
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

303 | P a g e  

www.ijacsa.thesai.org 

The Impact of Analytical Assessment of 

Requirements Prioritization Models: An Empirical 

Study

Aneesa Rida Asghar 

Dept. of software engineering 

Bahria University Islamabad, Pakistan 

Dr. Shahid Nazir Bhatti 

Department of Software Engineering 

Bahria University Islamabad, Pakistan 

Atika Tabassum 

Dept. of software engineering 

Bahria University Islamabad, Pakistan 

Dr. S Asim Ali Shah 

Dept. of Electrical Engineering 

Bahria University Islamabad, Pakistan

 

 
Abstract—Requirements prioritization is one of the important 

parts of managing requirements in software development process 

which plays its role in the success or failure of a software 

product. A software product can go wrong or fail if right 

requirements are not prioritized at right time.  Thus, there is a 

need of a vast or complete requirements prioritization technique 

or model that spans all the factors that must be considered while 

prioritizing requirements whether it’s for a traditional software 

development or agile software development. There are several 

requirements prioritization methodologies that aid in decision 

making and in prioritizing requirements but importantly many 

lacks to account the important factors that have significant 

influence in prioritizing requirements. A requirement 

prioritization methodology that takes account of important 

factors such as time and human behavioral factors that has an 

influence in prioritizing requirements is required. This new 

model/ technique expected to overcome the lack that is in existing 

prioritization techniques because of not considering time gap 

factor and human behavioral factor. Extensive study on 

literature of agile methodology, requirements elicitation and 

prioritization has been done to find out factors that influence the 

decision making process of requirement prioritization. It is found 

that as agile methodologies such as XP, SCRUM deliver products 

in increments, there is a time gap between each increment of 

approximate 4 weeks or more, this time lapse could cause human 

behavioral to change either because of market demand or any 

other personal reason and, thus, influences the prioritization 

decision. These factors could be termed as time factor and 

human behavioral factors. Thus, a requirement prioritization 

technique or model is needed that takes account of all such 

factors while prioritizing requirements whether it’s for a 

traditional software development or agile software development. 

Keywords—Agile Software Engineering (ASE); Agile Software 

Development (ASD); Scrum Software Development Process; 

SCRUM; Product Owner (PO); Extreme Programming (XP); 

Requirements Prioritization techniques; Analytical Hierarchy 

Process (AHP); Cummulative Voting (CV); Numerical Assignment 

(NAT) 

I. INTRODUCTION 

Managing requirements is one of most important aspect of 
software development system. Developing software is entirely 

based on requirements as it contains the functionality or quality 
that the customer or stakeholder/s needs. Requirements emerge 
throughout the development process of software and, thus, they 
are needed to be addressed properly through communication 
between stakeholders, developers and documentation. A lot of 
factors play their role in the success or failure of a software 
product such as eliciting right and unambiguous requirements, 
managing unrealistic requirements and focusing on quality 
requirements etc. Requirements prioritization is one of the 
important parts of managing requirements in software 
development process which plays its role in the success or 
failure of a software product. A software product can go wrong 
or fail if right requirements are not prioritized at right time.  
Thus, there is a need of a vast or complete requirements 
prioritization technique or model that spans all the factors that 
must be considered while prioritizing requirements whether it‘s 
for a traditional software development or agile software 
development. Agile methodology is an innovative and iterative 
process that is currently the most widely used methodology for 
software development around the world as it supports changing 
requirements and helps in addressing changes throughout the 
development process. 

There are many existing requirements prioritization 
methodologies that aid in decision making and in prioritizing 
requirements but importantly many lacks to account the 
important factors that have significant influence in prioritizing 
requirements. A requirement prioritization methodology that 
takes account of important factors such as time and human 
behavioral factors that has an influence in prioritizing 
requirements is required. This new model/technique is 
expected to overcome the lack that is in existing prioritization 
techniques because of not considering time gap factor and 
human behavioral factor. Agile methodology such as XP, 
SCRUM delivers software products in increments; especially 
in case of SCRUM, since there are time gaps between sprints, 
human behavioral factor plays an important role here as the 
time passes and the requirements changes.  In sprints, 
requirements will be prioritized both on the basis of 
influencing factors such as cost, value, risk, time to market etc. 
and through the effect of non-functional requirements over 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

304 | P a g e  

www.ijacsa.thesai.org 

functional requirements. This will improve the overall quality 
of software product when it is included in the development 
process of scrum or could at least reduce the wastage of time, 
effort and resources. Requirements will not only be prioritized 
based on sprints, human decision but by critically analyzing the 
factors (sub characteristics) that can cause the product to 
success/ fail repeatedly thus ensuring the consistency in right 
requirements and hence the right prioritized requirements will 
be selected for a particular sprint at a time. 

Problems arise when new requirements evolve due to 
change in business needs, time to market, time and human 
behavioral factors during the development of a software 
product [4] [3] [1]. This is why the software market is moving 
towards an approach that supports changing requirements and 
managing them. As agile software development contains this 
attribute of managing changing requirements it is being widely 
used in software developments process worldwide where 
speedy development process is required. There are many 
factors involved in the success or failure of a product, one of 
them is collecting and prioritizing requirements while keeping 
influencing factors in mind [2]. After carefully eliciting 
requirements it is essential to arrange them so right 
requirements are delivered at right time in order to ensure the 
success of a product. There are many well-known existing 
requirements prioritization techniques but not one of them 
spans all the different types of software development projects. 
Some techniques work well with short projects and some with 
large projects, some with traditional development where 
extensive documentation is needed with no changes during the 
development process and some with agile development where 
little or no documentation is needed and where changes are 
welcomed. Although requirements can evolve at any stage 
during the development process, it is very unlikely to be able to 
handle the factors that could be the cause of new emerging 
requirements or the cause of changing in existing requirements. 
But what could be done is that a new method or techniques 
could be introduced that considers those factors which are 
expected to be the root cause of these changes which lead to 
the waste time and effort; and thus reduces the wastage of time, 
effort and resources or could at least minimize the damage. 

Requirements are elicited at the beginning of every 
software development process and project (product) and later 
are prioritized according to their relative importance to the 
market and to the product itself by keeping several factors in 
mind that could affect the prioritization decision. Prioritizing 
right requirements at right time helps the software team to 
understand the existence and importance of a particular 
requirement, its importance of use and its urgency to time to 
market and many other factors. There are many existing 
requirements prioritization techniques with their relative 
strength and weaknesses depending on many aspects they 
consider while prioritizing requirements. However, many of 
them fail to take account all the factors that must be considered 
while prioritizing requirements such as cost, value, risk, time to 
market, number of requirements and effect of non-functional 
requirements on functional requirements, time constraints and 
human behavior factor. 

One of the most popular methods among agile family 
where software is delivered in increments called sprints is 
known as SCRUM [8] [6]. A sprint consists of 2-4 week 
iteration. Scrum methodology comprises of a planning meeting 
and daily scrum meeting, the planning meeting is conducted at 
the beginning of every sprint. In this meeting team members 
determine the number of requirements they can oblige to 
manage that is they create a sprint backlog out of that. Sprint 
backlog contains the list of all the tasks that should be perform 
during a particular sprint. Daily scrum meetings are not more 
than 15 minutes, where product owner (PO) gets continuous 
updates about the development process and can provide 
feedback about the features being included. This way if a PO 
decides to add new feature to a sprint, he/she can discuss it 
with the development team and save time rather than reviewing 
it at the end and demanding change at the end. The team 
conducts a sprint review at the end of each sprint where they 
demonstrate new features and functionality to the PO or to 
other stakeholders that can provide any kind of feedback which 
could be beneficial or helpful in any way for the next sprint. 
This loop of feedbacks results in modifications to the recently 
delivered functionality, then again it is more likely reviewing 
or adding new requirements to the product backlog. Another 
activity in Scrum project management is Sprint retrospective. 
The Scrum Master, PO and the development team participates 
in this meeting. It is the chance to reproduce or review the 
sprint that has ended, and identify new ways to improve. 
Scrum consists of three artifacts, sprint backlogs, product 
backlogs and burn down charts. The Product backlog, 
prioritized by the PO is a complete list of the functionality 
(written as user stories) that is to be added to the product 
eventually. It is prioritized so that the team can always work on 
the most important, urgent and valuable features first. On the 
other hand, sprint backlog is the list of all those tasks that the 
team obliged to and needs to perform during the sprint in order 
to deliver the required functionality. The remaining amount of 
work either in a sprint or a release is shown by ‗Burn down‘ 
charts. It is an effective tool to conclude whether a sprint or 
release is on schedule to have all planned work finished in 
time. The traditional requirements engineering is very time 
consuming and requires speedy process to timely meet the 
needs of market so modern software industry demands rapid 
and iterative process like agile development to cope with the 
changing requirements and time. 

As XP, SCRUM and other agile methodologies allow 
engineers to handle changing requirements as they evolve; 
however, it is still a challenging task to comprehend which 
prerequisites are sufficiently vital to have high need and to be 
incorporated into early sprints because later on this decision 
could be influenced by other factors which particularly in case 
of SCRUM could be time gap and human behavioral factors. 
Organizing requirements into Priority requirements helps the 
project team to comprehend which requirements are most 
essential and most urgent to implement and execute. 
Prioritization is likewise a helpful activity for decision making 
in other phases of software engineering. Therefore there should 
be a well-managed requirement prioritization technique 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

305 | P a g e  

www.ijacsa.thesai.org 

included in scrum processes that minimizes changes later in the 
process and save time, effort and other resources. 

II. LITERATURE REVIEW 

In this work [1], author presented the 10 years progress of 
agile research and proposed some future research areas for 
agile researchers to hold on to an approach that is theoretical or 
hypothetical. A survey based methodology was used to get 
reliable information about the progress of agile methodologies. 
It is significant to remember that one can produce and enhance 
fields as a scientific discipline only if energies are able to 
convey a solid theoretic system to conduct research on agile 
development. Therefore, it is a need that in future when 
investigating into agile development proficient research areas, 
agile researchers hold on to a more theoretical based approach. 

Ming Huo et al [3] proposed that agile methods can assure 
quality even agile methods are faster and have to manage 
changing requirements. Author basically presented a 
comparison between waterfall model and agile model and 
presented the results. Agile methods contain some practices 
that have QA abilities, so with the help of this quality can be 
achieved more appropriately through agile methods. However 
one thing that must be considered when documenting agile RE 
is that in complex software development processes, less 
documentation can bring some issues/ problems. 

Lan Cao et al [4], presented an empirical study on agile RE 
practices. This study shows the difference between agile RE 
and traditional RE is an iterative finding approach. Developing 
clear and complete requirements specification is impossible in 
agile development. Because of such important differences a 
new set of agile RE practices had come into practices that are 
reported in this paper. The study participants recognized that 
the most important practice in RE is thorough communication 
between the developers and customers. 

Numerous participants highlighted that the efficiency of 
this practice depends deeply & effectively on exhaustive 
communication and interaction between customers and 
developers. Risks such as incomplete requirements, 
ineffectively developed requirements or wrong requirements 
are possessed if high quality interaction lacks in any project. 

In this work Pekka et al [6], proposed that there are 
different methods of agile process that needs the empirical 
evidences. Authors emphasized on the quality of methodology 
not the quantity. This approach was chosen for comparative 
analysis of these processes. Five perspectives are included in 
the analytical lenses. SDLC include the process aspect abstract 
principles vs. concrete guidance, empirical evidence, project 
management and universally predefined vs. situation 
appropriate. New directions are offered based on these 5 
perspectives that focus on quality not on quantity of methods. 

Amin et al [7], proposed that some lessons of RE must be 
considered by the agile methods if the most emphasized thing 
is quality. Some major aspects of RE that are not a much 
emphasized in agile are analysis (verification and validation), 
non-functional requirements and managing change. Author 
suggested that these practices of RE can be adopted in agile 
and high quality can be achieved. RE practices such as 
simplicity, continuing validation, short releases and frequent 

refactoring, can be implemented in the perspective of agile 
main ideas. 

Deepti Mishra et al [8], proposed that agile process can be 
helpful for the development of complex software projects. 
Author supported his argument with the help of a case study. A 
medium enterprise (SME) that practiced agile methods, 
achieved many successful results. Starting a project with agile 
methods and then achieving optimum methods by tailoring 
agile methods according to vision and benefits is the main 
reason of the success of supply chain management. The 
architectural design of this large scale complex project was 
supported with formal documentation. In the successful 
completion of the project an important role was played by this 
design documentation. 

Franek et al [11], proposed different ways of RE methods 
from which agile software development can get advantages. 
Some common and different features and attributes of 
traditional approaches and agile approaches are also discussed. 
Agile approaches such as XP involves feedback from 
development teams and customers, communication and 
simplicity. Similarly RE process also includes dictation, 
analysis and validation. But in agile process phases are not as 
clearly distinguished as in RE process and techniques can also 
vary. Overall both are pursing same objectives. The major 
difference is of documentation that is really important to 
communicate with the stakeholders. 

V. N. Vithana [12], conducted a research using qualitative 
methods to find out which requirement engineering practices 
are mostly being used in SCRUM methodology when 
developing a software product offshore. In order to collect data 
different job holders from nine organizations were questioned. 
It was found that RE practices such as Customer Involvement, 
prototyping, test driven development and Interaction are the 
least practiced activities of Requirement Engineering, although 
most of the team members were successfully practicing 
iterative requirements engineering, face to face 
communication, managing requirements change and 
requirements prioritization of SCRUM RE practice. 

In this Anna Perini et al [14], proposed a strategy called 
Case-Based Ranking (CBRank). This method joins the 
preferences of the stakeholders of the project with the 
approximation of requirements ordering that is computed over 
machine learning methods. On simulated data the properties of 
CBRank are performed and then matched with a method called 
state-of-the-art prioritization, thus provided empirical results. 
However there are some assumptions in the CBRank 
prioritization process such as arbitrary selection as pair 
sampling policy and the monotonicity of the elicitation process. 
To improve the efficiency of real complex sitting methods the 
authors intend to work in future on non-monotonic formal logic 
case and pair sampling strategies that are more refined. 

DAN HAO et al, [10] in this article, have presented a 
strategy that comprises the total and additional strategies for 
unified test case prioritization. These tactics prioritize test cases 
in light of components secured per test case, the aggregate 
number of program segments (or code-related) and the number 
of others (not yet covered) program segments (or code-related) 
components covered per test case, respectively. The proposed 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

306 | P a g e  

www.ijacsa.thesai.org 

approach includes basic and extended models, which define a 
spectrum of test case prioritization from a purely total to a 
purely additional technique by specifying the value of a 
parameter referred to as the fp value [10]. 

Rahul Thakurta [15], proposed a quantitative structure that 
determines the priority of a list of non-functional requirements. 
This framework involves members from business organization 
and the project to provide a measurable ground for assessing 
the level of value addition that is considered while choosing a 
new non-functional requirement to the project‘s requirement 
set. However, the inputs provided to the framework by 
members were subjective which may result in non-optimal 
results. Additionally, as the requirements assessment process 
involves stakeholders from both business organizations and the 
project, there are odds of irreconcilable interests and priorities 
of requirements. The author has also set the directions for 
future work which is to build a heuristic to bind the number of 
stakeholders to be preferred for assessment process. 

Naila Sharif et al [16], devised a new requirements 
prioritization technique called FuzzyHCV which is a hybrid of 
two domains (SE and Computational Intelligence). It is a 
fusion of two methodologies which are Hierarchical 
Cumulative Voting (HCV) and Fuzzy Expert System. In 
FuzzyHCV, rather than a single crisp value a triangular fuzzy 
number is used. The proposed technique has been applied on 3 
case studies and the results obtained are very close to the 
results of actual prioritization used in all of the three case 
studies. It is found that FuzzyHCV produces more precise 
results than HCV by comparing them with actual results for the 
chosen datasets. Authors intend to carry on work in this area by 
using fuzzyHCV for other domains problem such as decision 
making problems in employee selection and by incorporating 
fuzzyHCV to already existing decision making or requirements 
prioritization techniques so that less risky choices are made in 
future. 

Mukhtar A. Abo Elsood et al, 2014 [10] in this research 
paper conducted a survey on the most popular requirements 
prioritization techniques being used and their reported 
drawbacks. The authors have devised a goal-based 
requirements prioritization technique that is based on 
generating a relative weight for the requirements with respect 
to the identified goals by stakeholders after conducting the 
survey. This technique is expected to overcome requirements 
prioritization problems such as time consumption, scalability 
and complexity. This technique has been evaluated by a case 
study and has been compared with AHP; it has proven to be 
more effective than AHP. However this technique has only 
been compared with AHP and not others, which leaves the 
effectiveness of this technique into an unanswered question. 
The authors intend to solve problems of data vagueness and 
uncertainty by enhancing goal-based RP technique. 

Mr. Seyed Ali Marjaie et al [11] stated in this paper that 
there are many factors in the requirements prioritization 
process which have not been observed carefully other than risk, 
cost and value; these factors have significant impact on 
prioritization result itself. A statistical method has been 
proposed by authors which is based on attributes such as 
elicitation, numeral assignment, and factor analysis. This 

method combines two or more attributes into a single factor 
thus reducing the number of attributes and tries to identify 
groups of inter-related attributes, to find out how they are 
related. This improves the stability of factors involved in 
prioritization process and also the existing prioritization 
techniques effectively. Attributes that have been selected as 
important attributes are cost, time, risk, reuse of code, 
complexity, desirability and frequency. However this proposed 
method has not yet been applied on any real time software 
project and the results are merely based on theoretical 
assumptions. 

Nikita Garg et al, 2015 [12] in this research paper explained 
all the requirements elicitation and requirements prioritization 
techniques. The requirements prioritization techniques that 
have been discussed in this paper are Analytical Hierarchy 
Process, The 100 Dollar Test, Numerical Grouping, Ranking 
and Top-Ten requirements. The authors have explained why it 
is important to select right requirements elicitation and 
prioritization techniques when building software as it acts as a 
backbone for the project. The authors have explained how each 
type is suitable for a particular situation but have not compared 
any two techniques nor they have suggested any new or hybrid 
technique. 

Muhammad Imran Babar et al [13] to overcome the 
limitations of existing software requirements prioritization 
techniques, the authors have proposed an extension in VIRP 
model. The proposed technique will be automated for better 
understanding by adding heuristics using Neural Network and 
thus the interpretation of important requirements will be better 
so that there would be less chances of error. It is expected to be 
more time efficient, scalable as well as high overall 
performance than other techniques. However the proposed 
technique has not yet been implemented and the results are just 
expected to be good when compared to other techniques, there 
is no validity of this proposed technique. 

Richard Berntsson Svensson et al, 2011 [14] in this paper 
found out that the dominant method that is being used in 
different companies developing software intensive systems are 
ad-hoc prioritization and priority grouping of requirements. 
The authors conducted a survey in 11 successful software 
companies. They also found out that customer input was being 
used as criteria for prioritization but not all the time. The 
results also suggested that functional requirements were given 
more importance than the quality requirements. The non-
functional requirements (quality requirements) are prioritized if 
only time and resources are still available after implementing 
functional Requirements. 

M. Waseem Asghar et al, 2013 [15] in this paper devised a 
tool called SWTMetrics. Using artifacts traceability 
information this method prioritizes changing requirements. A 
set of code-based metrics is also being used to locate 
requirements implementation as well as it measures several 
properties of requirements being implemented such as size, 
coupling, scattering. Authors have applied the proposed tool on 
three java applications and the results achieved are 
considerably different than those defined by experts but not 
entirely. This diversity is because of analyst selecting those 
requirements that are weakly related to main functionality 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

307 | P a g e  

www.ijacsa.thesai.org 

(provided by the application) with respect to SWTMetrics. 
Hence, the tool determines the ordering of requirements based 
on how these are implemented in a subject software system but 
its effectiveness has not yet been confirmed by the importance 
of being applicable in the software industry and providing 
some promising improved results. 

Muhammad Aasem et al [8] proposed a framework in this 
research paper that combines existing approaches and 
techniques to help software engineer in performing 
prioritization. The proposed framework has α, β, and γ 
processes where the first two processes α, β, are subjective and 
require human involvement; they (α, β) include 100-dolors test 
prioritization method. Whereas, because of the algorithmic 
nature of the third process γ; it can be made fully automated as 
by using AHP technique it can automatically perform pair wise 
comparisons when the outputs produced by process-α and 
process-β are in the form of batches of n size each and  Ranked 
Criteria respectively. Release scheduler sub-process of process- 
γ is executed (which is based on Numerical Assessment) after 
mapping all requirements into B-Tree. Thus a series of releases 
of prioritized requirements is obtained. This framework is 
expected to be effective but has not yet been tested on real 
scenarios. Feasibility of processes α and β for semi or full 
automation should also be checked. 

Nupul Kukreja et al [17], in this have proposed a 
prioritization methodology to prioritize requirements of system 
and software. This methodology is a two-step approach and is 
based on decision theoretic model using a prioritization 
algorithm called TOPSIS viz. In the proposed approach [13], 
initially, the system is fragmented into high-level Minimal 
Marketable Features (MMFs). The proposed methodology 
allows measuring the effect of fluctuating business priorities on 
individual requirements without much overhead.  This 
methodology also authorizes stakeholders to perform numerous 
analyses which also help in accurately judging the impact of 
fluctuating business priorities on individual requirements. 

Here authors have also presented a validation report of this 
methodology by implemented this with 24 project teams of 
students at the Software Engineering project course in the 
University of Southern California. Although this approach has 
some drawbacks that need to be tackled in future; such as, one 
of the drawbacks of TOPSIS is reversal of ranks i.e. the 
original order of requirements prioritization may change if 
irrelevant requirements are entered into the prioritization. This 
limitation was not considered while implementing the approach 
as the teams were result oriented therefore they resisted in 
adding irrelevant requirements for prioritization. Another 
drawback is that the ordered prioritization of requirements may 
not accurately reflect the anticipated rank ordering of 
requirements 

To overcome the drawbacks of TOPSIS, several other 
prioritization algorithms could be used instead of TOPSIS viz 
such as Cost of Delay, Simple Additive Weighting or Weigers‘ 
Prioritization. Also one can simply record items to eliminate 
the overhead of winbook's incapability to record the items. 

III. RELATED WORK 

Missing or poorly specified quality requirements can lead 
to project failure or huge loss. Eliciting quality requirements 
effectively is a difficult task altogether especially in SCRUM 
where one person i.e. the product owner [PO] has to make the 
list of all the requirements to be included in the project. It can 
be a hectic and difficult task. As ‗Quality‘ requirements drive 
the architecture of software-intensive systems, they are more 
important than the functional requirements. Thus the success or 
failure of mission critical systems depends on how well the 
quality requirements are engineered and implemented. 
Prioritizing requirements is also another challenging task while 
developing a software product. Product Owner‘s commonly 
use following backlog prioritization techniques: Kano analysis, 
Moscow and Relative weighting (Karl wieger) [3] [8]. 

A.  Analytical Hierarchy Process 

In AHP the priorities of requirements is calculated to 
estimate their relative importance by comparing all unique 
pairs of requirements. In other words, the individual 
performing the comparison will decide manually which 
requirement has more significant, and to what extent using a 
scale 1-9.[14] AHP provides better results than any other tested 
methods as it is a ratio scale methodology, and also includes a 
consistency check. 

Steps involved in AHP are: 

1) Make an v×v matrix (v represents the number of 

requirements) requirements are latter inserted in rows and 

columns of the matrix. 

2) For each pair of requirements, insert their relative 

intensity of importance (where the row of X meets the column 

Y). At the same point, insert the reciprocal values to the 

transposed positions (e.g. if cell XY=4 then cell YX=1/4) 

3) Now, calculate the eigenvalues of this matrix to get the 

relative priority of each requirement. The final result will be 

the relative priorities of the requirements. 
Total no. of comparisons that AHP requires is v×(v−1)/2. 

Redundancy is produced in pair-wise comparisons in AHP, 
therefore AHP also calculates the consistency ratio to check the 
accuracy of the comparisons [14]. 

B. Cumulative Voting (CV) 

CV is a ratio-scale requirements prioritization technique 
where the customers/stakeholders are given a fixed number of 
‗units‘ which are used for prioritization of requirements by 
giving vote to the requirements that the customers/stakeholders 
think are important or delivers the highest functionality.  
Another important feature of CV is the ‗weightage‘. For 
example there are 3 stakeholders then; Stakeholder with 
highest authority/share is given the highest weight (e.g 10) and 
the stakeholders 2 and 3 with lower shares are given lower 
weights e.g. 7 and 5 respectively. Their weight is multiplied by 
the number of units the stakeholders assigns to requirements. 
In this way if stakeholder 2 and 3 vote for a particular 
requirement say ‗reqA‘ which stakeholder 1 does not vote for 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

308 | P a g e  

www.ijacsa.thesai.org 

and instead votes for ‗reqB‘ then ‗reqB‘ will be of high priority 
even though reqA got 2 votes and reqB got only 1 vote. 

C. MoSCoW 

MoSCoW stands for Must have, Should have, Could have 
and Would have requirements. It is based on human opinion, 
based on their experience, desire and influencing factors at that 
time such as market demand, cost, risk, time and resources. 
Must have requirements are critical to the current increment in 
order to be a success, these are time critical requirements. 
Should have requirements are important to be included in the 
product but are not necessarily important to add to the current 
increment and can be added on later increments, these are not 
time critical requirements. Could have requirements are nice to 
have in the products but they do not participate in the success 
or failure of the product but are still nice to have if included. 
These requirements could improve user experience or 
satisfaction. Won‘t have requirements are the ones that are 
least critical to time or success of the product and hence can be 
added later any time of the time and resources permit. 

D. Numerical Assignment 

In Numerical assignment numerous requirements are 
grouped into different priority groups such as high, medium 
and low priority groups. All the requirements in a particular 
group will have same priority. For example if there are 7 
requirements in medium category then all these 7 requirements 
will have same priority for this group. 

E. Bubble Sort 

In bubble sort prioritization, two requirements are taken 
and then compared manually; if the person doing the 
comparison feels that 1st requirement should have higher 
priority than the other requirement then he/she swaps the 
priority and continues this process until all the requirements 
have been compared. The result will be a prioritized set of 
requirements. 

F. Ranking 

In simple ranking, requirements are ranked manually from 
1 to n number. 1 being the highest priority rank and n (the last 
integral valued requirement) being the lowest priority rank. 

G. Hundred Dollar Method 

Hundred dollar method is sometimes considered as 
Cumulative voting, however it is different than CV in a sense 
that ‗weight‘ is not assigned to stakeholders in hundred dollar 
test. Each stakeholder is expected to distribute 100 dollars to 
the set of requirements being considered; however one may 
distribute full 100 dollars to a single requirement if he/she feels 
it‘s the most important requirement but is being neglected. 

H. Binary Search Tree 

In binary search tree, each node represents a requirement. 
Each base node has two child nodes with lower priority 
requirements on left child node and higher on right child node. 
We take a random requirement and compare it to the root node. 
If that requirement has lower priority than the root node then it 
is compared to the left child node; and now if it has higher 
priority than this child node it is placed on the right side of this 
node, however if it has lower priority then it is placed to the 
left side or compared to the left side child; or placed to the left 
side of the root node of there is not already any child on the left 
side of root node, otherwise if it has higher priority than it is 
compared/placed on right side of the root node and so on. This 
process of comparing nodes (requirements) to the root node 
and so on is done until all the nodes have been placed in their 
right priority. 

I. Five Whys 

Often stakeholders want a certain requirement implemented 
which does not have any great function or quality aspect and 
does not even have founded on logical arguments or the 
business interests of the company but still keep on insisting on 
that particular requirement. In such case, the team members 
(engineers) ask 5 whys (repeatedly 5 times or less) to why this 
requirement is important enough for the stakeholder to be 
implemented until the importance of the requirement is either 
found or established. The answer found could either determine 
the priority/importance of the requirement or that it could be 
cancelled or postponed for later increments. 

IV. PROPOSED METHODOLOGY 

The proposed model is based on several techniques that are 
being used to prioritize requirements. However when 
combined, they are expected to give better results. The First 
step in this model is cumulative voting, in cumulative voting 
each stakeholder distributes a total of 100 points ($, euro or 
coins) on the requirements, the Product Owner then will sum 
up the points and present the derived ordering of the 
requirements. Although the desired features will be selected at 
this point but there could be the chance that the selected feature 
will not provide benefit in terms of cost, time or easiness as 
much as it could have provided with other features selected at 
this time. The second step is Numerical assignment of 
requirements; it‘s the most common technique for prioritizing 
requirements and is based on grouping requirements into 
different priority groups. For example group the requirements 
gathered from first steps into different groups based on their 
nature such as risk requirements, value requirements, and 
complex requirements etc. After this, requirements will be 
grouped based on influencing factors that could be effecting 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

309 | P a g e  

www.ijacsa.thesai.org 

these requirements in any way. For example R1 and Rn are risk 
requirements [11] (see fig 2 below) and they are in any way 
contradicting with other requirements at the moment that have 
also been selected to implement in the sprint. Fig.1 depicts the 
steps of the proposed methodology. 

 
Fig. 1. Proposed hybrid model for requirements prioritization 

This will cause trouble in implementing all of these 
requirements, therefore, it should be taken care of while 
selecting and prioritizing requirements for a sprint. Next, the 
groups will be prioritized based on highest points (see fig 2). 
Groups with requirements R1, R3, R4 have greater number of 
points as a whole then the other group therefore it has higher 
priority than other. After this the next step is AHP, in AHP the 
priorities of requirements is calculated to estimate their relative 
importance by comparing all unique pairs of requirements. In 
other words, the individual performing the comparison will 
decide manually which requirement has more significant, and 
to what extent using a scale 1-9.[14] AHP provides better 

results than any other tested methods as it is a ratio scale 
methodology, and also includes a consistency check. 

Steps involved in AHP are: 

1) Make an v×v matrix (v represents the number of 

requirements) requirements are latter inserted in rows and 

columns of the matrix. 

2) For each pair of requirements, insert their relative 

intensity of importance (where the row of X meets the column 

Y). At the same point, insert the reciprocal values to the 

transposed positions (e.g. if cell XY=4 then cell YX=1/4) 

3) Now, calculate the eigenvalues of this matrix to get the 

relative priority of each requirement. The final result will be 

the relative priorities of the requirements. 
Total no. of comparisons that AHP requires is v×(v−1)/2. 

Redundancy is produced in pair-wise comparisons in AHP, 
therefore AHP also calculates the consistency ratio to check the 
accuracy of the comparisons [14]. 

At this point when small number of requirements have been 
selected and grouped, it is best to apply AHP at this point as 
grouping the requirements based on their nature and 
influencing factors will make it easy to check requirements 
with other groups and find out their relative importance, or 
contradiction between them. As Agile development team and 
PO have best idea because of their experience in the field about 
the implementation of such requirements that are conflicting 
each other to some extend and/or the risk or cost while 
implementing them it is suggested to apply MoSCoW at this 
point. MoSCoW is based on human opinion based on their 
experience, desire and influencing factors at that time such as 
market demand, cost, risk, time and resources, the resultant 
selected requirements are then again filtered using MoSCoW, 
this is expected to filter out those requirements that may have 
gotten higher points during the 100 dollar test (cumulative 
voting) but are causing contradiction to other requirements or 
may be less beneficial to get them implemented in this sprint. 
New requirements from the backlog are added after such 
requirements have been filtered out. If the number of newly 
added requirements is greater than 3 or 4 then all the steps are 
repeated on those newly added requirements. If small number 
of requirements is being added then only MoSCoW should be 
applied. 

Detailed diagram of the Proposed Model is presented 
below. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

310 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 2. Detailed presentation of the proposed model

V. FINDINGS & ASSESSMENTS 

The detail findings and assessments in this are 
comprehensively discussed and are evaluated in this section. 
We have devised a requirement prioritization framework to be 
considered in scrum model that can provide softw

are requirements engineers/ testers encouraging feedback 
regarding adopting appropriate prioritization (validation) 
approach at a particular stage of software requirements process, 
the future direction could be the complete automation of 
software requirements process. 

TABLE I. COMPARISON OF MOST USED TECHNIQUES 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

311 | P a g e  

www.ijacsa.thesai.org 

TABLE II. COMPARISON OF EXISTING WORK RELATED TO REQUIREMENTS PRIORITIZATION 

 

TABLE III. COMPARISON TABLE OF TECHNIQUES IN TERMS OF TECHNICAL AND BUSINESS ASPECTS 

No. Techniques Technical Aspects Business/Client Aspects 

  Citations 

Scalabil-

ity 

Ease 

of 

Use 

Time 

Comple-

xity 

Decis-

ion 

making 

Accura-

cy 
Sales 

Market-

ing 

Customer 

Satisfaction 
Strategic 

1 

Analytic 

Hierarchy 

Process (AHP) 

50  Yes  Yes Yes     

2 
Binary-Tree 

Prioritize 
8  Yes   Yes     

3 Bubble Sort 8  Yes  Yes    Yes  

4 
Cumulative 

voting (CV) 
20  Yes Yes  Yes     

5 Kano Analysis 5  Yes  Yes Yes  Yes Yes  

6 MoSCoW 6 Yes Yes       Yes 

7 
Pair-wise 

analysis 
10  Yes Yes Yes Yes     

8 
Numeral 

Assignment 
15  Yes Yes Yes Yes     

9 Ranking 8 Yes Yes Yes Yes Yes Yes    

10 
Relative 

weighting 
2  Yes        

11 
Top Ten 

Requirements 
18  Yes Yes Yes Yes     

12 
Wieger’s 

Prioritization 
14 Yes Yes Yes Yes Yes   Yes  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

312 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 3. A detail representation between requirements prioritization models and corresponding quality attributes (Technical Aspect) 

 
Fig. 4. A detail representation between requirements prioritization techniques and Business Client Aspect

VI. SYSTEMATIC METHODOLOGY 

Systematic literature review (SLR) has been done in order 
to discover new findings. Based on different research problems 
(mentioned in the literature) that are associated to both 
different prioritization aspects and techniques; we found the 
motivation for this research and hence the research questions 
are designed accordingly. 

VII. CONCLUSION 

As requirements emerge throughout the software 
development process and are needed to be prioritized and 
managed with highest priority, especially in the case of Agile 
Software Development process. As disused and highlighted in 
this research work, there are many requirements prioritization 

techniques, methodologies proposed and been followed but 
most of them fail to take account of all those factors that play 
an important role in prioritizing requirements and in overall 
quality of software product being developed. After a 
comprehensive literature, it is found that the existing 
prioritization techniques do not span over all type of projects. 
Some techniques work well on agile development process and 
some on traditional development. Therefore there is a need of a 
prioritization technique that considers the above mentioned 
factors (time factor and human behavioral factor) while 
prioritizing requirements. 

REFERENCES 

[1] Elsevier (2012) A decade of agile methodologies: Towards explaining 
agile software development, The Journal of Systems and Software 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

313 | P a g e  

www.ijacsa.thesai.org 

[2] Mohd. Muqeem, Dr.Mohd.Rizwan, Validation of Requirement 
Elicitation Framework using Finite State Machine‖, IEEE International 
Conference on Control, Instrumentation, Communication and 
Computational Technologies (ICCICCT),  pp 1210 – 1216, 2014.  

[3] Ming Huo, June Verner, Liming Zhu, Muhammad Ali Babar (2004) 
Software Quality and Agile Methods, IEEE 

[4] Lan Cao, Balasubramaniam Ramesh (2008) Agile Requirements 
Engineering Practices:An Empirical Study, IEEE. 

[5] Shahid Nazir, SEN-2005, Why Quality? ISO 9126 Software Quality 
Metrics (Functionality) Support by UML Suite, NY, USA. 

[6] DOI= 1050849.1050860 

[7] Pekka Abrahamssona, Juhani Warstab, Mikko T. Siponenb and Jussi 
Ronkainen (2003) New Directions on Agile Methods: A Comparative 
Analysis, IEEE. 

[8] Armin Eberlein, Julio Cesar Sampaio do Prado Leite (2002) Agile 
Requirements Definition: A View from Requirements Engineering, 
Proceedings of the International Workshop on Requirement engineering. 

[9] S. N. Bhatti, Deducing the complexity to quality of a system using 
UML. ACM SIGSOFT Software Engineering Notes 34(3): 1-7 (2009). 
DOI=1527202.1527207  

[10] DAN HAO, LINGMING ZHANG, LU ZHANG, GREGG 
ROTHERMEL, HONG MEI, (2014) A Unified Test Case Prioritization 
Approach, ACM Transactions on Software Engineering and 
Methodology, Vol. 24, No. 2, Article 10, Pub. date: December 2014. 

[11] Frauke Paetsch, Frauke Paetsch, Dr. Frank Maurer (2003) Requirements 
Engineering and Agile Software Development, IEEE 

[12] V. N. Vithana (2015) Scrum Requirements Engineering Practices and 
Challenges in Offshore Software Development, International Journal of 
Computer Applications (0975 – 8887), Volume 116 – No. 22, April 
2015. 

[13] Azar, J.,Smith, R.K., ―Value-Oriented Requirements Prioritization in a 
Small Development Organization‖, IEEE Computer society, 2007, pp 32 
– 37, 2007. 

[14] Anna Perini , Angelo Susi , Paolo Avesani  (2013) A Machine Learning 
Approach to Software Requirements Prioritization, IEEE 
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4, 
APRIL 2013 

[15] Rahul Thakurta (2013) A framework for prioritization of quality 
requirements for inclusion in a software project, Software Quality 
Journal (2013) 21:573–597 

[16]  Naila Sharif, Kashif Zafar, Waqas Zyad (2014) Optimization of 
Requirement Prioritization using Computational Intelligence Technique, 
2014 International Conference on Robotics and Emerging Allied 
Technologies in Engineering (iCREATE) Islamabad, Pakistan, April 22-
24, 2014 

[17] Nupul Kukreja, Barry Boehm (2013) Integrating Collaborative 
Requirements Negotiation and Prioritization Processes: A Match Made 
in Heaven, Proceedings of the 2013 International Conference on 
Software and System Process 

[18] Rubaida Easmin, Alim Ul Gias, Shah Mostafa Khaled (2014) A Partial 
Order Assimilation Approach for Software Requirements Prioritization 
3rd INTERNATIONAL CONFERENCE ON INFORMATICS, 
ELECTRONICS & VISION 2014 

[19] Shahid N. Bhatti, Maria Usman, Amr A. Jadi, 2015,  Validation to the 
Requirement Elicitation Framework via Metrics. ACM SIGSOFT 
Software Engineering Notes 40(5): 17, USA. DOI= 2815021.2815031    

[20] J. Karlsson and K. Ryan. 1997, ―Prioritizing requirements using a cost-
value approach,‖ IEEE Software 14 (5), pp. 67–74. 

[21] John A Mcdermid, Software Engineer‘s Reference Book, Butterworth-
Heinemann, 1991.  

[22]  Muhammad Ramzan, M. Arfan Jaffar and Arshad Ali Shahid (2011) 
VALUE BASED INTELLIGENT REQUIREMENT 
PRIORITIZATION (VIRP): EXPERT DRIVEN FUZZY LOGIC 
BASED PRIORITIZATION TECHNIQUE, International Journal of 
Innovative Computing, Information and Control, Volume 7, Number 3, 
March 2011.  

[23] Mohd. Sadiq, Jawed Ahmed, Mohammad Asim, Aslam Qureshi , R. 
Suman (2010) More on Elicitation of Software Requirements and 
Prioritization using AHP, 2010 International Conference on Data 
Storage and Data Engineering 

[24] M. Waseem Asghar, Alessandro Marchetto, and Angelo Susi 
Fondazione Bruno Kessler , Giuseppe Scanniello (2013) 
Maintainability-based Requirements Prioritization by using Artifacts 
Traceability and Code Metrics, 2013 17th European Conference on 
Software Maintenance and Reengineering 

[25] Richard Berntsson Svensson, Tony Gorschek, Björn Regnell, Richard 
Torkar, Ali Shahrokn, Robert Feldt, Aybuke Aurum (2011) 
Prioritization of Quality Requirements: State of Practice in Eleven 
Companies, 2011 IEEE 19th International Requirements Engineering 
Conference 

[26] Mukhtar A. Abo Elsood, Hesham A. Hefny , Eman S. Nasr (2014) A 
Goal-Based Technique for Requirements Prioritization, The 9th 
International Conference on INFOrmatics and Systems (INFOS2014) - 
15-17 December Software Engineering - Challenges of Openness Track 

[27] Nikita Garg , Dr. Pankaj Agarwal , Shadab Khan  (2015) Recent 
Advancements in Requirement Elicitation and Prioritization Techniques, 
2015 International Conference on Advances in Computer Engineering 
and Applications (ICACEA) IMS Engineering College, Ghaziabad, 
India 

[28] Mr. Seyed Ali Marjaie , Mrs. Vasundhara Kulkarni, ‗Recognition of 
Hidden Factors In Requirements Prioritization Using Factor Analysis‘, 
IEEE 

[29] Muhammad Imran Babar, Muhammad Rarnzan, Shahbaz A. K. Ghayyur 
(2007) Challenges and Future Trends in Software Requirements 
Prioritization, IEEE  

[30] Muhammad Aasem, Muhammad Ramzan and Arfan Jaffar, ‗Analysis 
and optimization of software requirements prioritization techniques‘, 
IEEE

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Azar,%20J..QT.&searchWithin=p_Author_Ids:37841909800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Smith,%20R.K..QT.&searchWithin=p_Author_Ids:37280034200&newsearch=true

