
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

40 | P a g e

www.ijacsa.thesai.org

An Approach of nMPRA Architecture using

Hardware Implemented Support for Event

Prioritization and Treating

Ionel ZAGAN
1,2

, Nicoleta Cristina GAITAN
1,2

 and Vasile Gheorghita GAITAN
1,2

1
Stefan cel Mare University of Suceava, 720229, Romania

2
Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems

for Fabrication and Control (MANSiD), Stefan cel Mare University, Suceava, Romania

Abstract—One of the fundamental requirements of real time

operating systems is the determinism of executing critical tasks

and treating multiple periodic or aperiodic events. The present

paper presents the hardware support of the nMPRA processor

(Multi Pipeline Register Architecture) dedicated to treating time

events, interrupt events and events associated with

synchronization and inter-task communication mechanisms.

Because in real time systems the treatment of events is a very

important aspect, this paper describes both the mechanism

implemented in hardware for prioritizing and treating multiple

events, and the experimental results obtained using Virtex-7

FPGA circuit. The article's element of originality is the very

short response time required in treating and prioritizing events.

Keywords—nMPRA; event treating; mutex; inter-task

communication; hardware scheduler

I. INTRODUCTION

Context switching and treating periodic and aperiodic
events represent key factors in implementing real time
schedulers, because they enable the operating system to
allocate immediately higher priority events to the processor. In
full-preemptive systems, the execution of the current task can
be interrupted at any time by a task with a higher priority. In
some implementations used for embedded systems, context
switching can be completely prohibited in order to avoid
unpredictable interferences between tasks, but also for
enhancing the system's predictability. For some real time
systems (RTS), the preemptive scheduler can be disabled only
for certain periods of time during the execution of critical
sections, such as the ISR (Interrupt Service Routines).

In these days, most commercial operating systems for
embedded systems do not allow a task to synchronize with
more events used for resource sharing, time management or
asynchronous interrupts treatment.

A parameter with a negative influence on the performance
on a real-time system is the over-control due to the operating
system [1]. The scheduling algorithm and task context
switching operations may significantly influence the
scheduling limit for those systems with a high frequency of
task switching. In many practical situations, such as I/O
scheduling, or communication using shared environments, an

interrupt is hard, or even impossible, to accept. This is because
suspending the current task would cause an increase of the
cache miss effect and negatively influence the pre-fetch
mechanism, by involving an unpredictable worst-case
execution time (WCET).

For identifying the peripheral device that generated the
interrupt, four types of techniques can be employed [2]. The
existence of multiple interrupts lines between the CPU and the
I/O modules is the simplest one. Therefore, even if multiple
lines are used, each line is likely to have attached more than
one I/O module, so one of the following three techniques could
be used for each line. The software pool technique lies in the
fact that when the CPU detects an interrupt, it performs a
branch to the ISR that tests each I/O module in order to
determine which module triggered the event. The major
disadvantage of this method is that it is inefficient and time
consuming. Daisy chain, also called vectored interrupt, is a
more efficient technique implemented in hardware and based
on the recurrent checking of interrupt signals (hardware pool).
In case of treating interrupts by using this method, all I/O
modules partake the same line interrupt request. Bus arbitration
is another technique for treating interrupts that uses the
vectored interrupts concept. In this case, a priority scheme
must be used, so that the process of assigning priorities to
multiple devices deals with situations in which multiple I/O
modules aim simultaneously at taking control.

In order to address questions and problems related to
current RTS, this paper validates the treatment of multiple
events by the nMPRA processor [3], thus demonstrating the
functionality and the real time performances of the integrated
scheduler and the flexibility of the nMPRA processor.

This paper is structured as follows: the first section contains
a brief introduction, and section two describes the nMPRA
processor architecture; section III addresses the implementation
in hardware of the mechanism of treating multiple events; the
experimental results thus obtained will be analyzed and
discussed in section IV; section V presents related work and
the paper ends with the final conclusions in section VI.

II. NMPRA ARCHITECTURE AND HARDWARE SUPPORT

The nMPRA processor implemented for n threads is based
on a hardware implemented scheduler as an integral part of the
processor entitled Hardware Scheduler Engine (nHSE). The

Sectoral Operational Program for Increase of the Economic

Competitiveness co-funded from the European Regional Development Fund.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

41 | P a g e

www.ijacsa.thesai.org

nMPRA processor based on the five stage pipeline assembly
line is designed to execute the MIPS instruction set [4],
implementing new instructions for task scheduling operations.
The nMPRA concept replaces the stack saving classical
method with a remapping technique, which uses the replication
of program counter, register file and pipeline registers for n
threads, as shown in Figure 1. So, an instance of the CPU will
be called semi CPU (sCPUi for task i). In order to implement
the nMPRA project, the authors use nHSE with static
scheduling algorithms for tasks, interrupts, and events. nHSE is
directly responsible for the remapping operation of the pipeline
registers set and of the registers file [5].

In order to ensure a rapid context switching, the nMPRA
architecture is based on multiplying the general purpose
registers. Thus, each semiprocessor implements 32 registers on
32 bits representing a bank of registers, and all banks make the
register file of the nMPRA architecture. The control unit
generates the control signal for the register file, according to
the decoded instruction and the active sCPUi, so that, at a
given time, three simultaneous operations are allowed for the
same bank of registers, one for writing and two for reading.
The register bank is switched through the signal generated by
the nHSE module and each sCPUi has a corresponding register
bank. The function contexts saving and the parameters
transmission are performed in a similar way to that in the case
of classic MIPS processors. The bank selection is performed in
hardware, the operation being independent of instructions
executed at the level of each sCPUi [6].

The ID/EX pipeline register stores the data signals obtained
from decoding the instruction and extracting the operands from
the register file and the control lines needed in the following
stages. Therefore, in the ID stage from the assembly line, the
decoding of the instruction read from memory in the IF stage
and the reading of data from the register file are performed.
The operands read from the register file will be either stored in
the next pipeline stage, if the MIPS instruction is type R or I, or
ignored as in the case of jump instructions [7]. The shift
registers for memory alignment in a Word-wide memory of 32
bits is designed in the ID pipeline stage, and, in order to ensure
the width of the word data, the hardware support for sign
extended operation is also designed. For accessing the data
memory during the reading or writing operations, the memory
controller has been implemented in the MEM pipeline stage.

The control units dictate the operations of reading and
writing in the data memory through the M_MemRead and
M_MemWrite control signals; the control signals are
transmitted and stored at every clock cycle once with the
instruction context, throughout all stages of the assembly line.
In designing these processor architectures, the operations of
reading and writing data in memory are performed during a
clock cycle, the on-chip implemented memory being dual-port,
with multiple access that runs at a superior frequency to that of
the processor. Because the current implementation places
special emphasis on the development and validation of the
nMPRA processor, ensuring the predictable execution of tasks
in a hard real-time system with mixed-criticality, the memory
controller and on-chip memory were designed only to meet the
resource requirements for the validation of the nMPRA project.

The WB stage performs the writing of the result in the
register or in the subsequent stage when the hazard detection
signals the emergence of a hazard situation. Being previously
memorized in the MEM/WB pipeline register, the multiplexer
from the WB stage, controlled by the WB_MemtoReg control
signal provided by the control unit, performs the selection of
the registers resulting from the ALU unit and of the data read
from memory. According to the arithmetic or logical operation,
or the access to memory performed by the instruction executed,
this stage will provide at output the necessary data.

Fig. 1. Replication of resources of the nMPRA architecture. PC-program

counter, IF/ID-Instruction Fetch/Instruction Decode, ID/EX-Instruction

Decode/EXecute, EX/MEM-Execute/MEMory, MEM/WB-MEMory/Write
Back pipeline register [8]

In the case of classical processor architectures, the saving
and restoring of contexts is achieved through operations of
accessing the external memory; the time needed to perform
these operations depends directly on the number and the
dimensions of the saved registers and the width of the data bus
between the processor and the RAM memory.

The nMPRA processor uses a Harward memory
architecture and the access to data and to instructions is
performed in a separate address space. For the module to
access the dual-port memory, the interface for both data and
addresses is on 32 bits, using the big endian or little endian
format, depending on the value of the Big_Endian parameter,
set in the MIPS_Parameters.v file. The nMPRA supports
memory accesses of type word, halfword and byte. The data
memory bus is synchronous, used to access the RAM on-chip
memory. It uses a minimum number of control signals and a
simple protocol, in order to ensure that the data and instruction
memory is accessed in writing, in a single clock cycle; the
access to memory is performed on the positive edge of the
clock signal.

III. PRIORITIZING AND TREATING EVENTS BY THE NHSE

SCHEDULER

The nHSE is a finite state machine which has inputs for
events, such as interrupts, deadline, watchdog timers, timers,
mutexes, messages, and self-support execution. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

42 | P a g e

www.ijacsa.thesai.org

implementation allows a very fast context switching that is
possible due to the remapping of the active running task
context with the scheduled task; the jitter is minimized in order
to provide an accurate predictability behavior.

The nHSE architecture implements a hardware block with
the role of arbitrating and announcing the sCPUi that has
attached the event in question either directly, or through the
active scheduler (static or dynamic). This block validates the
command signals for each sCPUi. The events representing
input signals for the nHSE module are the following:
interrupts, the timer generated event, the event generated by
exceeding deadline 1, the event generated by exceeding
deadline 2, the event generated by the watchdog timer, the
events generated by mutexes and the synchronization events.

The dynamic scheduler represents the support for the
dynamic scheduling that enables the priority switching of a
task, including that of a sCPUi. This scheduler is deactivated
on reset only by the sCPU0. The nHSE module contains one
register with the identifier corresponding to each sCPUi, one
register with the priority set for the sCPUi used only by the
dynamic scheduler, and a global register containing the
identifier for the active sCPU that can be inhibited during the
execution of atomic instructions. The sCPU0 will aways have
the highest priority that is priority 0.

The crEPRi[i] register presented in Table 1, represents the
priorities attached to each event that can be validated or not at
the level of each sCPUi. Thus, each sCPUi can have different
priorities for time events, interrupts, mutexes and
synchronization events through messages.

The Pri_TEvi, Pri_WDEvi, Pri_D1Evi, Pri_D2Evi,
Pri_IntEvi, Pri_MutexEvi and Pri_SynEvi bits groups represent
the priorities attached to the categories of events validated or
inhibited in the crTRi control register. Thus, when an event
occurs, the corresponding bit will be set from the crEVi
register.

The fact that interrupts have fixed priorities should be
emphasized; the grINT_IDi[0] interrupt has the highest priority
and the grINT_Idi[p-1]interrupt has the lowest; p is the number
of interrupts from nMPRA. Although the priority of interrupts
is fixed [9], they can be attached to any sCPUi and, at the level
of each sCPUi, they can have different priorities given by the
priorities set in the crEPRi register. The selection of the
interrupt with the highest priority is performed through a
hardware module that implements the priority encoder for
interrupts.

IV. EXPERIMENTAL RESULTS

The project has been implemented using the VC707
Evaluation Kit produced by Xilinx and Vivado 2015.4 design

environment and the source code has been written in Verilog
HDL. The implementation is based on the project described in
[10], a 32-bit MIPS processor which aims for conformance
with the MIPS32 Release 1 ISA. Figure 2 shows the
clock_200MHzP and clock_200MHzN clock signals which
represent the 200MHz differential signal available at the output
of the SIT9102 oscillator and the clock signal of the nMPRA
processor (clock) generated through the PLL block obtained
with IP Clockind Wizard 5.2 (Rev. 1).

Fig. 2. The registers of the nHSE hardware integrated scheduler

The nMPRA processor architecture, using Virtex7
development kit, is defined and validated in the present paper,
without describing the entire SoC project. Particular attention
was paid to the nHSE real time scheduler, to improving the
execution predictability by partially or completely eliminating
hazards from the pipeline and minimizing the jitter for task
context switching [11][12][13][14]. Compared to the
theoretical version, in the version used to validate the
processor, two clock signals were used. One clock cycle was
used both for the pipeline registers, the register file, the internal
logic of the scheduler and for treating external asynchronous
interrupts [15]. The second clock cycle was used for the
instruction and data memory.

The waveforms corresponding to the nHSE_EN_sCPUi,
nHSE_Task_Select[3:0], ID_Instruction[31:0], crEPRi[0]
[31:0], crTRi[0][31:0], crEVi[0][31:0] and nHSE_inhibit_CC
signals are also represented. The nHSE module generates the
activation signals for all sCPUi semiprocessors through the
nHSE_Task_Select[3:0] selector and the nHSE_EN_sCPUi
validation signal; it can be inhibited under certain conditions,
by the logic of the n events.

TABLE I. ASSIGNING PRIORITIES TO MULTIPLE EVENTS USING THE CREPRI CONTROL REGISTER

31..21 20..18 17..15 14..12 11..9 8..6 5..3 2..0

- Pri_MutexEvi Pri_MutexEvi Pri_IntEvi Pri_D2Evi Pri_D1Evi Pri_WDEvi Pri_TEvi

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

43 | P a g e

www.ijacsa.thesai.org

Fig. 3. The nHSE scheduler dictates a context switch for sCPU0 to treat the

the synchronization event through messages

The grEv_select_sCPU[0:3][2:0] registers store the events
treated by each sCPUi at any time moment. As can it be seen in
Figure 3, the moment marked by the cursor C1 indicates the
occurrence of a synchronization event through messages; the
event is stored by the crEVi[0] = 0x00000040 register. Even if
the sCPU1 semiprocessor treats a time event
(grEv_select_sCPU[1] = 0), the scheduler performs the context
switching operation because sCPU0 has the highest priority
and the nHSE_inhibit_CC signal does not prevent the
switching of the semiprocessors. The value 6 stored in the
grEv_select_sCPU[0] register indicates the fact that sCPU0
treats a synchronization event through messages, validated
through the crTRi[0] register. The crTRi[0] = 0x00000051

register validates time events, interrupt generated events, and
events generated by the mechanism of communicating through
messages.

As we can see in Figure 3, the contexts switch operation is
guaranteed in one clock cycle. In a four sCPUi version as the
one used for obtaining the waveforms in the present article, we
can observe the ID_Instruction[31:0] pipeline register
containing, at a certain moment, the code for the instructions
extracted for each sCPUi.

Figure 4 represents the situation when there is a time event;
time moment T1 represents the moment in which context
switching is performed; the data stored in the pipeline registers
are saved during the transition from sCPU0 to sCPU1. At time
moment T2, the first instruction corresponding to sCPU1
(ID_Instruction[31:0] = 0x20020001) is extracted. This switch
takes place under the strict command of the nHSE static
scheduler, through the nHSE_Task_Select[3:0] and
nHSE_EN_sCPUi nHSE signals, the time needed for switching
contexts is no more than one clock cycle.

The crEPRi[0:3][31:0] register stores the priorities of the 7
events validated through the crTRi[0:3][31:0] registers. Thus,
at the level of the semiprocessor sCPU0 corresponding to the
validated events, the following priorities are already set:
Pri_TEvi=3’b001, Pri_IntEvi=3’b000 and Pri_SynEvi=3’b010.
A smaller value represents a higher priority, Pri_IntEvi=3’b000
being the event with the highest priority. The priority level of
each category of events can be changed dynamically through
the instructions dedicated to the nHSE scheduler, in relation to
the requirements of the real time system.

Fig. 4. The treating of an event using the nHSE architecture; clock - nMPRA clock; nHSE_EN_sCPUi - nHSE enable signal; nHSE_Task _Select[3:0] - nHSE

task selector; nHSE_inhibit_CC – context switch inhibit signal; ID_Instruction[31:0] - wire type instruction; crTRi – enable event register; crEVi – events register;

grEv_select_sCPU - current event identifier

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

44 | P a g e

www.ijacsa.thesai.org

The grINT_PR global register implemented in the nHSE
scheduler stores the number of the interrupt with the highest
priority, the selection being performed in hardware. The
nMPRA architecture guarantees the execution of the new
scheduled task starting with the next clock cycle, as we can see
in Figure 4, at the moment T1.

We remind that all sCPUi share the same functional units,
such as ALU, the control unit, the condition unit, the unit for
hazard detection, and the redirection of data unit, so that the
data path must guarantee the hardware isolation and the
consistency of sCPUi contexts [16]. At a 33MHz frequency,
the scheduler answer to an time related event may be around
30.401ns (one clock cycle). It can be said that the experimental
results demonstrate the practical implementation of the
theoretical aspects, therefore obtaining very low times for
events handling and context switching operations.

The aim of this test is to verify and validate the custom
interrupt management scheduling policy implemented in
nHSE, and emphasize the added performance brought by the
nMPRA processor in comparison to the theoretical elements
presented in section III. Because the datapath is shared by all
sCPUi implemented in the nMPRA processor, their contexts
must be preserved and made available at any time moment to
the real-time nHSE scheduler.

The goal of this implementation is not to describe a
complete solution of the data path, but to validate the practical
implementation of the nMPRA architecture and of the nHSE
scheduler, using a flexible and competitive FPGA development
platform. To design the nHSE module and to obtain better
performances brought by the nMPRA, an analysis of events
handled through software as well as hardware was necessary in
the case of treating interrupts in a classical computing system.

V. RELATED WORK

This chapter presents a brief description of two predictable
processor architectures which can be compared with the results
presented in this paper using the nMPRA processor.

The Merasa concept [17] was developed to obtain a
processor architecture which can be successfully used in hard
real-time embedded systems. Concerning the architecture, each
core can have only one hard real-time (HRT) execution thread
and an arbitrary number of non-HRT (NHRT) execution
threads. Each core is made up of two scratchpad memories; one
of the memories is dedicated for data and the other for
instructions (D-ISP and DSP); the data integrity is ensured by
individual allocation of a subnet of banks cache for each task.
The priorities for execution threads are fixed and the
scheduling policy chosen is round robin. Taking into
consideration that the embedded systems have limited
resources available, the Merasa architecture must offer an
optimal cost for the implementation of an average number of
HRT and NHRT execution threads, including their
synchronization and communication mechanisms. If the HRT
thread is suspended, pending an external interrupt, time event,
or sharing a resource with another HRT or NHRT task, its
dedicated assembly line will remain unused and it will
negatively influence the performance of the entire system.

In [18], Andalam proposes a new predictable architecture
called ARPRET. The ARPRET architecture is implemented
and synthesized on the Xilinx ML-403 FPGA device, obtaining
predictability by projecting a particular soft-core coupled with
a hardware accelerator, called the Predictable Functional Unit.
Thus, time behavior for models and programs becomes most
important because, in order to guarantee that a hard real-time
system behaves according to the model, their characteristics
must be preserved during compilation.

VI. CONCLUSION AND FUTURE WORK

The nMPRA architecture is versatile and very flexible
because of the following reasons: the prioritization of multiple
events attached to a sCPUi, the wait instruction which enables
the implementation in hardware of a logical OR between these
events, and the implementation in hardware of synchronization
and inter-task communication mechanisms. However, the
priorities of tasks, interrupts, and synchronization mechanisms
can be ordered in any way, in order to meet the requirements of
the real time application, whose central element can
successfully be the nMPRA processor.

Each task is executed based on its own context, without
depending on other system tasks or scheduler actions. For
inter-task communication, nMPRA can ensure the
implementation of queues, enabling data to be safely
transferred between tasks. The hardware implementation of
queues is flexible and can be used to obtain a number of
objectives, including simple data transfers and synchronization
through mutexes. By sending and receiving data using queues,
the events specific to the queues implemented in classical CPU
architectures can be used.

The performances of the nMPRA architecture can be
improved by designing a cache memory for optional data and a
memory protection module for unauthorized access, thus
satisfying the constraints of the hardware isolation of tasks.
The following papers should consider both the improvement of
the memory architecture and the comparison with other similar
implementations. The negative collateral effect generated by
obtaining these outstanding performances, essential for mixed
criticality real-time systems, is the memory consumption for
multiplying in hardware the multiplexed resources, such as PC,
register file and pipeline registers.

ACKNOWLEDGMENT

This work was partially supported from the project
“Integrated Center for research, development and innovation in
Advanced Materials, Nanotechnologies, and Distributed
Systems for fabrication and control”, Contract No.
671/09.04.2015, Sectoral Operational Program for Increase of
the Economic Competitiveness co-funded from the European
Regional Development Fund.

This paper has been prepared with the financial support of
the project BG58/2016: “Development and integration of a
mobile tele-electrocardiograph within the monitoring and
diagnosis system of patients GreenCARDIO”, acronym: m-
GreenCARDIO, PNCDI III, P2 - increasing competitiveness
through RDI Romanian economy, Transfer of knowledge to
the economic agent. Contract no. PN-III-P2-2.1-BG-2016-
0463.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

45 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] G. C. Buttazzo, ”Hard Real-Time Computing Systems - Predictable
Scheduling Algorithms and Applications,” Third edition, pp. 13–30,
Springer, 2011. ISBN: 978-1-4614-0675-4

[2] W. Stallings, “Computer Organization and Architecture,” 10th Edition,
pp. 263–272, 2015. ISBN: 978-0134101613

[3] V. G. Gaitan, N. C. Gaitan, and I. Ungurean, “CPU Architecture Based
on a Hardware Scheduler and Independent Pipeline Registers,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 9, pp. 1661–1674, Sept. 2015. doi:10.1109/TVLSI.2014.2346542

[4] D. A. Patterson and J. L. Hennessy, “Computer Organization and
Design, Revised Fourth Edition: The Hardware-Software Interface,”
Fourth Edition, pp. 330–379, 2011. ISBN: 978-0-12-374750-1

[5] I. Zagan, “Improving the performance of CPU architectures by reducing
the Operating System overhead,” in 3rd IEEE Workshop on Advances in
Information, Electronic and Electrical Engineering AIEEE’2015, Riga,
Latvia, pp. 1–6, 13–14 Nov. 2015. doi: 10.1109/AIEEE.2015.7367279

[6] E. Dodiu and V. G. Gaitan, “Custom designed CPU architecture based
on a hardware scheduler and independent pipeline registers – concept
and theory of operation,“ in IEEE EIT International Conference on
Electro-Information Technology, Indianapolis, USA, pp. 1–5, May
2012. doi:10.1109/EIT.2012.6220705

[7] “MIPS® Architecture For Programmers Volume I-A: Introduction to the
MIPS32® Architecture,” Revision 3.02, Mar. 2011, Available:
https://courses.engr.illinois.edu/cs426/Resources/MIPS32INT-AFP-
03.02.pdf. (Accessed: May 2016).

[8] I. Zagan and V. G. Gaitan, “Predictable CPU Architecture Designed for
Small Real-Time Applications – Implementation Results,” in: 3rd
International Conference on Advances in Computing, Electronics and
Communication (ACEC), 10 - 11 October 2015 / Zurich, Switzerland,
pp. 143-150, ISBN: 978-1-63248-064-4. doi:10.15224/ 978-1-63248-
064-4-29.

[9] S. Kelinman and J. Eykholt, “Interrupts as threads,” ACM SIGOPS
Operating Syst. Rev., vol. 29, no. 2, pp. 21–26, Apr. 1995.
doi:10.1145/202213.202217

[10] I. Zagan and V. G. Gaitan, “Improving the Performances of the nMPRA
Processor using a Custom Interrupt Management Scheduling Policy,” in

Advances in Electrical and Computer Engineering (AECE), ISSN 1582-
7445, Volume 16, Issue 4, pp. 45-50, 2016.
doi:10.4316/AECE.2016.04007

[11] E. E Moisuc, A. B. Larionescu, and V. G. Gaitan, “Hardware Event
Treating in nMPRA,” in 12rt International Conference on Development
and Application Systems – DAS, Suceava, Romania, pp. 66-69, 15–17
May, 2014. doi:10.1109/DAAS.2014.6842429

[12] E. Dodiu, V. G.Gaitan, and A. Graur, “Custom designed CPU
architecture based on a hardware scheduler and independent pipeline
registers – architecture description”, in IEEE 35’th Jubilee International
Convention on Information and Communication Technology,
Electronics and Microelectronics, Croatia, pp. 859-864, 24 May 2012.
INSPEC Accession Number: 12865464

[13] L. Andries and V. G. Gaitan, “Dual Priority Scheduling algorithm used
in the nMPRA Microcontrollers,” in 18th International Conference on
System Theory, Control and Computing (ICSTCC), Sinaia, Romania,
pp. 43-47, 2014. doi:10.1109/ICSTCC.2014.6982388

[14] L. Andries, V. G. Gaitan and E. E. Moisuc, “Programming paradigm of
a microcontroller with hardware scheduler engine and independent
pipeline registers - a software approach,” in 19th International
Conference on System Theory, Control and Computing (ICSTCC),
Cheile Gradistei, Romania, pp. 705-710, 2015. doi:
10.1109/ICSTCC.2015.7321376

[15] I. Zagan and V. G. Gaitan, “Schedulability Analysis of nMPRA
Processor based on Multithreaded Execution,” in 13rt International
Conference on Development and Application Systems – DAS, Suceava,
Romania, pp. 130-134, May 19–21, 2016.
doi:10.1109/DAAS.2016.7492561

[16] N. C. Gaitan, I. Zagan, and V. G. Gaitan, “Predictable CPU Architecture
Designed for Small Real-Time Application - Concept and Theory of
Operation,” International Journal of Advanced Computer Science and
Applications, vol. 6, no. 4, 2015. doi: 10.14569/IJACSA.2015.060406

[17] T. Ungerer et al., Merasa: Multicore execution of hard real-time
applications supporting analyzability, IEEE, Micro, vol. 30, no. 5, pp.
66–75, 2010. doi: 10.1109/MM.2010.78

[18] S. Andalam, Predictable platforms for safety-critical embedded systems,
Thesis, The University of Auckland, 2013.

