majority of EMSs are developed in
Fortran, authors are working on the integration of a kernel
extraction tool (Kim, et. al., 2016), which is built on top of a

Python Fortran parser, for automatic code instrumentation. The
process is shown in Figure 2.

Fig. 2. General procedure for software analysis and automated

instrumentation within a VOS

B. In-situ data communication infrastructure

The main function of this VOS component is to provide
high-performance data communication capability for
transferring the data of interest out of simulation system for
external analysis. The data infrastructure allows users to inspect
variable values in real time during model simulation. In the
current effort, VOS in-situ data infrastructure is built on the
Common Communication Interface (CCI) (Atchley et al,
2011). The CCI project is an open-source communication
interface that aims to provide a simple and portable Application
Programming Interface (API), high performance and scalability
for the largest deployments, and robustness in the presence of
faults. The in-situ data infrastructure consists of three
segments: data generation, data staging, and data analysis
(Figure 3). In the VOS, the data analysis segment first creates
CCI channels to which the data generation segment
(instrumented simulation code) can connect. Once the
connection is established, users can then pass simulation
parameters (function and variable names, time interval, and
location, etc.) to instrumented simulation code. Once the
simulation runs to the user-defined time interval, the
instrumented simulation code packs all the relevant data into a
buffer and uses CCI’s Remote Memory Access (RMA)
methods to send the data over the network to the data analysis

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

173 | P a g e

www.ijacsa.thesai.org

segment. The data analysis segment always listens on its own
CCI channel. When the data arrives, the analysis segment
unpacks the data for follow-up data processing and analysis.

Considering that large data volume needs to be transferred
into data analysis, VOS data infrastructure also includes a data
staging area that allows data caching for input/output
operations and low-latency data queries. The data staging area
also allows users to define functions and observation periods
and track key model variables over simulation period. The
main purposes of data staging are: 1) reduce potential data
overload in the analysis side during model simulations and 2)
then enable user-based queries and maintain interactive rates.
Currently, the staging area is co-located with data analysis and
visualization, and acts as a temporal storage area for data
processing operations (e.g., storing, loading, extraction,
transformation, or querying). Figure 3 shows the VOS in-situ
data infrastructure with a staging area.

Fig. 3. In-situ data infrastructure with a data staging area inside the data

analysis component

C. Interactive data analysis

This VOS component provides a front end with which users
can perform three main tasks: 1) choose the ecosystem
functions and time interval for monitoring, 2) interactively
visualize the results of predefined “watch” points throughout
simulation, and 3) steer the simulation accordingly, if
necessary. The data analysis component also directly
communicates with the staging area to conduct query
submission and data retrieval based on the user interactions.

From the technical perspective, this component contains
three modules: 1) a graphic user interface (GUI) that allows
users to perform these three main tasks, 2) an interactive data
visualization engine that plots physical-chemical-biological
interactions produced by the simulation, and 3) a
communication interface with a staging area which in turn
connects to the instrumented simulation code.

In the study, the GUI is built using Qt and the data
visualization engine is developed using the Visualization
Toolkit (VTK), which utilizes the underlying graphical
processing unit (GPU) for faster rendering. Multicore CPU
processors are used to handle data transfer. After receiving the
buffer from CCI, the engine converts the data into vtkTable
data structure for visualization. The buffering mechanism based
on data staging allows users to select time steps for
visualization. The visualization engine employs a client-server
model, so that while the VTK server is located alongside the
simulation for faster data transfer, the actual client display
windows can be on any remote machine. This feature greatly
increases the portability and usability of the system.

Fig. 4. Key components of VOS data visualization, which utilizes hybrid

hardware and provides cross-platform GUIs

III. VOS FOR ALM: CASE DEMONSTRATION

In this section, authors demonstrate a VOS for the ALM
simulation over the Next Generation Ecosystem Experiments
Arctic site (NGEE-Arctic, http://ngee-arctic.ornl.gov), located
at the Barrow Ecosystem Observatory (BEO) in Barrow,
Alaska. In this experiment, ALM was configured as a point-
mode offline simulation to investigate terrestrial ecosystem
responses to specific atmospheric forcing over a single
landscape grid cell at Barrow (Yuan, et. al., in preparation). For
the demonstration purposes, the observation system is used to
track all the variables in and out of a CNAllocation module
within ALM. The CNAllocation function is developed to
allocate key chemical elements (such as carbon, nitrogen and
phosphorus) of a plant in a terrestrial ecosystem.

The software architecture diagram of the VOS for ALM
using the CNAllocation module is illustrated in Figure 5.

Fig. 5. The schematic software architecture diagram of the VOS for the

ACME Land Model

As shown in Figure 5, code segments are instrumented into
the source code to capture and pack the input and output data
streams of the targeted module, CNAllocation. The code
segments also contain functions that invoke the in-situ data
communication infrastructure, including CCI channel and data
buffer. The VOS has a staging area that also contains a CCI
channel and data buffer. The staging area is accessible from a
data exploration subcomponent. Authors first start the
interactive data analysis component, which takes user-specified

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

174 | P a g e

www.ijacsa.thesai.org

parameters (such as time interval, or a subset of variables) and
then listens to the CCI connection requests from the simulation
side. Next, authors start the instrumented ALM simulation
code. When the simulation code runs to the user-defined time
steps, the instrumented code packages all the relevant data into
a buffer and then sends the buffer to the interactive data
analysis component over the network. The data analysis
component always listens on its CCI channel. When data
arrive, the data analysis component unpacks the data in the
staging area for follow-up data processing and analysis.

The GUI for CNAllocation data analysis and exemplar
simulation data streams is illustrated in Figure 6. The first two
rows show different bar plots of carbon and nitrogen allocation
variables for a plant type over a specific range of time steps.
The third row displays a time series from given carbon and
nitrogen allocation variables; this graph allows users to track
the behavior of target variables during the simulation. The
fourth row includes a heat map for plotting variables having a
2D domain. Finally, the left panel shows the complete variables
and time step selection.

Fig. 6. GUI of the VOS data analysis of the CNAllocation functions within the ACME Land model. Users can zoom in or out to inspect different time steps or

drag on any plot to highlight certain variables

IV. CONCLUSION

Authors have demonstrated an approach to develop a
virtual observation system (VOS) for Earth system models.
Authors also have implemented a VOS for the ACME Land
Model using a single point-mode simulation case. By taking
advantage of compiler-based software system analysis,
automatic code instrumentation, and high-performance in-situ
data transport, the VOS provides unique capabilities to
investigate Earth system behaviors in a unique way. The VOS
is designed based on non-intrusive observation principles; it
preserves all the original software data flow and function calls.
The VOS also allows scientists to interactively select targets of
interest, such as key variables, functions, or specific break
points for a simulation. Modelers can focus on investigating
model behaviors without dealing with complex code
instrumentation and large data handling on high-performance
computing platforms. Future work will focus on two directions:
1) extending two-way communication mechanism to improve
the efficiency of data collection and 2) integrating with
external big data visual analysis toolkits (such as EDEN (Steed
et al., 2013)) and existing advanced statistical analysis
packages (such as R (Horsburgh et al., 2014) and Matlab
(Pianosi et al., 2012)). The latter requires further development

of data staging nodes within the system. In this extension,
Dataspaces library (Docan et al., 2012) could be used to
allocate and manage data staging nodes and handle push and
pull operations between the VOS components, whereas Fastbit
library (Wu, 2005) could be used for data indexing and query
processing within these nodes, and CCI can still provide a two-
way communication between simulation and analysis
components to enable simulation steering.

V. SOFTWARE AVAILABILITY

VOS has been tested on a variety of computing
environments (from desktop to high-performance computer
cluster). VOS uses the software parsing and instrumentation
capability developed through a functional unit testing platform
for ALM (in Fortran). The functional testing platform uses
compiler-based technology for software analysis and code
instrumentation. The source code of the functional unit testing
platform is located at a unit testing repository within bitbucket.
(https://bitbucket.org/cindy387/clm85/src/
cfa8d8faa43a21dcdde9b8750a9816a92477a361/?at=DEMO).
Currently, the in-situ data infrastructure code is developed
based on CCI libraries (in C), and is located at a CCI-in-situ
repository in bitbucket.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

175 | P a g e

www.ijacsa.thesai.org

(https://bitbucket.org/cindy387/clm85/src/83f7ade49968afef18
dd944560a343adbd6a3810/?at=In-situ). The visualization
package can be found at https://bitbucket.org/benjha/dataviz-
acme-land-model.

ACKNOWLEDGEMENT

This research was funded by the U.S. Department of
Energy (DOE), Office of Science, Biological and
Environmental Research (BER) program and Advanced
Scientific Computing Research (ASCR) program, and by an
ORNL LDRD project (#7409). This research used resources of
the Oak Ridge Leadership Computing Facility, located in the
National Center for Computational Sciences at Oak Ridge
National Laboratory (ORNL), which is managed by UT-
Battelle LLC for the Department of Energy under contract DE-
AC05-00OR22725.

REFERENCE

[1] Atchley, S., Dillow, D., Shipman, G., Geoffray, P., Squyres, J., Bosilca
G., and Minnich, R., 2011, The common communication interface (CCI)
in the 19th IEEE Symposium on High Performance Interconnects
(HOTI), Santa Clara, CA, August 23-25, 2011.

[2] Docan, C., Parashar, M., and Klasky, S., 2012. “DataSpaces: an
interaction and coordination framework for coupled simulation
workflows”. Cluster Computing 15(2): 163-181, doi: 10.1007/s10586-
011-0162-y

[3] Horsburgh, J.S., Reeder, S. L., Data visualization and analysis within a
Hydrologic Information System: Integrating with the R statistical
computing environment, Environmental Modelling & Software, Volume
52, February 2014, Pages 51-61, ISSN 1364-8152,
http://dx.doi.org/10.1016/j.envsoft.2013.10.016.

[4] Pianosi, F., Sarrazin, F., Wagener, T., A Matlab toolbox for Global
Sensitivity Analysis, Environmental Modelling & Software, Volume 70,
August 2015, Pages 80-85, ISSN 1364-8152,
http://dx.doi.org/10.1016/j.envsoft.2015.04.009.

[5] Steed, C. A., Ricciuto, D.M., Shipman, G., Smith, B., Thornton, P.E.,
Wang, D., Shi, X., Williams, D. N., 2013, Big data visual analytics for

exploratory earth system simulation analysis, Computers &
Geosciences, Volume 61, December 2013, Pages 71-82, ISSN 0098-
3004, http://dx.doi.org/10.1016/j.cageo.2013.07.025.

[6] Wang, D., Schuchart, J., Janjusic, T., Winkler F., and Xu, Y.,2014a.
Toward better understanding of the Community Land Model within the
Earth System Modeling Framework, in: Abramson, D; Lees, M;
Krzhizhanovskaya, W., Dongarra, J; Sloot, P.M.A. (Eds.), Procedia
Computer Science, 14th Annual International Conference on
Computational Science, Cairns, Australia, 2014, Procedia of Computer
Science, Volume 29, 2014, Pages 1515–1524,
10.1016/j.procs.2014.05.1375.

[7] Wang, D. Xu, Y., Thornton, P., King, A., Gu, L., Steed, C., Schuchart,
J., 2014b, A functional testing platform for the Community Land Model,
Environmental Modeling and Software, 2014, Volume 55, Pages 25-31,
10.1016/j.envsoft.2014.01.015

[8] Wang. D., Wu, W., Janjusic, T., Xu, Y., Iversen, C., Thornton, P.,
Krassovski, M., 2015. Scientific functional testing platform for
environmental models: An application to the Community Land Model,
International Workshop on Software Engineering for High Performance
Computing in Science, 37th International Conference on Software
Engineering, May 16-24, 2015, Florence, Italy. Doi:
10.1109/SE4HPCS.2015.10

[9] Wu, K., 2005. “FastBit: an efficient indexing technology for
accelerating data-intensive science” J. Phys.: Conf. Ser. 16 556-560, doi:
10.1088/1742-6596/16/1/077

[10] Yao, Z., Jia, Y., Wang, D., Steed, C., Atchley, S., 2016, In situ data
infrastructure for scientific unit testing platform1, in: Connelly, M.
(Ed.), Procedia Computer Science, Volume 80, 2016, Pages 587-598,
ISSN 1877-0509, http://dx.doi.org/10.1016/j.procs.2016.05.344.

[11] Youngsung Kim, Y., Dennis, J., Kerr, C., Kumar, R., Simha, A., Baker,
A., Mickelson,S., 2016, KGEN: A Python tool for automated Fortran
kernel generation and verification, in: Connelly, M. (Ed.), Procedia
Computer Science, Volume 80, 2016, Pages 1450-1460, ISSN 1877-
0509, http://dx.doi.org/10.1016/j.procs.2016.05.466.

[12] Yuan, F., Thornton, P. E., Xu, ,X., Sloan, VL., Iversen, C., Rogers, A.,
Yang B., and Wullschleger S. D., (2016). Modeling analysis of
assimilate partitioning between storage and pools of multiple plant
function types for simulating carbon cycles in Arctic coastal tundra
ecosystem at Barrow, Alaska. JGR-biogeoscience (in preparation)

