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Abstract—In the age of Big Data the problem of storing huge 

volume of data in a minimum storage space by utilizing available 

resources properly is an open problem and an important 

research aspect in recent days. This problem has a close 

relationship with the famous classical NP-Hard combinatorial 

optimization problem namely the “Bin Packing Problem” where 

bins represent available storage space and the problem is to store 

the items or data in minimum number of bins. This research 

work mainly focuses on to find a near optimal solution of the 

offline one dimensional Bin Packing Problem based on two 

heuristics by taking the advantages of graph. Additionally, 

extreme computational results on some benchmark instances are 

reported and compared with the best known solution and 

solution produced by the four other well-known bin oriented 

heuristics. Also some future directions of the proposed work have 

been depicted. 
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I. INTRODUCTION 

The storage space minimization problem is an open 
problem of now-a-days as the sizes as well as the dimension 
of data are increasing day by day. So, there is a need to 
produce a near optimal solution in less amount of time. To 
tackle with the problem the author have considered the storage 
minimization problem as the famous one dimensional Bin 
Packing Problem where storage space can be represented as 
bins and the problem is to store the items or data in minimum 
number of bins. This problem arises in a wide variety of 
contexts and this popular combinatorial optimization problem 
has been extensively studied during past few years. The 
authors [1] called the problem as “The Problem That 
Wouldn‟t Go Away”. The study of classical one dimensional 
Bin Packing Problem first begins in the early 1970‟s [2]. The 
problem states that, an unlimited number of bins with integer 
capacity C>0 each, a set of items with their weights, wi, 0< wi 
≤ C are given. The goal is to assign each item to one bin, such 
that total weight of the items in each bin does not exceed the 
capacity C and the number of bins used for packing all items 
is minimized. The problem is known to be NP-Hard is strong 
sense [3]. Thus, in this case the satisfying solution is to design 
an approximation algorithm which will construct near-optimal 
packing. 

One dimensional Bin Packing Problem has several 
applications in real world, among them resource and storage 
space minimization is one facet. Some formulations of real 
world storage minimization problem using Bin Packing 

Problem are as follows: i) Placing computer files with 
specified size into the identical disk with same capacity with 
constrained that each file must be entirely on one disk [4]. The 
objective is to minimize the number of disks needed for the set 
of files. This can be formulated using Bin Packing Problem 
where items are files, disks are bins and disk capacity is the 
bin capacity which is fixed. The problem is to minimize the 
number of bins. ii) Server Consolidation [5] is an approach to 
the efficient usage of computer server resources in order to 
reduce the total number of servers or server locations that an 
organization requires. In this case, existing servers can be 
treated as items, resource utilizations are item sizes, bins are 
destination servers and the bin capacity is the utilization 
threshold of the destination servers. The goal is to minimize 
the destination servers and maximizing resource utilization. 
With one resource the problem is same as one dimension Bin 
Packing Problem. Additionally, with more than one resource 
(e.g. CPU, disk, memory and computer network) the problem 
dimension increases. iii) Also the Bin Packing Problem can be 
used to minimize the cost of storing data (items) in the cloud 
storage [6]. As buying hard-drive in bulk is much cheaper than 
buying them individually, the goal of solving the problem 
becomes minimizing the hard-drives (bins) to store the data 
(items). Besides this, there are other storage minimization 
problems where Bin Packing has a major role, but are not 
discussed in this paper. 

Not only Bin Packing Problem but also graph theory has 
vast real world applications. Graph algorithm provides unified 
solution approach to many classical and modern application 
areas by taking graph as an omnipotent mathematical tool. In 
view of storage minimization problem, there exists various 
graph compression mechanism which can be used to store data 
compactly [7]. 

This paper mainly focused on the solution of one 
dimensional Bin packing problem in polynomial time, and for 
this an algorithm depending on two offline bin oriented 
heuristics has been proposed taking the advantages of graph 
theory. Firstly, a vertex weighted graph is constructed from 
the set of item weights where for each item weights one vertex 
is created. Then, the first heuristic chooses the subset of 
vertices according to the maximum total weight criteria and 
the second one is based on maximum average weight criteria, 
which ultimately produces the minimal clique partition of the 
graph with each clique having weight not exceeding the 
capacity of each bin. The total number of partition gives the 
total number of bins. The algorithm runs in polynomial time. 
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Most of the existing algorithms not completely based on graph 
algorithm rather hybridization of graph algorithms but this 
work is completely based on a graph algorithm to find 
minimum clique Partition with weight constraint and can 
compete with existing algorithms. Also it can open a new 
direction for solving multi-dimensional Bin Packing Problem. 
The detailed description of the algorithm can be found in 
subsequent sections. 

The article is organized as follows: section II contains 
some preliminary concepts related to the work. Some existing 
work to tackle Bin Packing problem with graph is described in 
section III. Section IV gives the detailed description of 
proposed algorithm. Section V contains computational results. 
Finally, section VI concludes the article giving some future 
scopes in section VII. 

II. PRELIMINARIES 

This section contains some preliminary concepts related to 
the topic, taken from [8, 9, 10, 11]. 

Definition 2.1: A Graph G is a triple consisting of a 
vertex set V (G), an edge set E(G), and a relation that 
associates with each edge two vertices (not necessarily 
distinct) called its endpoints. 

Definition 2.2: vertex weighted graph is a graph where 
each vertex has been assigned a positive weight. 

Definition 2.3: A Null Graph is a graph whose edge set is 
null. 

Definition 2.4: A Clique in a graph G is a set of pairwise 
adjacent vertices. 

Definition 2.5: A vertex x of a graph G is Simplical 
Vertex if its adjacency set Adj(x) induces a complete 
subgraph of G, i.e. Adj(x) is a clique (not necessarily 
maximal). 

Definition 2.6: An ordering   = [v1, v2, …, vn] where n 

is the number of vertices of an undirected graph G is Perfect 
Elimination Ordering iff each vi is a simplical vertex of the 
induced sub graph G{vi,…vn}. 

Definition 2.7: Chordal Graph is a simple graph in 
which every cycle of length four and greater has a cycle chord. 

Definition 2.8: Given a vertex weighted graph G = (V, E; 
W}, having weight of vertices w1, w2,…, w|V| respectively and 
a bound C´, the Minimum Clique Partition with 
Constrained Weight (MCPCW) problem [12] is to find a 
partition of these |v| vertices into smallest number of cliques 
such that each clique has its weight not beyond C´. 

Theorem 2.9: Minimum Clique Partition with 
Constrained Weight (MCPCW) problem is NP-Hard. 

Proof. The proof is done by transforming an instance of 3-
Partition problem to an instance of MCPCW. 

Consider an instance P of 3-Partition problem: Given the 
set S = {a1, a2, …,  a3k}of 3k integers satisfying C´/4 < aj < 

C´/2 for each 1 ≤ j ≤ 3k and 


3k

1j

ja = kC´. The problem asks 

whether S can be partitioned into k subsets s1, s2,…, sk, such 
that for each i= 1, 2,…, k, si contains exactly three elements of 

S and 
 isa

a  = C´. 

Now we will construct a polynomial time reduction  Q for 
P of the 3-partition problem to an instance Q(P) of the 
MCPCW problem i.e. a vertex weighted graph with weight of 
each vertices w1, w2, …, w3k respectively where wi = ai for 

each i= 1,… 3k and the bound C´= (


3k

1j

jw )/ k. 

We now prove the claim that there exists a feasible 
solution to an instance P of the 3-partition problem iff instance 
Q(P) of the MCPCW problem has its optimal solution. So, the 
feasible partition of the instance Q(P) can be constructed in 

the following way: for each si = {
1i

a ,
2i

a ,…, 
li

a }, select the 

clique c1 = {
1i

w , 
2i

w ,…, 
li

w } and then obtains a partition 

of these 3k weights of |V| vertices into k cliques having weight 
exactly C´. Conversely, if the instance Q(P) of the problem 
MCPCW has an optimal clique partition { c1, c2, …, ck} with 

the smallest integer k having 
 icw

w  ≤ C´ for each i=1,…,k. 

By the facts, 


3k

1j

ja = kC´ and C´/4 < aj < C´/2 for each 1 ≤ j ≤ 

3k, we obtain 
 icw

w  = C´ (as wj = aj for each j= 1,… 3k) for 

each j= 1, 2,…, k and the clique cj contains exactly three 

elements from S, i.e. sj = {
1j

a ,
2j

a ,
3j

a } and  
 jca

a  = C´ j= 

1,… k. So, the instance p of the 3-partition problem has the 
partition s1, s2,…, sk.    

Definition 2.10: A bin oriented heuristic for Bin Packing 

Problem constructs solution bin by bin i.e. while unpacked 

items remain it is packed with the maximal subset of unpacked 

items, e.g. First Fit Decreasing (FFD), Best-Two-Fit (B2F), 

Minimum Bin Slack (MBS), MBS´ etc. [13, 14]. 

Definition 2.11: Offline algorithms have all the items 

available before the packing starts, e.g. First Fit Decreasing 

(FFD) [4]. 

III. RELATED WORKS 

This section consists of some related works to solve one 
dimensional Bin Packing Problem based on graphs. Firstly, in 
[15] the authors consider time constrained scheduling 
problem. For a set of jobs J with execution time t(j)(0, 1] 
and an undirected graph (the conflict graph) G =(J, E), they 
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consider to find schedule of the jobs that are adjacent and they 
are assigned different machines (bins) with total execution 
time of each machine at most 1. The objective is to assign all 
jobs into minimum number of machines maintaining the time 
constraint. To tackle the problem, they have proposed six 
different algorithms based on different principles. The first 
three algorithms are the modification of classical NF, FF, FFD 
algorithms. Next algorithm depends on optimal coloring 
algorithm which finds a minimum partition of the item set into 
independent sets which is equal to the chromatic number of G 
and applies one of the NF, FF and FFD packing to each 
independent set. Fifth and sixth algorithm is same like above 
but the main difference is fifth one is based on pre-coloring 
method and sixth one is based on general coloring method that 
works for co-graph and k-trees. Next, the authors of [16] 
consider the problem namely Bin Packing with Conflict 
(BPC) using conflict graph and it‟s online, offline versions. 
They mainly improve the upper bounds of BPC on perfect 
graphs, interval graph and bipartite graphs. Most of the recent 
results follow from the adaptation of weighting systems to 
enable analysis of algorithms for BPC and new algorithms 
which carefully remove small sub-graph of items causing 
problematic instances. In next work [17] authors considered a 
restricted problem called Bin Packing with Clique Graph 
Conflicts. They have designed a polynomial time 
approximation algorithm for constant item size analyzing its 
performance in the more general case of bounded item sizes. 
In [18] authors investigated the following problem: the items 
to be packed are structured as the leaves of a tree and it is 
called as Structured Bin Packing Problem. The objective is to 
pack the items in the same bin whose lowest common ancestor 
has low height. Next, authors of [19] have proposed a problem 
to pack a graph G with lower and upper bound on its edges 
and weights on its vertices into a host graph I and called the 
problem as Graph Bin Packing Problem. The vertices of G are 
items to be packed and vertices of I are bins. The host vertex 
can accommodate at most L weight in total and if two items 
are adjacent in G, then the distance of their host vertices in I 
must be between the lower and upper bounds on the edge 
joining the two items. 

Most of the above algorithms not completely based on 
graph algorithm rather hybridization of graph algorithms and 
exiting heuristics for solving Bin Packing Problem. Our work 
is simple and purely based on a graph algorithm namely 
finding minimum clique Partition with weight constraint and 
can compete with existing algorithms. Also it can open a new 
direction for solving multi-dimensional Bin Packing Problem. 

IV. THE PROPOSED ALGORITHM 

Let, W= {w1, w2, …,wn} be the given sequence of weights 
of the items. The items are numbered 1 through n, from the 
left to right of the list, labeling their positions in W, i.e. w1 is 
the weight of first item in W, w2 is the weight of second item 
in W and so on. 

In this section an algorithms based on two bin oriented 
heuristics has been formulated based on graph to cope with the 
one dimensional Bin Packing Problem. 

In this algorithm firstly items are sorted in non decreasing 
order with respect to their weight. Next, a vertex weighted 

graph is constructed from the sequence of items. Here, for 
each item a weighted vertex are introduced. Hence, firstly the 
graph consists of „n‟ isolated vertices {v1,…,vn} with their 
weight {w1, w2, …,wn} respectively. Now, for introducing 
edges to the graph, the following procedure is being followed. 
For any pair of items with weight wi and wj that are in the 
position i and j, respectively in W, an edge is introduced 
between the corresponding vertices of wi and wj, only if (i-j)( 
wi-(C-wj)) ≥ 0, where C is the capacity of each bin. In other 
words, an edge is introduced between the corresponding 
vertices in the graph if they satisfy the condition wi + wj ≤ C. 
This is explained with an example below. 

Example 4.1: Suppose, W = {8, 11, 10, 4, 7, 9, 3}, C = 15. 

After sorting the sequence is W´ = {11, 10, 9, 8, 7, 4, 3}. 

 
Fig. 1. Vertex weighted graph for the sequence W = {8, 11, 10, 4, 7, 9, 3} 

and bin capacity C=15. Vertex 1 has weight 11, vertex 2 has weight 10 and so 
on. An edge {vi, vj} indicates that wi + wj ≤ C. 

Lemma 4.2: The Graph produced from the sequence 
W´ after sorting the sequence W in non increasing order 
(i.e. w1≥ w2≥ …≥wn), has a Perfect Elimination Ordering. 

Suppose, Wi ≥ Wj ≥ Wk and vertex i and j are connected. 
The following equations are satisfied. 

 Wi + Wj  C … (1) 

 Wi + Wk C … (2) 
If the ordering is the perfect elimination ordering then, 

vertex j and k will also be connected and Wj + Wk   C. 

Adding (1) and (2) 

2Wi + (Wj + Wk)  2C 

Or, Wj + Wk    2(C-Wi)… (3) 

As, Wj    Wi 

Putting Wj = Wi we get from (1) 

2Wi     C 

From, (3) we get, 

Wj + Wk     C 

This condition is applicable for the whole ordering. So, the 
ordering is the perfect elimination ordering. 

Claim 4.5: There exists a feasible solution to an 
instance I of one dimensional Bin Packing Problem if and 
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only if the instance  (I) of the MCPCW problem for 
Chordal Graph has its optimal solution with value k. 

For any feasible solution of an instance I of Bin Packing 
Problem, the set of items B is partitioned into k bins {B1, B2, 

…, Bk},   i=1, …, k, such that each Bi contains items of B 

and 
 iBa

a  ≤ C (C=capacity of each bin). Then a feasible 

partition of the instance  (I) of the MCPCW problem can be 

constructed in the following way: for each Bi = {
1i

a ,
2i

a ,…, 

li
a }, select the clique Ci = {

1i
w , 

2i
w ,…, 

li
w } having total 

weight of the vertices not exceeding C. Likewise obtain the 
partition of total items into k cliques each having total weight 
not exceeding C. 

Conversely, if the instance  (I) of the MCPBW problem has 

optimal clique partition {C1, C2, …, Ck},  i=1, …, k, with 

smallest integer k and having 
 ica

a  ≤ C. Then each clique 

contains items from the set B, i.e. Bj = {
1i

a ,
2i

a ,…, 
li

a } and 


 jca

a  ≤ C,    i=1, …, k. So, the instance I of Bin Packing 

Problem has the partition {B1, B2,…, Bk}. 

 

Algorithm 4.1: Counting Bins 

 

Input: List of vertices (n) with their weights {w1, w2, …,wn}, 

Capacity (C). 

Output: Number of Bins (B). 

Begin 

Step 1: If (n! = 0) then go to step 2 else goto step 7. 

Step 2: Sort the vertices according to non-increasing order of 

their weight. 

Step 3: Call Algorithm 4.1.1. 

Step 4: Call Algorithm 4.1.2. 

Step 5: Assign clique partition number (obtained from step 4) 

of vertex weighted 

graph (G) (produced by step 3) with total weight of each 

clique ≤ C to B (i.e. BCC (Clique Count)). 

Step 6: Print B. 

Step 7: End. 

 

Algorithm 4.1.1: Construct_ Graph 

 

Input: List of vertices with weights {w1, w2, …,wn}, Capacity 

(C). 

Output: Vertex weighted Graph (G). 

Begin 

Step 1: Set i 1, j 1. 

Step 2: If ( i ≤ n) then goto step 3 else goto step 9. 

Step 3: If (j ≤ n) then  goto  step  4  else  goto step 8. 

Step 4: If ( i  j ) goto step 5 else goto step 7. 

Step 5: If (wi  +  wj ≤  C)  then  goto  step 6  else  goto step 7. 

Step 6: Connect item i and j. 

Step 7: Set j j+1, goto step 3. 

Step 8: Set i i+1, goto step 2. 

Step 9: End 

 

Algorithm 4.1.2: Minimum Clique Partition with 

Constrained Weight (MCPCW) 

 

Input: Adjacency List of the Vertex weighted Graph (G), 

Capacity (C).  

Output: Clique Count (CC). 

Begin 

Step 1:  CC 0; 

Step 2: If (n!= 0) then goto step 3 else goto step 7; 

Step 3: i 1; 

Step 4: If vertex i has zero or one neighbor, then delete the 

vertex along with its  

neighbor (if any) from the Graph (G), CCCC + 1 and goto 

step 2  else goto step 5; 

Step 5: Select subset of vertices consisting of vertex i and its 

neighbor vertices based on Selection criteria 1 or Selection 

Criteria 2.  

Step 6: Delete the subset produced from step 4, CCCC + 

1, goto step 2; 

Step 7: End  

As the subsets are the cliques, so algorithm 4.1.2 returns 
the number of clique partition with each partition weight not 
exceeding the capacity. The critical part of the algorithm 4.1 is 
step 4 of the algorithm 4.1.2 where subset of the vertices 
consisting of the current vertex and its neighbors has to be 
selected. Here, we have adopted two heuristics for selection of 
the subset. The selection criteria are depicted below: 

A. Selection Criteria 1 (A1): 

This criterion selects the subset of the current vertex along 
with its neighbor vertices which gives maximum total weight 
not exceeding the capacity (C). 

B. Selection Criteria 2 (A2): 

This criterion selects the subset of the current vertex along 
with its neighbor vertices which gives maximum average 
weight not exceeding the capacity (C). Here, firstly the total 
average weight (Ta) of the vertex set is calculated. Suppose, 
average weight of current subset is Ca and average weight of 
its previous subset is Pa, then if Ca ≥ Pa or Ca ≥Ta and also 
total sum of current subset is greater than the previous one, 
current subset is selected as the final subset, otherwise 
previous subset is selected as the final subset and this process 
continues for all possible subsets. 

Theorem 4.3: The graph G formulated by the 
Algorithm 4.1, is a Chordal Graph. 
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Proof. Let, there is a chordless cycle v1, v2, …, vl , with l ≥ 
4 in G. According to lemma 4.2, the graph G has perfect 
vertex elimination ordering. Suppose, vi is the vertex in the 
cycle that occurs first in the perfect elimination ordering and 
vi+1, vi+2 are neighbors of vi occur later in the ordering. So, 
there must be an edge between vi+1 and vi+2. But this 
contradicts the assumption that the cycle is chordless. So, the 
graph G is a Chordal Graph. 

Claim 4.4: Any induced subgraph of the graph G 
produced by the Algorithm 4.1, is Chordal. 

As the graph G produced by the Algorithm 4.1 is Chordal 
and any induced subgraph of a Chordal Graph is Chordal [20], 
so the above claim is also true for the graph produced by the 
Algorithm 4.1. 

Lemma 4.6: Minimum Clique Partition Problem with 
Constrained Weight (MCPCW) for the Chordal Graph 
can be solved in O(|V| +|E|) time where V is the vertex set 
and E is the edge set. 

According to lemma 4.2, the ordering w1≥ w2≥ …≥wn is a 
perfect vertex elimination ordering. Suppose, processing starts 
with vertex v1 with weight w1. It is added to the first partition. 
Next the adjacent vertices of v1 are checked and the vertices 
are added along with v1 to the partition with total weight ≤ C, 
based on one of the two above selection criteria. If the first 
partition is {v1, v2, …, vk}, then after deletion of the vertices in 
the partition Algorithm 4.1 continues the execution with the 
remaining graph G´, which is also a Chordal Graph according 
to the lemma 4.4. The execution continues until vertex set is 
empty. In each iteration, Algorithm 4.1 checks the vertex and 
its neighbors. So, the overall complexity of the 

implementation is O(|v|) + O 
Vv

|)Adj(v)(| , which is 

roughly equivalent to O (|V| + |E|). 

Theorem 4.7: Number of Bins Produced by the 
Algorithm 4.1 is K ≤ 3/2 OPT +1 and time complexity is O 
(|V|

2
). 

Proof.  Assume, partition of the ordered list of vertex 
weights has to be done where the weights   {w1, w2, …,wn} 
are distributed in the following sets: 

X = {wi | wi > 2L/3}      {L=capacity of each Bin} 

Y = {wi | L/2 <wi ≤ 2L/3} 

T = {wi | L/3 <wi ≤ L/2} 

Z = {wi | wi ≤ L/3} 

Case 1: There is one Clique Partition with all vertices 
from set Z. 

1) In this case all partitions except the last one have used 

more than 2C/3 of the total capacities. Otherwise an item from 

set Z can put into them. 

2) It has to be the last partition. 
Suppose, required number of bins = K. 

2L(K-1)/3 + (CK) ≤ 


n

1i

iw    [CK = total weight of partition 

K] 

2(K-1)/3 + (CK)/L ≤ 










/Lw
n

1i

i ≤ OPT      [OPT= 












/Lw
n

1i

i ] 

K ≤ 3/2 OPT + 1 -3/2. CK/L   [Clique Partition contains 

one vertex with weight= L/3] 

K ≤ 3/2 OPT + 1 -1/2 

K ≤ 3/2 OPT + 1  
Case 2:  There is no Clique Partition with all vertices 

from Z. 

In this case all vertices from set Z can be thrown out 
without changing total number of partitions and below cases 
arise. 

1) No partition has more than 2 items. 

2) Any partition with one vertex from X cannot 

accommodate any other vertices. 

3) Any partition with one vertex from Y can 

accommodate only another vertex from T. 

4) Any Partition with one vertex from T can 

accommodate either one vertex from Y or one vertex from T 

but not both. 
From the conclusion above we know that know that our 

algorithm will put at most 2 vertices in a bin. So, it put each 
vertex in a partition with maximum total weight (criteria 1) 
and maximum average weight (criteria 2). So, in this case the 
solution of proposed algorithm is optimal. 

For the second part, it can be seen from the algorithm that 
for V number of vertices algorithm 4.1.1 construct the graph 
in O(|V|

2
) time and from Lemma 3.5 it can be concluded that 

algorithm 4.1.2 requires O(|V| + |E|) time. As time complexity 
of algorithm 4.1.1 dominates time complexity of algorithm 
4.1.2; total time required by the algorithm 4.1 is O(|V|

2
). 

C. Illustration of Algorithm 4.1 (Counting Bins) with 

examples 

Suppose, set W is the set of vertex weights organized in 

non-increasing order of their sizes and wi Z
+
  i=1, 2 …, n. 

W= {w1   w2   …   ws > C/2 > ws+1   ws+2 …wn} and 

capacity=C. The optimal number of bins is calculated as  












/Cw
n

1i

i . 

Case 1:  Input sequence:  y1   y2 … ys > C/2 
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The graph can be viewed as a null graph and in that case 
the number of cliques is the cardinality of the vertex weight 
set which is |W|. 

Example 4.8: W = {15, 14, 12, 11, 10, 9, 8} and 
C=15.Optimal No. Bins= 6. 

 
Fig. 2. Vertex weighted graph for case 1 

So, with selection criteria 1 and selection criteria 2, the 
number of Bins=7. 

Case2: Input sequence:   w1   w2
…ws > C/2 >ws+1

  

ws+2 … wn 

This graph is a Chordal graph. Number of bins can be 
found by finding minimum clique partition with total weight 
of each clique not exceeding C. 

Example 4.9: W = {11, 10, 9, 8, 7, 4, 3} and C=15. 
Optimal no. of Bins=4 

 

Fig. 3. Vertex weighted graph for case 2 

Selection Criteria 1: 

 

Fig. 4. Adjacency list of the graph in Figure.3 and possible cliques 

Clique (C1) = (11, 4). 

 

Fig. 5. Vertex weighted graph after deletion of vertex labeled 1 and 6 

 

Fig. 6. Adjacency list of the graph in Figure.5 and possible cliques 

Clique (C2) = (10, 3). 

 

Fig. 7. Vertex weighted graph after deletion of vertex labeled 2 and 7 

 

Fig. 8. Adjacency list of the graph in Figure.7 and possible clique 

Clique (C3) = (9). 
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Fig. 9. Vertex weighted graph after deletion of vertex labeled 3 

 
Fig. 10. Adjacency list of the graph in Figure.9 and possible clique 

Clique (C4) = (8, 7). 

So, total number of bins C1, C2, C3, C4 = 4. 

Selection Criteria 2: 

Total average weight of the vertices Ta = (11+ 10+ 9+ 8+ 
7+ 4+ 3)/7 =7.43. 

 
Fig. 11. Adjacency list of the graph in Figure.3 and possible cliques 

Clique (C1) = (11, 4). 

 

Fig. 12. Vertex weighted graph after deletion of vertex labeled 1 and 6 

 
Fig. 13. Adjacency list of the graph in Figure.12 and possible clique 

Clique (C2) = (10, 3). 

 

Fig. 14. Vertex weighted graph after deletion of vertex labeled 2 and 7 

 

Fig. 15. Adjacency list of the graph in Figure.14 and possible clique 

Clique (C3) = (9). 

 

Fig. 16. Vertex weighted graph after deletion of vertex labeled 3 
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Fig. 17. Adjacency list of the graph in Figure.16 and possible clique 

Clique (C4) = (8, 7). 

Here also total number of bins= 4. 

Case 3: Input sequence: C/2 > xs+1   xs+2
… xn 

In this case the graph can be viewed as a clique, which is 
also a Chordal graph. 

Here also the number of bin is the number of minimal 
clique partition with total weight of each clique ≤ C. 

Example 4.10:  W= {10, 9, 9, 9, 8, 8, 7, 7} and C=24. 
Optimal number of Bins = 3. 

 

Fig. 18. Vertex weighted graph for case 3 

Applying selection criteria 1 (A1) we get the number of 
bins= 4, i.e. clique (C1) = (10, 7, 7), clique (C2) = (9, 9), clique 
(C3) = (9, 8) and clique (C4) = (8), but with selection criteria 2 
(A2), the number of bins= 3, i.e. clique (C1) = (10, 9), clique 
(C2) = (9, 8, 7), clique (C3) = (9, 8, 7) which is improved than 
former. 

V. COMPUTATIONAL RESULTS 

The proposed algorithm was coded in C, compiled using 
Borland C++ 5.0 compiler in Win32 mode and in Intel® 
Atom

TM
 1.60 Hz Processor with 1.0 GB DDR2 RAM. 

The algorithms were tested on six classes of benchmark 
problem instances, all of which can be downloaded from the 
web page of EURO Special Interest Group on Cutting and 
Packing (ESICUP) (http://paginas.fe.up.pt/~esicup/). The 
propose algorithm with heuristic criteria 1 is named as A1 and 
with heuristic criteria 2 is named as A2. 

The first two, the u class and t class, were developed by 
[21] and named instance „a‟ in table I. The u class has item 

weights drawn from an integer uniform distribution on (20, 
100) and bin capacity c= 150. There are four sets in this class, 
namely u_120, u_250, u_500 and u_1000; each consisting of 
20 instances with n= 120, 250, 500 and 1000 items, 
respectively. The t class has item weights drawn from a 
uniform distribution on (25, 50) and c= 100. Item weights in 
this class are real numbers. There are also four sets in this 
class, namely t_60, t_120, t_249 and t_501; each consisting of 
20 instances with n= 60, 120, 249 and 501 items, respectively. 
The t class is considered difficult, because in an optimal 
solution of each instance, each bin contains 3 items with zero 
slack (hence the name „triplets class‟). All problem instances 
in both the u and t classes have been solved to optimality with 
the exact algorithm of [22]. It can be seen from table I that,  
proposed A1 and A2 finds the solution better than FFD 
heuristic and A1 is giving better solution than A2. 

A third class of benchmark problem instances, developed 
by [23], contains two sets, was_1 and was_2 and named 
instance „b‟ in table I. Each set has 100 instances with c= 1000 
and item weights from (150,200). Was_1 has n= 100 items in 
each instance, while was_2 has n= 120 items. For all instances 
in this class, optimal solutions are known. Solution produced 
by the proposed A1 and A2 are better than FFD heuristic but 
A2 has better solution than all other heuristics in table I. 

A fourth class of benchmark problem instances, developed 
by [24], is called gau_1 and contains 17 problem instances 
with c= 10,000 and various values of n and item weights. It is 
named instance „c‟ in table I. For all instances the optimality 
gap is one bin. Solutions produced by proposed A1 and A2 are 
same and are better than FFD and B2F heuristics. 

Next, the test on the data set of difficult problem instances 
has been performed, called hard28, used for example by [25] 
and named instance „d‟ in table I. This set has 28 instances 

with n {160,180, 200}, c= 1000, and items weights drawn 
from (1,800). The simplest heuristic, FFD, finds optimal 
solutions for five instances and solutions worse than optimal 
by one bin for all the remaining instances. None of the other 
heuristics including A1, is able to improve these solutions. In 
fact, B2F, MBS, MBS´, A1 find worse solutions for some 
instances. But proposed A2 finds the same solutions as FFD. 

A sixth class of benchmark problem instances, developed 
by [26], consists of set_1, set_2, and set_3 and named instance 
„e1‟, „e2‟, „e3‟ in table I respectively. Set_1 has 720 instances 
with c= 100, 120, 150, n= 50, 100, 200, 500, and item weights 
drawn from an integer uniform distribution on (1,100), (20, 
100), and (30, 100). Set_2 has 480 instances with c= 1000, n= 
50, 100, 200, 500 and item weights such that each bin has on 
average 3 to 9 items. Set_3 has 10 instances with c= 100,000, 
n= 200, and item weights drawn from a uniform distribution 
on (20,000, 35,000). Optimal solutions for 1184 instances in 
this class have been found in [26]. For the remaining 26 
instances, optimal solutions were found by [27]. From Table I 
it can be seen that solution produced by proposed A2 is better 
than other heuristics. 

Additionally, in Figure.19 time comparison between two 
proposed heuristics A1 and A2 for above instances are shown. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e1) 

 
(e2) 

 
(e3) 

Fig. 19. Time Comparison between two proposed heuristics A1 and A2 for 

instances a, b, c, d, e1, e2, e3 respectively. X-axes represent time and Y-axes 

represent number of instances 

VI. CONCLUSIONS 

It is the very beginning stage of the solution of the 
problem to store large amount of data in a minimum storage 
space. In this paper, mainly one dimensional Bin Packing 
Problem has been treated by a graph algorithm. The proposed 
algorithm is based on two heuristics; one is depending on 
maximum total weight criteria of the vertices not exceeding 
the bin capacity and second is based on maximum average 
weight criteria of the vertices also not exceeding the capacity 
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of the bin. The algorithm takes polynomial time and finds 
near-optimal solution which is shown in computational results. 
It can also be seen that, no algorithm is better for all the 
instances, the algorithm with second criteria (A2) outperforms 
other heuristics for one benchmark instance and in other cases, 
solution with two heuristics (A1 and A2) deviates small from 
the best known solutions and solutions produced by the four 
heuristics. 

VII. FUTURE WORK 

Several further research scopes can be outlined as follows. 
Firstly, along with the volume of the data its dimension is also 
increasing. To tackle this problem good and efficient 
algorithms are needed for storing high dimensional data. In 
this case, multidimensional network graph concept can be 
used or vertex weighted graph for each dimension can be 
created and the proposed algorithm can be applied to the graph 
produced from the intersection of graphs of each dimension. 
But it needs further investigations. Secondly, online partition 
problem or semi-online partition problem [28] can be applied 
to generate cliques with constrained weight of the vertex 
weighted graph. This concept can be used to tackle online or 
semi-online Bin Packing Problem but needs further detailed 
study. Third, running time of the algorithm can be improved 
from O (|V|

2
) to O (|V|log|V|) by using the appropriate data 

structure namely red black tree [29] which is under the 
investigation of the author and last but not the least, though 
this paper contains a study of the bound of maximum number 
of bins needed by the proposed algorithm, the proof of the 
upper bound involves an extremely detailed case analysis 
which can be investigated in future. 
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TABLE I. COMPARISON BETWEEN PROPOSED HEURISTICS A1, A2 AND FOUR EXISTING HEURISTICS WITH 1615 INSTANCES 
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FFD 6 6.73 24 0 1.04 2 3 0.82 1 5 0.82 1 546 0.39 5 236 1.56 21 0 3.4 4 

B2F 41 1.23 4 64 0.68 1 4 0.76 1 4 1.07 2 639 0.13 3 363 0.44 9 7 0.3 1 

MBS 40 0.98 3 33 0.84 1 13 0.24 1 1 3.32 10 252 1.47 3 387 0.27 5 0 2.6 3 

MBS´ 41 1.24 7 36 0.82 1 13 0.24 1 2 1.39 3 633 0.14 3 381 0.34 6 0 3.3 4 

A1 31 1.45 7 33 0.84 1 8 0.53 1 2 1.43 3 624 0.16 3 367 0.40 6 0 3.4 4 

A2 23 1.28 4 75 0.63 1 8 0.53 1 5 0.82 1 631 0.15 3 381 0.34 6 4 0.6 1 

 


