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Abstract—One of the fundamental requirements of real time 

operating systems is the determinism of executing critical tasks 

and treating multiple periodic or aperiodic events. The present 

paper presents the hardware support of the nMPRA processor 

(Multi Pipeline Register Architecture) dedicated to treating time 

events, interrupt events and events associated with 

synchronization and inter-task communication mechanisms. 

Because in real time systems the treatment of events is a very 

important aspect, this paper describes both the mechanism 

implemented in hardware for prioritizing and treating multiple 

events, and the experimental results obtained using Virtex-7 

FPGA circuit. The article's element of originality is the very 

short response time required in treating and prioritizing events. 

Keywords—nMPRA; event treating; mutex; inter-task 

communication; hardware scheduler 

I. INTRODUCTION 

Context switching and treating periodic and aperiodic 
events represent key factors in implementing real time 
schedulers, because they enable the operating system to 
allocate immediately higher priority events to the processor. In 
full-preemptive systems, the execution of the current task can 
be interrupted at any time by a task with a higher priority. In 
some implementations used for embedded systems, context 
switching can be completely prohibited in order to avoid 
unpredictable interferences between tasks, but also for 
enhancing the system's predictability. For some real time 
systems (RTS), the preemptive scheduler can be disabled only 
for certain periods of time during the execution of critical 
sections, such as the ISR (Interrupt Service Routines). 

In these days, most commercial operating systems for 
embedded systems do not allow a task to synchronize with 
more events used for resource sharing, time management or 
asynchronous interrupts treatment. 

A parameter with a negative influence on the performance 
on a real-time system is the over-control due to the operating 
system [1]. The scheduling algorithm and task context 
switching operations may significantly influence the 
scheduling limit for those systems with a high frequency of 
task switching. In many practical situations, such as I/O 
scheduling, or communication using shared environments, an 

interrupt is hard, or even impossible, to accept. This is because 
suspending the current task would cause an increase of the 
cache miss effect and negatively influence the pre-fetch 
mechanism, by involving an unpredictable worst-case 
execution time (WCET). 

For identifying the peripheral device that generated the 
interrupt, four types of techniques can be employed [2]. The 
existence of multiple interrupts lines between the CPU and the 
I/O modules is the simplest one. Therefore, even if multiple 
lines are used, each line is likely to have attached more than 
one I/O module, so one of the following three techniques could 
be used for each line. The software pool technique lies in the 
fact that when the CPU detects an interrupt, it performs a 
branch to the ISR that tests each I/O module in order to 
determine which module triggered the event. The major 
disadvantage of this method is that it is inefficient and time 
consuming. Daisy chain, also called vectored interrupt, is a 
more efficient technique implemented in hardware and based 
on the recurrent checking of interrupt signals (hardware pool). 
In case of treating interrupts by using this method, all I/O 
modules partake the same line interrupt request. Bus arbitration 
is another technique for treating interrupts that uses the 
vectored interrupts concept. In this case, a priority scheme 
must be used, so that the process of assigning priorities to 
multiple devices deals with situations in which multiple I/O 
modules aim simultaneously at taking control. 

In order to address questions and problems related to 
current RTS, this paper validates the treatment of multiple 
events by the nMPRA processor [3], thus demonstrating the 
functionality and the real time performances of the integrated 
scheduler and the flexibility of the nMPRA processor. 

This paper is structured as follows: the first section contains 
a brief introduction, and section two describes the nMPRA 
processor architecture; section III addresses the implementation 
in hardware of the mechanism of treating multiple events; the 
experimental results thus obtained will be analyzed and 
discussed in section IV; section V presents related work and 
the paper ends with the final conclusions in section VI. 

II. NMPRA ARCHITECTURE AND HARDWARE SUPPORT 

The nMPRA processor implemented for n threads is based 
on a hardware implemented scheduler as an integral part of the 
processor entitled Hardware Scheduler Engine (nHSE). The 

Sectoral Operational Program for Increase of the Economic 

Competitiveness co-funded from the European Regional Development Fund. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

41 | P a g e  

www.ijacsa.thesai.org 

nMPRA processor based on the five stage pipeline assembly 
line is designed to execute the MIPS instruction set [4], 
implementing new instructions for task scheduling operations. 
The nMPRA concept replaces the stack saving classical 
method with a remapping technique, which uses the replication 
of program counter, register file and pipeline registers for n 
threads, as shown in Figure 1. So, an instance of the CPU will 
be called semi CPU (sCPUi for task i). In order to implement 
the nMPRA project, the authors use nHSE with static 
scheduling algorithms for tasks, interrupts, and events. nHSE is 
directly responsible for the remapping operation of the pipeline 
registers set and of the registers file [5]. 

In order to ensure a rapid context switching, the nMPRA 
architecture is based on multiplying the general purpose 
registers. Thus, each semiprocessor implements 32 registers on 
32 bits representing a bank of registers, and all banks make the 
register file of the nMPRA architecture. The control unit 
generates the control signal for the register file, according to 
the decoded instruction and the active sCPUi, so that, at a 
given time, three simultaneous operations are allowed for the 
same bank of registers, one for writing and two for reading. 
The register bank is switched through the signal generated by 
the nHSE module and each sCPUi has a corresponding register 
bank. The function contexts saving and the parameters 
transmission are performed in a similar way to that in the case 
of classic MIPS processors. The bank selection is performed in 
hardware, the operation being independent of instructions 
executed at the level of each sCPUi [6]. 

The ID/EX pipeline register stores the data signals obtained 
from decoding the instruction and extracting the operands from 
the register file and the control lines needed in the following 
stages. Therefore, in the ID stage from the assembly line, the 
decoding of the instruction read from memory in the IF stage 
and the reading of data from the register file are performed. 
The operands read from the register file will be either stored in 
the next pipeline stage, if the MIPS instruction is type R or I, or 
ignored as in the case of jump instructions [7]. The shift 
registers for memory alignment in a Word-wide memory of 32 
bits is designed in the ID pipeline stage, and, in order to ensure 
the width of the word data, the hardware support for sign 
extended operation is also designed. For accessing the data 
memory during the reading or writing operations, the memory 
controller has been implemented in the MEM pipeline stage. 

The control units dictate the operations of reading and 
writing in the data memory through the M_MemRead and 
M_MemWrite control signals; the control signals are 
transmitted and stored at every clock cycle once with the 
instruction context, throughout all stages of the assembly line. 
In designing these processor architectures, the operations of 
reading and writing data in memory are performed during a 
clock cycle, the on-chip implemented memory being dual-port, 
with multiple access that runs at a superior frequency to that of 
the processor. Because the current implementation places 
special emphasis on the development and validation of the 
nMPRA processor, ensuring the predictable execution of tasks 
in a hard real-time system with mixed-criticality, the memory 
controller and on-chip memory were designed only to meet the 
resource requirements for the validation of the nMPRA project. 

The WB stage performs the writing of the result in the 
register or in the subsequent stage when the hazard detection 
signals the emergence of a hazard situation. Being previously 
memorized in the MEM/WB pipeline register, the multiplexer 
from the WB stage, controlled by the WB_MemtoReg control 
signal provided by the control unit, performs the selection of 
the registers resulting from the ALU unit and of the data read 
from memory. According to the arithmetic or logical operation, 
or the access to memory performed by the instruction executed, 
this stage will provide at output the necessary data. 

 
Fig. 1. Replication of resources of the nMPRA architecture. PC-program 

counter, IF/ID-Instruction Fetch/Instruction Decode, ID/EX-Instruction 

Decode/EXecute, EX/MEM-Execute/MEMory, MEM/WB-MEMory/Write 
Back pipeline register [8] 

In the case of classical processor architectures, the saving 
and restoring of contexts is achieved through operations of 
accessing the external memory; the time needed to perform 
these operations depends directly on the number and the 
dimensions of the saved registers and the width of the data bus 
between the processor and the RAM memory. 

The nMPRA processor uses a Harward memory 
architecture and the access to data and to instructions is 
performed in a separate address space. For the module to 
access the dual-port memory, the interface for both data and 
addresses is on 32 bits, using the big endian or little endian 
format, depending on the value of the Big_Endian parameter, 
set in the MIPS_Parameters.v file. The nMPRA supports 
memory accesses of type word, halfword and byte. The data 
memory bus is synchronous, used to access the RAM on-chip 
memory. It uses a minimum number of control signals and a 
simple protocol, in order to ensure that the data and instruction 
memory is accessed in writing, in a single clock cycle; the 
access to memory is performed on the positive edge of the 
clock signal. 

III. PRIORITIZING AND TREATING EVENTS BY THE NHSE 

SCHEDULER 

The nHSE is a finite state machine which has inputs for 
events, such as interrupts, deadline, watchdog timers, timers, 
mutexes, messages, and self-support execution. This 
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implementation allows a very fast context switching that is 
possible due to the remapping of the active running task 
context with the scheduled task; the jitter is minimized in order 
to provide an accurate predictability behavior. 

The nHSE architecture implements a hardware block with 
the role of arbitrating and announcing the sCPUi that has 
attached the event in question either directly, or through the 
active scheduler (static or dynamic). This block validates the 
command signals for each sCPUi. The events representing 
input signals for the nHSE module are the following: 
interrupts, the timer generated event, the event generated by 
exceeding deadline 1, the event generated by exceeding 
deadline 2, the event generated by the watchdog timer, the 
events generated by mutexes and the synchronization events. 

The dynamic scheduler represents the support for the 
dynamic scheduling that enables the priority switching of a 
task, including that of a sCPUi. This scheduler is deactivated 
on reset only by the sCPU0. The nHSE module contains one 
register with the identifier corresponding to each sCPUi, one 
register with the priority set for the sCPUi used only by the 
dynamic scheduler, and a global register containing the 
identifier for the active sCPU that can be inhibited during the 
execution of atomic instructions. The sCPU0 will aways have 
the highest priority that is priority 0. 

The crEPRi[i] register presented in Table 1, represents the 
priorities attached to each event that can be validated or not at 
the level of each sCPUi. Thus, each sCPUi can have different 
priorities for time events, interrupts, mutexes and 
synchronization events through messages. 

The Pri_TEvi, Pri_WDEvi, Pri_D1Evi, Pri_D2Evi, 
Pri_IntEvi, Pri_MutexEvi and Pri_SynEvi bits groups represent 
the priorities attached to the categories of events validated or 
inhibited in the crTRi control register. Thus, when an event 
occurs, the corresponding bit will be set from the crEVi 
register. 

The fact that interrupts have fixed priorities should be 
emphasized; the grINT_IDi[0] interrupt has the highest priority 
and the grINT_Idi[p-1]interrupt has the lowest; p is the number 
of interrupts from nMPRA. Although the priority of interrupts 
is fixed [9], they can be attached to any sCPUi and, at the level 
of each sCPUi, they can have different priorities given by the 
priorities set in the crEPRi register. The selection of the 
interrupt with the highest priority is performed through a 
hardware module that implements the priority encoder for 
interrupts. 

IV. EXPERIMENTAL RESULTS 

The project has been implemented using the VC707 
Evaluation Kit produced by Xilinx and Vivado 2015.4 design 

environment and the source code has been written in Verilog 
HDL. The implementation is based on the project described in 
[10], a 32-bit MIPS processor which aims for conformance 
with the MIPS32 Release 1 ISA. Figure 2 shows the 
clock_200MHzP and clock_200MHzN clock signals which 
represent the 200MHz differential signal available at the output 
of the SIT9102 oscillator and the clock signal of the nMPRA 
processor (clock) generated through the PLL block obtained 
with IP Clockind Wizard 5.2 (Rev. 1). 

 
Fig. 2. The registers of the nHSE hardware integrated scheduler 

The nMPRA processor architecture, using Virtex7 
development kit, is defined and validated in the present paper, 
without describing the entire SoC project. Particular attention 
was paid to the nHSE real time scheduler, to improving the 
execution predictability by partially or completely eliminating 
hazards from the pipeline and minimizing the jitter for task 
context switching [11][12][13][14]. Compared to the 
theoretical version, in the version used to validate the 
processor, two clock signals were used. One clock cycle was 
used both for the pipeline registers, the register file, the internal 
logic of the scheduler and for treating external asynchronous 
interrupts [15]. The second clock cycle was used for the 
instruction and data memory. 

The waveforms corresponding to the nHSE_EN_sCPUi, 
nHSE_Task_Select[3:0], ID_Instruction[31:0], crEPRi[0] 
[31:0], crTRi[0][31:0], crEVi[0][31:0] and nHSE_inhibit_CC 
signals are also represented. The nHSE module generates the 
activation signals for all sCPUi semiprocessors through the 
nHSE_Task_Select[3:0] selector and the nHSE_EN_sCPUi 
validation signal; it can be inhibited under certain conditions, 
by the logic of the n events. 

TABLE I. ASSIGNING PRIORITIES TO MULTIPLE EVENTS USING THE CREPRI CONTROL REGISTER 

31..21 20..18 17..15 14..12 11..9 8..6 5..3 2..0 

- Pri_MutexEvi Pri_MutexEvi Pri_IntEvi Pri_D2Evi Pri_D1Evi Pri_WDEvi Pri_TEvi 
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Fig. 3. The nHSE scheduler dictates a context switch for sCPU0 to treat the 

the synchronization event through messages 

The grEv_select_sCPU[0:3][2:0] registers store the events 
treated by each sCPUi at any time moment. As can it be seen in 
Figure 3, the moment marked by the cursor C1 indicates the 
occurrence of a synchronization event through messages; the 
event is stored by the crEVi[0] = 0x00000040 register. Even if 
the sCPU1 semiprocessor treats a time event 
(grEv_select_sCPU[1] = 0), the scheduler performs the context 
switching operation because sCPU0 has the highest priority 
and the nHSE_inhibit_CC signal does not prevent the 
switching of the semiprocessors. The value 6 stored in the 
grEv_select_sCPU[0] register indicates the fact that sCPU0 
treats a synchronization event through messages, validated 
through the crTRi[0] register. The crTRi[0] = 0x00000051 

register validates time events, interrupt generated events, and 
events generated by the mechanism of communicating through 
messages. 

As we can see in Figure 3, the contexts switch operation is 
guaranteed in one clock cycle. In a four sCPUi version as the 
one used for obtaining the waveforms in the present article, we 
can observe the ID_Instruction[31:0] pipeline register 
containing, at a certain moment, the code for the instructions 
extracted for each sCPUi. 

Figure 4 represents the situation when there is a time event; 
time moment T1 represents the moment in which context 
switching is performed; the data stored in the pipeline registers 
are saved during the transition from sCPU0 to sCPU1. At time 
moment T2, the first instruction corresponding to sCPU1 
(ID_Instruction[31:0] = 0x20020001) is extracted. This switch 
takes place under the strict command of the nHSE static 
scheduler, through the nHSE_Task_Select[3:0] and 
nHSE_EN_sCPUi nHSE signals, the time needed for switching 
contexts is no more than one clock cycle. 

The crEPRi[0:3][31:0] register stores the priorities of the 7 
events validated through the crTRi[0:3][31:0] registers. Thus, 
at the level of the semiprocessor sCPU0 corresponding to the 
validated events, the following priorities are already set: 
Pri_TEvi=3’b001, Pri_IntEvi=3’b000 and Pri_SynEvi=3’b010. 
A smaller value represents a higher priority, Pri_IntEvi=3’b000 
being the event with the highest priority. The priority level of 
each category of events can be changed dynamically through 
the instructions dedicated to the nHSE scheduler, in relation to 
the requirements of the real time system. 

 

Fig. 4. The treating of an event using the nHSE architecture; clock - nMPRA clock; nHSE_EN_sCPUi - nHSE enable signal; nHSE_Task _Select[3:0] - nHSE 

task selector; nHSE_inhibit_CC – context switch inhibit signal; ID_Instruction[31:0] - wire type instruction; crTRi – enable event register; crEVi – events register; 

grEv_select_sCPU - current event identifier 
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The grINT_PR global register implemented in the nHSE 
scheduler stores the number of the interrupt with the highest 
priority, the selection being performed in hardware. The 
nMPRA architecture guarantees the execution of the new 
scheduled task starting with the next clock cycle, as we can see 
in Figure 4, at the moment T1. 

We remind that all sCPUi share the same functional units, 
such as ALU, the control unit, the condition unit, the unit for 
hazard detection, and the redirection of data unit, so that the 
data path must guarantee the hardware isolation and the 
consistency of sCPUi contexts [16]. At a 33MHz frequency, 
the scheduler answer to an time related event may be around 
30.401ns (one clock cycle). It can be said that the experimental 
results demonstrate the practical implementation of the 
theoretical aspects, therefore obtaining very low times for 
events handling and context switching operations. 

The aim of this test is to verify and validate the custom 
interrupt management scheduling policy implemented in 
nHSE, and emphasize the added performance brought by the 
nMPRA processor in comparison to the theoretical elements 
presented in section III. Because the datapath is shared by all 
sCPUi implemented in the nMPRA processor, their contexts 
must be preserved and made available at any time moment to 
the real-time nHSE scheduler. 

The goal of this implementation is not to describe a 
complete solution of the data path, but to validate the practical 
implementation of the nMPRA architecture and of the nHSE 
scheduler, using a flexible and competitive FPGA development 
platform. To design the nHSE module and to obtain better 
performances brought by the nMPRA, an analysis of events 
handled through software as well as hardware was necessary in 
the case of treating interrupts in a classical computing system. 

V. RELATED WORK 

This chapter presents a brief description of two predictable 
processor architectures which can be compared with the results 
presented in this paper using the nMPRA processor. 

The Merasa concept [17] was developed to obtain a 
processor architecture which can be successfully used in hard 
real-time embedded systems. Concerning the architecture, each 
core can have only one hard real-time (HRT) execution thread 
and an arbitrary number of non-HRT (NHRT) execution 
threads. Each core is made up of two scratchpad memories; one 
of the memories is dedicated for data and the other for 
instructions (D-ISP and DSP); the data integrity is ensured by 
individual allocation of a subnet of banks cache for each task. 
The priorities for execution threads are fixed and the 
scheduling policy chosen is round robin. Taking into 
consideration that the embedded systems have limited 
resources available, the Merasa architecture must offer an 
optimal cost for the implementation of an average number of 
HRT and NHRT execution threads, including their 
synchronization and communication mechanisms. If the HRT 
thread is suspended, pending an external interrupt, time event, 
or sharing a resource with another HRT or NHRT task, its 
dedicated assembly line will remain unused and it will 
negatively influence the performance of the entire system. 

In [18], Andalam proposes a new predictable architecture 
called ARPRET. The ARPRET architecture is implemented 
and synthesized on the Xilinx ML-403 FPGA device, obtaining 
predictability by projecting a particular soft-core coupled with 
a hardware accelerator, called the Predictable Functional Unit. 
Thus, time behavior for models and programs becomes most 
important because, in order to guarantee that a hard real-time 
system behaves according to the model, their characteristics 
must be preserved during compilation. 

VI. CONCLUSION AND FUTURE WORK 

The nMPRA architecture is versatile and very flexible 
because of the following reasons: the prioritization of multiple 
events attached to a sCPUi, the wait instruction which enables 
the implementation in hardware of a logical OR between these 
events, and the implementation in hardware of synchronization 
and inter-task communication mechanisms. However, the 
priorities of tasks, interrupts, and synchronization mechanisms 
can be ordered in any way, in order to meet the requirements of 
the real time application, whose central element can 
successfully be the nMPRA processor. 

Each task is executed based on its own context, without 
depending on other system tasks or scheduler actions. For 
inter-task communication, nMPRA can ensure the 
implementation of queues, enabling data to be safely 
transferred between tasks. The hardware implementation of 
queues is flexible and can be used to obtain a number of 
objectives, including simple data transfers and synchronization 
through mutexes. By sending and receiving data using queues, 
the events specific to the queues implemented in classical CPU 
architectures can be used. 

The performances of the nMPRA architecture can be 
improved by designing a cache memory for optional data and a 
memory protection module for unauthorized access, thus 
satisfying the constraints of the hardware isolation of tasks. 
The following papers should consider both the improvement of 
the memory architecture and the comparison with other similar 
implementations. The negative collateral effect generated by 
obtaining these outstanding performances, essential for mixed 
criticality real-time systems, is the memory consumption for 
multiplying in hardware the multiplexed resources, such as PC, 
register file and pipeline registers. 
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