
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

29 | P a g e

www.ijacsa.thesai.org

A Graph Theoretic Approach for Minimizing Storage

Space using Bin Packing Heuristics

Debajit Sensarma

Dept. of Computer Science & Engineering

University of Calcutta

Kolkata, India

Samar Sen Sarma

Dept. of Computer Science & Engineering

University of Calcutta

Kolkata, India

Abstract—In the age of Big Data the problem of storing huge

volume of data in a minimum storage space by utilizing available

resources properly is an open problem and an important

research aspect in recent days. This problem has a close

relationship with the famous classical NP-Hard combinatorial

optimization problem namely the “Bin Packing Problem” where

bins represent available storage space and the problem is to store

the items or data in minimum number of bins. This research

work mainly focuses on to find a near optimal solution of the

offline one dimensional Bin Packing Problem based on two

heuristics by taking the advantages of graph. Additionally,

extreme computational results on some benchmark instances are

reported and compared with the best known solution and

solution produced by the four other well-known bin oriented

heuristics. Also some future directions of the proposed work have

been depicted.

Keywords—Bin Packing; Combinatorial Optimization; Graph

Theory; Heuristics; Operational Research

I. INTRODUCTION

The storage space minimization problem is an open
problem of now-a-days as the sizes as well as the dimension
of data are increasing day by day. So, there is a need to
produce a near optimal solution in less amount of time. To
tackle with the problem the author have considered the storage
minimization problem as the famous one dimensional Bin
Packing Problem where storage space can be represented as
bins and the problem is to store the items or data in minimum
number of bins. This problem arises in a wide variety of
contexts and this popular combinatorial optimization problem
has been extensively studied during past few years. The
authors [1] called the problem as “The Problem That
Wouldn‟t Go Away”. The study of classical one dimensional
Bin Packing Problem first begins in the early 1970‟s [2]. The
problem states that, an unlimited number of bins with integer
capacity C>0 each, a set of items with their weights, wi, 0< wi
≤ C are given. The goal is to assign each item to one bin, such
that total weight of the items in each bin does not exceed the
capacity C and the number of bins used for packing all items
is minimized. The problem is known to be NP-Hard is strong
sense [3]. Thus, in this case the satisfying solution is to design
an approximation algorithm which will construct near-optimal
packing.

One dimensional Bin Packing Problem has several
applications in real world, among them resource and storage
space minimization is one facet. Some formulations of real
world storage minimization problem using Bin Packing

Problem are as follows: i) Placing computer files with
specified size into the identical disk with same capacity with
constrained that each file must be entirely on one disk [4]. The
objective is to minimize the number of disks needed for the set
of files. This can be formulated using Bin Packing Problem
where items are files, disks are bins and disk capacity is the
bin capacity which is fixed. The problem is to minimize the
number of bins. ii) Server Consolidation [5] is an approach to
the efficient usage of computer server resources in order to
reduce the total number of servers or server locations that an
organization requires. In this case, existing servers can be
treated as items, resource utilizations are item sizes, bins are
destination servers and the bin capacity is the utilization
threshold of the destination servers. The goal is to minimize
the destination servers and maximizing resource utilization.
With one resource the problem is same as one dimension Bin
Packing Problem. Additionally, with more than one resource
(e.g. CPU, disk, memory and computer network) the problem
dimension increases. iii) Also the Bin Packing Problem can be
used to minimize the cost of storing data (items) in the cloud
storage [6]. As buying hard-drive in bulk is much cheaper than
buying them individually, the goal of solving the problem
becomes minimizing the hard-drives (bins) to store the data
(items). Besides this, there are other storage minimization
problems where Bin Packing has a major role, but are not
discussed in this paper.

Not only Bin Packing Problem but also graph theory has
vast real world applications. Graph algorithm provides unified
solution approach to many classical and modern application
areas by taking graph as an omnipotent mathematical tool. In
view of storage minimization problem, there exists various
graph compression mechanism which can be used to store data
compactly [7].

This paper mainly focused on the solution of one
dimensional Bin packing problem in polynomial time, and for
this an algorithm depending on two offline bin oriented
heuristics has been proposed taking the advantages of graph
theory. Firstly, a vertex weighted graph is constructed from
the set of item weights where for each item weights one vertex
is created. Then, the first heuristic chooses the subset of
vertices according to the maximum total weight criteria and
the second one is based on maximum average weight criteria,
which ultimately produces the minimal clique partition of the
graph with each clique having weight not exceeding the
capacity of each bin. The total number of partition gives the
total number of bins. The algorithm runs in polynomial time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

30 | P a g e

www.ijacsa.thesai.org

Most of the existing algorithms not completely based on graph
algorithm rather hybridization of graph algorithms but this
work is completely based on a graph algorithm to find
minimum clique Partition with weight constraint and can
compete with existing algorithms. Also it can open a new
direction for solving multi-dimensional Bin Packing Problem.
The detailed description of the algorithm can be found in
subsequent sections.

The article is organized as follows: section II contains
some preliminary concepts related to the work. Some existing
work to tackle Bin Packing problem with graph is described in
section III. Section IV gives the detailed description of
proposed algorithm. Section V contains computational results.
Finally, section VI concludes the article giving some future
scopes in section VII.

II. PRELIMINARIES

This section contains some preliminary concepts related to
the topic, taken from [8, 9, 10, 11].

Definition 2.1: A Graph G is a triple consisting of a
vertex set V (G), an edge set E(G), and a relation that
associates with each edge two vertices (not necessarily
distinct) called its endpoints.

Definition 2.2: vertex weighted graph is a graph where
each vertex has been assigned a positive weight.

Definition 2.3: A Null Graph is a graph whose edge set is
null.

Definition 2.4: A Clique in a graph G is a set of pairwise
adjacent vertices.

Definition 2.5: A vertex x of a graph G is Simplical
Vertex if its adjacency set Adj(x) induces a complete
subgraph of G, i.e. Adj(x) is a clique (not necessarily
maximal).

Definition 2.6: An ordering  = [v1, v2, …, vn] where n

is the number of vertices of an undirected graph G is Perfect
Elimination Ordering iff each vi is a simplical vertex of the
induced sub graph G{vi,…vn}.

Definition 2.7: Chordal Graph is a simple graph in
which every cycle of length four and greater has a cycle chord.

Definition 2.8: Given a vertex weighted graph G = (V, E;
W}, having weight of vertices w1, w2,…, w|V| respectively and
a bound C´, the Minimum Clique Partition with
Constrained Weight (MCPCW) problem [12] is to find a
partition of these |v| vertices into smallest number of cliques
such that each clique has its weight not beyond C´.

Theorem 2.9: Minimum Clique Partition with
Constrained Weight (MCPCW) problem is NP-Hard.

Proof. The proof is done by transforming an instance of 3-
Partition problem to an instance of MCPCW.

Consider an instance P of 3-Partition problem: Given the
set S = {a1, a2, …, a3k}of 3k integers satisfying C´/4 < aj <

C´/2 for each 1 ≤ j ≤ 3k and 


3k

1j

ja = kC´. The problem asks

whether S can be partitioned into k subsets s1, s2,…, sk, such
that for each i= 1, 2,…, k, si contains exactly three elements of

S and 
 isa

a = C´.

Now we will construct a polynomial time reduction Q for
P of the 3-partition problem to an instance Q(P) of the
MCPCW problem i.e. a vertex weighted graph with weight of
each vertices w1, w2, …, w3k respectively where wi = ai for

each i= 1,… 3k and the bound C´= (


3k

1j

jw)/ k.

We now prove the claim that there exists a feasible
solution to an instance P of the 3-partition problem iff instance
Q(P) of the MCPCW problem has its optimal solution. So, the
feasible partition of the instance Q(P) can be constructed in

the following way: for each si = {
1i

a ,
2i

a ,…,
li

a }, select the

clique c1 = {
1i

w ,
2i

w ,…,
li

w } and then obtains a partition

of these 3k weights of |V| vertices into k cliques having weight
exactly C´. Conversely, if the instance Q(P) of the problem
MCPCW has an optimal clique partition { c1, c2, …, ck} with

the smallest integer k having 
 icw

w ≤ C´ for each i=1,…,k.

By the facts, 


3k

1j

ja = kC´ and C´/4 < aj < C´/2 for each 1 ≤ j ≤

3k, we obtain 
 icw

w = C´ (as wj = aj for each j= 1,… 3k) for

each j= 1, 2,…, k and the clique cj contains exactly three

elements from S, i.e. sj = {
1j

a ,
2j

a ,
3j

a } and 
 jca

a = C´ j=

1,… k. So, the instance p of the 3-partition problem has the
partition s1, s2,…, sk.

Definition 2.10: A bin oriented heuristic for Bin Packing

Problem constructs solution bin by bin i.e. while unpacked

items remain it is packed with the maximal subset of unpacked

items, e.g. First Fit Decreasing (FFD), Best-Two-Fit (B2F),

Minimum Bin Slack (MBS), MBS´ etc. [13, 14].

Definition 2.11: Offline algorithms have all the items

available before the packing starts, e.g. First Fit Decreasing

(FFD) [4].

III. RELATED WORKS

This section consists of some related works to solve one
dimensional Bin Packing Problem based on graphs. Firstly, in
[15] the authors consider time constrained scheduling
problem. For a set of jobs J with execution time t(j)(0, 1]
and an undirected graph (the conflict graph) G =(J, E), they

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

31 | P a g e

www.ijacsa.thesai.org

consider to find schedule of the jobs that are adjacent and they
are assigned different machines (bins) with total execution
time of each machine at most 1. The objective is to assign all
jobs into minimum number of machines maintaining the time
constraint. To tackle the problem, they have proposed six
different algorithms based on different principles. The first
three algorithms are the modification of classical NF, FF, FFD
algorithms. Next algorithm depends on optimal coloring
algorithm which finds a minimum partition of the item set into
independent sets which is equal to the chromatic number of G
and applies one of the NF, FF and FFD packing to each
independent set. Fifth and sixth algorithm is same like above
but the main difference is fifth one is based on pre-coloring
method and sixth one is based on general coloring method that
works for co-graph and k-trees. Next, the authors of [16]
consider the problem namely Bin Packing with Conflict
(BPC) using conflict graph and it‟s online, offline versions.
They mainly improve the upper bounds of BPC on perfect
graphs, interval graph and bipartite graphs. Most of the recent
results follow from the adaptation of weighting systems to
enable analysis of algorithms for BPC and new algorithms
which carefully remove small sub-graph of items causing
problematic instances. In next work [17] authors considered a
restricted problem called Bin Packing with Clique Graph
Conflicts. They have designed a polynomial time
approximation algorithm for constant item size analyzing its
performance in the more general case of bounded item sizes.
In [18] authors investigated the following problem: the items
to be packed are structured as the leaves of a tree and it is
called as Structured Bin Packing Problem. The objective is to
pack the items in the same bin whose lowest common ancestor
has low height. Next, authors of [19] have proposed a problem
to pack a graph G with lower and upper bound on its edges
and weights on its vertices into a host graph I and called the
problem as Graph Bin Packing Problem. The vertices of G are
items to be packed and vertices of I are bins. The host vertex
can accommodate at most L weight in total and if two items
are adjacent in G, then the distance of their host vertices in I
must be between the lower and upper bounds on the edge
joining the two items.

Most of the above algorithms not completely based on
graph algorithm rather hybridization of graph algorithms and
exiting heuristics for solving Bin Packing Problem. Our work
is simple and purely based on a graph algorithm namely
finding minimum clique Partition with weight constraint and
can compete with existing algorithms. Also it can open a new
direction for solving multi-dimensional Bin Packing Problem.

IV. THE PROPOSED ALGORITHM

Let, W= {w1, w2, …,wn} be the given sequence of weights
of the items. The items are numbered 1 through n, from the
left to right of the list, labeling their positions in W, i.e. w1 is
the weight of first item in W, w2 is the weight of second item
in W and so on.

In this section an algorithms based on two bin oriented
heuristics has been formulated based on graph to cope with the
one dimensional Bin Packing Problem.

In this algorithm firstly items are sorted in non decreasing
order with respect to their weight. Next, a vertex weighted

graph is constructed from the sequence of items. Here, for
each item a weighted vertex are introduced. Hence, firstly the
graph consists of „n‟ isolated vertices {v1,…,vn} with their
weight {w1, w2, …,wn} respectively. Now, for introducing
edges to the graph, the following procedure is being followed.
For any pair of items with weight wi and wj that are in the
position i and j, respectively in W, an edge is introduced
between the corresponding vertices of wi and wj, only if (i-j)(
wi-(C-wj)) ≥ 0, where C is the capacity of each bin. In other
words, an edge is introduced between the corresponding
vertices in the graph if they satisfy the condition wi + wj ≤ C.
This is explained with an example below.

Example 4.1: Suppose, W = {8, 11, 10, 4, 7, 9, 3}, C = 15.

After sorting the sequence is W´ = {11, 10, 9, 8, 7, 4, 3}.

Fig. 1. Vertex weighted graph for the sequence W = {8, 11, 10, 4, 7, 9, 3}

and bin capacity C=15. Vertex 1 has weight 11, vertex 2 has weight 10 and so
on. An edge {vi, vj} indicates that wi + wj ≤ C.

Lemma 4.2: The Graph produced from the sequence
W´ after sorting the sequence W in non increasing order
(i.e. w1≥ w2≥ …≥wn), has a Perfect Elimination Ordering.

Suppose, Wi ≥ Wj ≥ Wk and vertex i and j are connected.
The following equations are satisfied.

 Wi + Wj C … (1)

 Wi + Wk C … (2)
If the ordering is the perfect elimination ordering then,

vertex j and k will also be connected and Wj + Wk  C.

Adding (1) and (2)

2Wi + (Wj + Wk)  2C

Or, Wj + Wk  2(C-Wi)… (3)

As, Wj  Wi

Putting Wj = Wi we get from (1)

2Wi  C

From, (3) we get,

Wj + Wk  C

This condition is applicable for the whole ordering. So, the
ordering is the perfect elimination ordering.

Claim 4.5: There exists a feasible solution to an
instance I of one dimensional Bin Packing Problem if and

7

1 6

5

4

2

3

3

1

1

1

0

9

4

7

8

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

32 | P a g e

www.ijacsa.thesai.org

only if the instance  (I) of the MCPCW problem for
Chordal Graph has its optimal solution with value k.

For any feasible solution of an instance I of Bin Packing
Problem, the set of items B is partitioned into k bins {B1, B2,

…, Bk},  i=1, …, k, such that each Bi contains items of B

and 
 iBa

a ≤ C (C=capacity of each bin). Then a feasible

partition of the instance  (I) of the MCPCW problem can be

constructed in the following way: for each Bi = {
1i

a ,
2i

a ,…,

li
a }, select the clique Ci = {

1i
w ,

2i
w ,…,

li
w } having total

weight of the vertices not exceeding C. Likewise obtain the
partition of total items into k cliques each having total weight
not exceeding C.

Conversely, if the instance  (I) of the MCPBW problem has

optimal clique partition {C1, C2, …, Ck},  i=1, …, k, with

smallest integer k and having 
 ica

a ≤ C. Then each clique

contains items from the set B, i.e. Bj = {
1i

a ,
2i

a ,…,
li

a } and


 jca

a ≤ C,  i=1, …, k. So, the instance I of Bin Packing

Problem has the partition {B1, B2,…, Bk}.

Algorithm 4.1: Counting Bins

Input: List of vertices (n) with their weights {w1, w2, …,wn},

Capacity (C).

Output: Number of Bins (B).

Begin

Step 1: If (n! = 0) then go to step 2 else goto step 7.

Step 2: Sort the vertices according to non-increasing order of

their weight.

Step 3: Call Algorithm 4.1.1.

Step 4: Call Algorithm 4.1.2.

Step 5: Assign clique partition number (obtained from step 4)

of vertex weighted

graph (G) (produced by step 3) with total weight of each

clique ≤ C to B (i.e. BCC (Clique Count)).

Step 6: Print B.

Step 7: End.

Algorithm 4.1.1: Construct_ Graph

Input: List of vertices with weights {w1, w2, …,wn}, Capacity

(C).

Output: Vertex weighted Graph (G).

Begin

Step 1: Set i 1, j 1.

Step 2: If (i ≤ n) then goto step 3 else goto step 9.

Step 3: If (j ≤ n) then goto step 4 else goto step 8.

Step 4: If (i  j) goto step 5 else goto step 7.

Step 5: If (wi + wj ≤ C) then goto step 6 else goto step 7.

Step 6: Connect item i and j.

Step 7: Set j j+1, goto step 3.

Step 8: Set i i+1, goto step 2.

Step 9: End

Algorithm 4.1.2: Minimum Clique Partition with

Constrained Weight (MCPCW)

Input: Adjacency List of the Vertex weighted Graph (G),

Capacity (C).

Output: Clique Count (CC).

Begin

Step 1: CC 0;

Step 2: If (n!= 0) then goto step 3 else goto step 7;

Step 3: i 1;

Step 4: If vertex i has zero or one neighbor, then delete the

vertex along with its

neighbor (if any) from the Graph (G), CCCC + 1 and goto

step 2 else goto step 5;

Step 5: Select subset of vertices consisting of vertex i and its

neighbor vertices based on Selection criteria 1 or Selection

Criteria 2.

Step 6: Delete the subset produced from step 4, CCCC +

1, goto step 2;

Step 7: End

As the subsets are the cliques, so algorithm 4.1.2 returns
the number of clique partition with each partition weight not
exceeding the capacity. The critical part of the algorithm 4.1 is
step 4 of the algorithm 4.1.2 where subset of the vertices
consisting of the current vertex and its neighbors has to be
selected. Here, we have adopted two heuristics for selection of
the subset. The selection criteria are depicted below:

A. Selection Criteria 1 (A1):

This criterion selects the subset of the current vertex along
with its neighbor vertices which gives maximum total weight
not exceeding the capacity (C).

B. Selection Criteria 2 (A2):

This criterion selects the subset of the current vertex along
with its neighbor vertices which gives maximum average
weight not exceeding the capacity (C). Here, firstly the total
average weight (Ta) of the vertex set is calculated. Suppose,
average weight of current subset is Ca and average weight of
its previous subset is Pa, then if Ca ≥ Pa or Ca ≥Ta and also
total sum of current subset is greater than the previous one,
current subset is selected as the final subset, otherwise
previous subset is selected as the final subset and this process
continues for all possible subsets.

Theorem 4.3: The graph G formulated by the
Algorithm 4.1, is a Chordal Graph.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

33 | P a g e

www.ijacsa.thesai.org

Proof. Let, there is a chordless cycle v1, v2, …, vl , with l ≥
4 in G. According to lemma 4.2, the graph G has perfect
vertex elimination ordering. Suppose, vi is the vertex in the
cycle that occurs first in the perfect elimination ordering and
vi+1, vi+2 are neighbors of vi occur later in the ordering. So,
there must be an edge between vi+1 and vi+2. But this
contradicts the assumption that the cycle is chordless. So, the
graph G is a Chordal Graph.

Claim 4.4: Any induced subgraph of the graph G
produced by the Algorithm 4.1, is Chordal.

As the graph G produced by the Algorithm 4.1 is Chordal
and any induced subgraph of a Chordal Graph is Chordal [20],
so the above claim is also true for the graph produced by the
Algorithm 4.1.

Lemma 4.6: Minimum Clique Partition Problem with
Constrained Weight (MCPCW) for the Chordal Graph
can be solved in O(|V| +|E|) time where V is the vertex set
and E is the edge set.

According to lemma 4.2, the ordering w1≥ w2≥ …≥wn is a
perfect vertex elimination ordering. Suppose, processing starts
with vertex v1 with weight w1. It is added to the first partition.
Next the adjacent vertices of v1 are checked and the vertices
are added along with v1 to the partition with total weight ≤ C,
based on one of the two above selection criteria. If the first
partition is {v1, v2, …, vk}, then after deletion of the vertices in
the partition Algorithm 4.1 continues the execution with the
remaining graph G´, which is also a Chordal Graph according
to the lemma 4.4. The execution continues until vertex set is
empty. In each iteration, Algorithm 4.1 checks the vertex and
its neighbors. So, the overall complexity of the

implementation is O(|v|) + O 
Vv

|)Adj(v)(| , which is

roughly equivalent to O (|V| + |E|).

Theorem 4.7: Number of Bins Produced by the
Algorithm 4.1 is K ≤ 3/2 OPT +1 and time complexity is O
(|V|

2
).

Proof. Assume, partition of the ordered list of vertex
weights has to be done where the weights {w1, w2, …,wn}
are distributed in the following sets:

X = {wi | wi > 2L/3} {L=capacity of each Bin}

Y = {wi | L/2 <wi ≤ 2L/3}

T = {wi | L/3 <wi ≤ L/2}

Z = {wi | wi ≤ L/3}

Case 1: There is one Clique Partition with all vertices
from set Z.

1) In this case all partitions except the last one have used

more than 2C/3 of the total capacities. Otherwise an item from

set Z can put into them.

2) It has to be the last partition.
Suppose, required number of bins = K.

2L(K-1)/3 + (CK) ≤ 


n

1i

iw [CK = total weight of partition

K]

2(K-1)/3 + (CK)/L ≤ 










/Lw
n

1i

i ≤ OPT [OPT=












/Lw
n

1i

i]

K ≤ 3/2 OPT + 1 -3/2. CK/L [Clique Partition contains

one vertex with weight= L/3]

K ≤ 3/2 OPT + 1 -1/2

K ≤ 3/2 OPT + 1
Case 2: There is no Clique Partition with all vertices

from Z.

In this case all vertices from set Z can be thrown out
without changing total number of partitions and below cases
arise.

1) No partition has more than 2 items.

2) Any partition with one vertex from X cannot

accommodate any other vertices.

3) Any partition with one vertex from Y can

accommodate only another vertex from T.

4) Any Partition with one vertex from T can

accommodate either one vertex from Y or one vertex from T

but not both.
From the conclusion above we know that know that our

algorithm will put at most 2 vertices in a bin. So, it put each
vertex in a partition with maximum total weight (criteria 1)
and maximum average weight (criteria 2). So, in this case the
solution of proposed algorithm is optimal.

For the second part, it can be seen from the algorithm that
for V number of vertices algorithm 4.1.1 construct the graph
in O(|V|

2
) time and from Lemma 3.5 it can be concluded that

algorithm 4.1.2 requires O(|V| + |E|) time. As time complexity
of algorithm 4.1.1 dominates time complexity of algorithm
4.1.2; total time required by the algorithm 4.1 is O(|V|

2
).

C. Illustration of Algorithm 4.1 (Counting Bins) with

examples

Suppose, set W is the set of vertex weights organized in

non-increasing order of their sizes and wi Z
+
  i=1, 2 …, n.

W= {w1  w2  …  ws > C/2 > ws+1  ws+2 …wn} and

capacity=C. The optimal number of bins is calculated as












/Cw
n

1i

i .

Case 1: Input sequence: y1  y2 … ys > C/2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

34 | P a g e

www.ijacsa.thesai.org

The graph can be viewed as a null graph and in that case
the number of cliques is the cardinality of the vertex weight
set which is |W|.

Example 4.8: W = {15, 14, 12, 11, 10, 9, 8} and
C=15.Optimal No. Bins= 6.

Fig. 2. Vertex weighted graph for case 1

So, with selection criteria 1 and selection criteria 2, the
number of Bins=7.

Case2: Input sequence: w1  w2
…ws > C/2 >ws+1



ws+2 … wn

This graph is a Chordal graph. Number of bins can be
found by finding minimum clique partition with total weight
of each clique not exceeding C.

Example 4.9: W = {11, 10, 9, 8, 7, 4, 3} and C=15.
Optimal no. of Bins=4

Fig. 3. Vertex weighted graph for case 2

Selection Criteria 1:

Fig. 4. Adjacency list of the graph in Figure.3 and possible cliques

Clique (C1) = (11, 4).

Fig. 5. Vertex weighted graph after deletion of vertex labeled 1 and 6

Fig. 6. Adjacency list of the graph in Figure.5 and possible cliques

Clique (C2) = (10, 3).

Fig. 7. Vertex weighted graph after deletion of vertex labeled 2 and 7

Fig. 8. Adjacency list of the graph in Figure.7 and possible clique

Clique (C3) = (9).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

35 | P a g e

www.ijacsa.thesai.org

Fig. 9. Vertex weighted graph after deletion of vertex labeled 3

Fig. 10. Adjacency list of the graph in Figure.9 and possible clique

Clique (C4) = (8, 7).

So, total number of bins C1, C2, C3, C4 = 4.

Selection Criteria 2:

Total average weight of the vertices Ta = (11+ 10+ 9+ 8+
7+ 4+ 3)/7 =7.43.

Fig. 11. Adjacency list of the graph in Figure.3 and possible cliques

Clique (C1) = (11, 4).

Fig. 12. Vertex weighted graph after deletion of vertex labeled 1 and 6

Fig. 13. Adjacency list of the graph in Figure.12 and possible clique

Clique (C2) = (10, 3).

Fig. 14. Vertex weighted graph after deletion of vertex labeled 2 and 7

Fig. 15. Adjacency list of the graph in Figure.14 and possible clique

Clique (C3) = (9).

Fig. 16. Vertex weighted graph after deletion of vertex labeled 3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

36 | P a g e

www.ijacsa.thesai.org

Fig. 17. Adjacency list of the graph in Figure.16 and possible clique

Clique (C4) = (8, 7).

Here also total number of bins= 4.

Case 3: Input sequence: C/2 > xs+1  xs+2
… xn

In this case the graph can be viewed as a clique, which is
also a Chordal graph.

Here also the number of bin is the number of minimal
clique partition with total weight of each clique ≤ C.

Example 4.10: W= {10, 9, 9, 9, 8, 8, 7, 7} and C=24.
Optimal number of Bins = 3.

Fig. 18. Vertex weighted graph for case 3

Applying selection criteria 1 (A1) we get the number of
bins= 4, i.e. clique (C1) = (10, 7, 7), clique (C2) = (9, 9), clique
(C3) = (9, 8) and clique (C4) = (8), but with selection criteria 2
(A2), the number of bins= 3, i.e. clique (C1) = (10, 9), clique
(C2) = (9, 8, 7), clique (C3) = (9, 8, 7) which is improved than
former.

V. COMPUTATIONAL RESULTS

The proposed algorithm was coded in C, compiled using
Borland C++ 5.0 compiler in Win32 mode and in Intel®
Atom

TM
 1.60 Hz Processor with 1.0 GB DDR2 RAM.

The algorithms were tested on six classes of benchmark
problem instances, all of which can be downloaded from the
web page of EURO Special Interest Group on Cutting and
Packing (ESICUP) (http://paginas.fe.up.pt/~esicup/). The
propose algorithm with heuristic criteria 1 is named as A1 and
with heuristic criteria 2 is named as A2.

The first two, the u class and t class, were developed by
[21] and named instance „a‟ in table I. The u class has item

weights drawn from an integer uniform distribution on (20,
100) and bin capacity c= 150. There are four sets in this class,
namely u_120, u_250, u_500 and u_1000; each consisting of
20 instances with n= 120, 250, 500 and 1000 items,
respectively. The t class has item weights drawn from a
uniform distribution on (25, 50) and c= 100. Item weights in
this class are real numbers. There are also four sets in this
class, namely t_60, t_120, t_249 and t_501; each consisting of
20 instances with n= 60, 120, 249 and 501 items, respectively.
The t class is considered difficult, because in an optimal
solution of each instance, each bin contains 3 items with zero
slack (hence the name „triplets class‟). All problem instances
in both the u and t classes have been solved to optimality with
the exact algorithm of [22]. It can be seen from table I that,
proposed A1 and A2 finds the solution better than FFD
heuristic and A1 is giving better solution than A2.

A third class of benchmark problem instances, developed
by [23], contains two sets, was_1 and was_2 and named
instance „b‟ in table I. Each set has 100 instances with c= 1000
and item weights from (150,200). Was_1 has n= 100 items in
each instance, while was_2 has n= 120 items. For all instances
in this class, optimal solutions are known. Solution produced
by the proposed A1 and A2 are better than FFD heuristic but
A2 has better solution than all other heuristics in table I.

A fourth class of benchmark problem instances, developed
by [24], is called gau_1 and contains 17 problem instances
with c= 10,000 and various values of n and item weights. It is
named instance „c‟ in table I. For all instances the optimality
gap is one bin. Solutions produced by proposed A1 and A2 are
same and are better than FFD and B2F heuristics.

Next, the test on the data set of difficult problem instances
has been performed, called hard28, used for example by [25]
and named instance „d‟ in table I. This set has 28 instances

with n {160,180, 200}, c= 1000, and items weights drawn
from (1,800). The simplest heuristic, FFD, finds optimal
solutions for five instances and solutions worse than optimal
by one bin for all the remaining instances. None of the other
heuristics including A1, is able to improve these solutions. In
fact, B2F, MBS, MBS´, A1 find worse solutions for some
instances. But proposed A2 finds the same solutions as FFD.

A sixth class of benchmark problem instances, developed
by [26], consists of set_1, set_2, and set_3 and named instance
„e1‟, „e2‟, „e3‟ in table I respectively. Set_1 has 720 instances
with c= 100, 120, 150, n= 50, 100, 200, 500, and item weights
drawn from an integer uniform distribution on (1,100), (20,
100), and (30, 100). Set_2 has 480 instances with c= 1000, n=
50, 100, 200, 500 and item weights such that each bin has on
average 3 to 9 items. Set_3 has 10 instances with c= 100,000,
n= 200, and item weights drawn from a uniform distribution
on (20,000, 35,000). Optimal solutions for 1184 instances in
this class have been found in [26]. For the remaining 26
instances, optimal solutions were found by [27]. From Table I
it can be seen that solution produced by proposed A2 is better
than other heuristics.

Additionally, in Figure.19 time comparison between two
proposed heuristics A1 and A2 for above instances are shown.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

37 | P a g e

www.ijacsa.thesai.org

(a)

(b)

(c)

(d)

(e1)

(e2)

(e3)

Fig. 19. Time Comparison between two proposed heuristics A1 and A2 for

instances a, b, c, d, e1, e2, e3 respectively. X-axes represent time and Y-axes

represent number of instances

VI. CONCLUSIONS

It is the very beginning stage of the solution of the
problem to store large amount of data in a minimum storage
space. In this paper, mainly one dimensional Bin Packing
Problem has been treated by a graph algorithm. The proposed
algorithm is based on two heuristics; one is depending on
maximum total weight criteria of the vertices not exceeding
the bin capacity and second is based on maximum average
weight criteria of the vertices also not exceeding the capacity

0

1

2

3

4

5

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

T
im

e
 (

S
e
c
o

n
d

)

A1

A2

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17

T
im

e
 (

S
e
c
o

n
d

)

A1

A2

0

0.2

0.4

1 4 7 10 13 16 19 22 25

T
im

e
 (

S
e
c
o

n
d

)

A1

A2

0

200

400

1
6

1
1

2
1

1
8
1

2
4
1

3
0
1

3
6
1

4
2
1

4
8
1

5
4
1

6
0
1

6
6
1

T
im

e
 (

S
e
c
o

n
d

)

A1

A2

0

500

1
3

8
7

5

1
1
2

1
4
9

1
8
6

2
2
3

2
6
0

2
9
7

3
3
4

3
7
1

4
0
8

4
4
5

T
im

e
 (

S
e
c
o

n
d

)

A1

A2

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10

T
im

e
 (

S
e
c
o

n
d

)

A1

A2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

38 | P a g e

www.ijacsa.thesai.org

of the bin. The algorithm takes polynomial time and finds
near-optimal solution which is shown in computational results.
It can also be seen that, no algorithm is better for all the
instances, the algorithm with second criteria (A2) outperforms
other heuristics for one benchmark instance and in other cases,
solution with two heuristics (A1 and A2) deviates small from
the best known solutions and solutions produced by the four
heuristics.

VII. FUTURE WORK

Several further research scopes can be outlined as follows.
Firstly, along with the volume of the data its dimension is also
increasing. To tackle this problem good and efficient
algorithms are needed for storing high dimensional data. In
this case, multidimensional network graph concept can be
used or vertex weighted graph for each dimension can be
created and the proposed algorithm can be applied to the graph
produced from the intersection of graphs of each dimension.
But it needs further investigations. Secondly, online partition
problem or semi-online partition problem [28] can be applied
to generate cliques with constrained weight of the vertex
weighted graph. This concept can be used to tackle online or
semi-online Bin Packing Problem but needs further detailed
study. Third, running time of the algorithm can be improved
from O (|V|

2
) to O (|V|log|V|) by using the appropriate data

structure namely red black tree [29] which is under the
investigation of the author and last but not the least, though
this paper contains a study of the bound of maximum number
of bins needed by the proposed algorithm, the proof of the
upper bound involves an extremely detailed case analysis
which can be investigated in future.

ACKNOWLEDGEMENTS

The authors would like to thank University

Of Calcutta,

West Bengal, India, Department of Science & Technology
(DST- under Grant [No. DST/ INSPIRE
Fellowship/2013/943]), New Delhi, for financial support and
the reviewers for their constructive and helpful comments and
specially the Computer without which no work was possible.

REFERENCES

[1] G. Michael R., and D. S. Johnson, “Approximation algorithms for bin
packing problems: A survey,” Analysis and design of algorithms in
combinatorial optimization 266 (1981): 147-172.

[2] G. Michael R., R. L. Graham, and J. D. Ullman, “Worst-case analysis of
memory allocation algorithms,” In Proceedings of the fourth annual
ACM symposium on Theory of computing, pp. 143-150. ACM, 1972.

[3] G. Michael R., and D. S. Johnson, Computers and intractability. Vol. 29.
New York: wh freeman, 2002.

[4] T. F. Gonzalez., ed., Handbook of approximation algorithms and
metaheuristics. CRC Press, 2007.

[5] R. Gupta, S. K. Bose, S. Sundarrajan, M. Chebiyam, and A. Chakrabarti,
“A two stage heuristic algorithm for solving the server consolidation
problem with item-item and bin item incompatibility constraints,” In
Services Computing, 2008. SCC'08. IEEE International Conference on,
vol. 2, pp. 39-46. IEEE, 2008.

[6] D. Bein, W. Bein, and S. Venigella, “Cloud storage and online bin
packing,” In Intelligent Distributed Computing V, pp. 63-68. Springer
Berlin Heidelberg, 2011.

[7] D. Sensarma, and S. S. Sarma, “A Unified Framework for Security and
Storage of Information,” Internationa Journal of Advance Engineering
and Research Development, Vol.2, No.1, 2015.

[8] D. B. West, Introduction to graph theory, Vol. 2. Upper Saddle River:
Prentice hall, 2001.

[9] N. Deo, Graph theory with applications to engineering and computer
science. (1994).

[10] M. C. Golumbic, Algorithmic graph theory and perfect graphs, Vol. 57,
Elsevier, 2004.

[11] A. Shapira, R. Yuster, and U. Zwick., “All-pairs bottleneck paths in
vertex weighted graphs,” In Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, pp. 978-985. Society for
Industrial and Applied Mathematics, 2007.

[12] J. Li, M. Chen, J. Li, and W. Li., “Minimum clique partition problem
with constrained weight for interval graphs,” In Computing and
Combinatorics, pp. 459-468. Springer Berlin Heidelberg, 2006.

[13] S. K. Basu, Design methods and analysis of algorithms, PHI Learning
Pvt. Ltd., 2013.

[14] K. Fleszar, and C. Charalambous, “Average-weight-controlled bin-
oriented heuristics for the one-dimensional bin-packing problem,”
European Journal of Operational Research 210, no. 2 (2011): 176-184.

[15] K. Jansen, and S. Öhring., “Approximation algorithms for time
constrained scheduling,” Information and Computation 132, no. 2
(1997): 85-108.

[16] L. Epstein, and A. Levin, “On bin packing with conflicts,” In
Approximation and Online Algorithms, pp. 160-173. Springer Berlin
Heidelberg, 2006.

[17] B. McCloskey, and A. J. Shankar, “Approaches to bin packing with
clique-graph conflicts,” Computer Science Division, University of
California, 2005.

[18] B. Codenotti, G. D. Marco, M. Leoncini, M. Montangero, and M.
Santini, “Approximation algorithms for a hierarchically structured bin
packing problem,” Information processing letters 89, no. 5 (2004): 215-
221.

[19] C. Bujtás, G. Dósa, C. Imreh, J. Nagy-GYörgy, and Z. Tuza., “The
graph-bin packing problem,” International Journal of Foundations of
Computer Science 22, no. 08 (2011): 1971-1993.

[20] Klein, P. Nathan, “Parallel algorithms for chordal graphs,” Brown
University, Department of Computer Science, 1991.

[21] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,”
Journal of heuristics 2, no. 1 (1996): 5-30.

[22] JV. De Carvalho, “LP models for bin packing and cutting stock
problems,” European Journal of Operational Research. 2002 Sep
1;141(2):253-73.

[23] P. Schwerin, and G. Wäscher, “The bin-packing problem: A problem
generator and some numerical experiments with FFD packing and
MTP,” International Transactions in Operational Research 4, no. 5-6
(1997): 377-389.

[24] G. Wäscher, and T. Gau, “Heuristics for the integer one-dimensional
cutting stock problem: A computational study,” Operations-Research-
Spektrum 18, no. 3 (1996): 131-144.

[25] G. Belov, and G. Scheithauer, “A branch-and-cut-and-price algorithm
for one-dimensional stock cutting and two-dimensional two-stage
cutting,” European journal of operational research 171, no. 1 (2006): 85-
106.

[26] A. Scholl, R. Klein, and C. Jürgens, “Bison: A fast hybrid procedure for
exactly solving the one-dimensional bin packing problem,” Computers
& Operations Research 24, no. 7 (1997): 627-645.

[27] A. C. Alvim, C. C. Ribeiro, F. Glover, and D. J. Aloise, “A hybrid
improvement heuristic for the one-dimensional bin packing problem,”
Journal of Heuristics 10, no. 2 (2004): 205-229.

[28] S. Albers, and H. Matthias, “Semi-online scheduling revisited,”
Theoretical Computer Science 443 (2012): 1-9.

[29] T. H. Cormen, C. E. Leiserson, and R. R. Rivest, Introduction to
Algorithms. MIT Press (1990).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

39 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARISON BETWEEN PROPOSED HEURISTICS A1, A2 AND FOUR EXISTING HEURISTICS WITH 1615 INSTANCES

 (a)

 (b)

(c)

(d)

(e1)

(e2)

(e3)

Bes

t

Avg.

Dev.

Ma

x

Dev

.

Bes

t

Avg.

Dev.

M

a

x

D

e

v

.

Bes

t

Avg.

Dev.

M

a

x

D

e

v

.

B

e

s

t

Avg.

Dev.

Ma

x

Dev

.

Best
Avg.

Dev.

M

a

x

D

e

v

.

Bes

t

Avg.

Dev.

M

ax

D

ev

.

B

e

s

t

Avg

.

Dev

.

M

a

x

D

e

v

.

FFD 6 6.73 24 0 1.04 2 3 0.82 1 5 0.82 1 546 0.39 5 236 1.56 21 0 3.4 4

B2F 41 1.23 4 64 0.68 1 4 0.76 1 4 1.07 2 639 0.13 3 363 0.44 9 7 0.3 1

MBS 40 0.98 3 33 0.84 1 13 0.24 1 1 3.32 10 252 1.47 3 387 0.27 5 0 2.6 3

MBS´ 41 1.24 7 36 0.82 1 13 0.24 1 2 1.39 3 633 0.14 3 381 0.34 6 0 3.3 4

A1 31 1.45 7 33 0.84 1 8 0.53 1 2 1.43 3 624 0.16 3 367 0.40 6 0 3.4 4

A2 23 1.28 4 75 0.63 1 8 0.53 1 5 0.82 1 631 0.15 3 381 0.34 6 4 0.6 1

