
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

186 | P a g e

www.ijacsa.thesai.org

An Empirical Investigation of the Correlation

between Package-Level Cohesion and Maintenance

Effort

Waleed Albattah

Department of Information Technology

Qassim University

Qassim, Saudi Arabia

Abstract—The quality of the software design has a

considerable impact on software maintainability. Improving

software quality can reduce costs and efforts of software

maintenance. Cohesion, as one of software quality

characteristics, can be used as an early indicator for predicting

software maintenance efforts. This paper improves Martin’s

cohesion metric, which is one of the well-known and well-

accepted cohesion metrics. The strong correlation found between

package cohesion, using our proposed metric, and maintenance

efforts shows the improvement made on measuring cohesion, and

how it would be for predicting maintenance efforts. The

experimental study included data from four open source Java

software systems. The results show that the package cohesion is

good and low maintenance is required.

Keywords—package; cohesion; metric; maintenance effort;

maintainability; software; measurements

I. INTRODUCTION

Software maintainability refers to the ease of maintaining
software products in order to prevent or correct defects and
their causes, and to respond to new requirements and
environmental changes [1]. The quality of the software design
has a considerable impact on software maintainability [2].
Predicting software maintainability during the software design
phase can reduce much of the maintenance costs and efforts,
and improve software maintenance. While a number of
research studies performed were based on measures taken after
the coding phase, the cohesion metric we developed has an
advantage of measuring cohesion in an earlier phase, the
design phase. Another advantage of this metric is that it has
been developed based on well-known and well-accepted
package cohesion principles [3]. Further, if there is a
relationship between our metric and software maintainability,
then we will potentially establish a relationship between these
principles and software maintainability.

This paper investigates the relationship between package
cohesion, using the proposed metric CH, and software
maintenance efforts. For this purpose, the package cohesion
metric has been developed, based on a solid theory of the
package design principles [3]. A number of experiments and
statistical analyses have been designed and performed to
investigate this relationship.

Looking carefully to the existing studies, some studies were
conducted using a cohesion metric on the class level. Others
were not validated or only validated theoretically without any
empirical validation of the relationship with software
maintenance. Some studies [4] used a subjective expert’s
surveys. Some related experimental studies [5-10] were
performed to investigate some aspects of software
maintenance, such as defect density or fault-proneness, but
they don’t consider other types of maintenance, such as
adaptive maintenance. Some studies [11][12] did not rely on
the reported maintenance history of the studied software
systems. The drawback in such studies is that the maintenance
data collected for the experimental studies does not represent
the actual maintenance data. Some studies, such as [13][14],
have relatively a small sample size of the experimental study,
which makes the results hard to be generalized.

In contrast, we found that our study is unique in several
different ways. It proposes a cohesion metric on a package
level based on the well-known package cohesion principles,
both theoretically and experimentally validated, uses actual
maintenance data history of software, uses objective data
instead of subjective ones, and considers all types of
maintenance activities. To the best of our knowledge, there is
no study that has investigated the relationship between package
level cohesion and software maintainability, which makes this
research original and vital in this matter.

The rest of this paper is organized as follows: The related
studies are briefly introduced in Section II. Section III presents
an overview of the studied package cohesion metrics. Section
IV details the empirical study. Section V investigates and
discusses the correlation between package cohesion and
maintenance effort. Finally, Section VI concludes the paper
with future works.

II. RELATED WORK

Many researchers and practitioners proposed software
metrics in relation to software maintainability and its
characteristics. While some of them were theoretically
validated, only a few were empirically validated. Several
research studies were conducted to investigate the relationship
between class-level cohesion and software maintainability. One
of the early investigation studies was by Li and Henry [13] to
investigate the validity of object-oriented metrics in predicting

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

187 | P a g e

www.ijacsa.thesai.org

software maintenance efforts. The study tested if there is a
strong relationship between object-oriented software metrics
and maintenance efforts. LCOM, a cohesion metric developed
by Chidamber and Kemerer [15], was among ten software
metrics that were investigated. The results of the statistical
analysis performed on two software systems showed that there
is a strong relationship between the studied software metrics
and maintenance efforts. Briand et al. [16] proposed cohesion
and coupling measures based on object-oriented design
principles to evaluate software maintainability. However, this
approach was not validated. Briand et al. [17] defined a ratio-
scale metric for cohesion to predict the error-proneness in the
software design. The results of the experiments proved that
software metrics can predict software error-proneness.
Dagpinar and Jahnke [14] provided empirical evidence that
software metrics can effectively be used to predict software
maintainability. However, they found that Bieman and Kang’s
Loose Class Cohesion (LCC) [18], metric was not a significant
predictor for class maintainability. Basili et al. [19] were
concerned about fault detection and the fault prone-ness part of
maintenance. They showed by their experiments’ results that
the Chidamber and Kemerer’s metrics [15] are, individually,
good indicators for faulty modules. This was supported by
Gyimothy et al. [122] where a validation of the ability of the
LCOM metric as a good indicator of software fault-proneness
was indicated. The study was conducted on open source
software, Mozilla. Koru et al. [20] showed that there is a
correlation between the number of bugs and size. Al Dallal
[119] empirically investigated the relationship between a
number of internal class quality attributes (size, cohesion, and
coupling) and class maintainability. Prediction models, based
on statistical techniques, were constructed and validated to
estimate the class maintainability. The results showed that
internal attributes (size, cohesion, and coupling) have an
impact on class maintainability. The higher the cohesion is, the
higher the class maintainability is.

III. PACKAGE COHESION METRICS

A. The proposed metric (CH)

In our previous work [22], which is motivated by Martin’s
package cohesion principles [3], we proposed two different
cohesion metrics to measure two different cohesion concepts or
types based on Martin’s package cohesion principles in [3].
The first cohesion type, Common Reuse (CR), includes the
factors that help in assessing CR cohesion. Similarly, the
second cohesion type, Common Closure (CC), includes the
factors that help in assessing CC cohesion. After each type of
cohesion is measured by itself, the two values of CR and CC
may be combined to one unified value of package cohesion,
while still recognizing the two types.

The CR metric measures cohesion based only on the
common reuse factors of the package. The elements of a
package have different degrees of reachability. Reachability of
a class in a package is the number of classes in the same
package that can be reached directly or indirectly. The CR
metric is defined as follows:

“Let c  C, and suppose there is an incoming relation to c
from a class in a different package. Then c is called an in-
interface class. The cardinality of the intersection of the hub

sets of all the in-interface classes in C divided by the number of
classes in C is the CR of P ”.

CR= | In-interface class hub sets| / |C| (1)

where

Hubness(c) = {d  C: if there is a path c d}

C: set of classes in package P

c and d: classes in C

The CC metric considers the package dependencies on
other packages as well as the internal dependencies between
classes of the package. The classes of the package should
depend on the same set of packages and, thus, they will have
the same reasons for a change. The CC metric is defined as
follows:

“The cardinality of the intersection of the reachable sets
divided by the cardinality of the union of the sets represents the
CC of P ”.

CC= (| Reachable Package sets | / | Reachable Package sets |) (2)

The combined cohesion CH is defined as follows:

CH =
2 -D

2

D= (1-CR)2 +(1-CC)2

B. Martin’s metric (H)

Martin proposed a rational cohesion metric for the
package,

H=(R+1)/N (5)

Where R: number of relationships between classes in the
package

N: number of classes in the package

Although Martin’s cohesion principles [3] are well known
and well accepted, H metric doesn’t conform to them. H
measures the ratio of the relationships between classes of the
package. This simple concept doesn’t measure the common
reuse or the common closure of the package, but rather, in its
best situation, it may measure the classes’ extent of being
connected. The H metric depends on the number of relations
rather than how these relations are designed. In this case, a
well-designed package and a badly designed package could
have the same cohesion value. In our previous work [22],
further discussions are presented.

IV. DESCRIPTIVE STATISTICS

This empirical study is based on four open-source Java
software systems used to investigate the relation of package
cohesion measure to software maintainability. This section
provides descriptions about the studied software systems and
the maintenance data collection. Two package cohesion
metrics are included in this study: Martin’s cohesion metric (H)
and the proposed package cohesion metric (CH), which is
developed based on Martin’s package cohesion principles [3].

(3)

(4)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

188 | P a g e

www.ijacsa.thesai.org

A. The software systems

Four open-source Java software systems were involved in
the empirical study. All the four systems were selected based
on the following criteria to allow results’ generality; they had:
(1) to be implemented using the Java programming language,
(2) to have maintenance repositories available, namely Apache
Subversion (SVN), (3) to have sufficient number of versions
for each system that have been maintained, (4) to be organized
using packages, (5) to have different sizes ranging from very
large to small systems in terms of number of packages and
number of classes, (6) to be from different domains, and (7) to
have positive reviews and to be mature. We expect these
criteria will allow the generalization of the results obtained
from the study. The first system, Camel [23], is a rule-based
and mediation engine to configure routing and mediation rules.
The second system, Tomcat [24], is an open source webserver
developed to implement Javaservlet and Java Server pages
(JSP). Apache Tomcat is developed by the Apache Software
Foundation. It has been developed and released under Apache
License version 2. The third system, JHotDraw [25], is a Java
GUI framework for technical and structured graphics. The
fourth system, JEdit [26], is an open source Java text editor for
programmers. It is licensed by GPL General Public License
version 2.0. Table I provides details of the maintenance
history; and Table II provides details about the studied systems.

TABLE I. MAINTENANCE HISTORY

Base Release End Release History Studied

Camel 2.0.0 2.2.0 Aug/24/09 – Feb/6/10

Tomcat 7.0.6 7.0.22 Jan/14/11 – Oct/1/11

JHotDraw 7.5 7.6 July/29/10 – Jan/9/11

JEdit 4.5.0 5.1.0 Jan/31/12 – July/28/13

TABLE II. THE STUDIED SYSTEMS

#LOC #Methods #Classes #Packages

#Revised-

Packages

Camel 143732 17369 5111 264 179

Tomcat 170461 15372 1725 113 62

JHotDraw 77194 7122 1026 65 65

JEdit 111861 7386 1238 35 23

B. Maintenance data

The source of the maintenance data for this study is the
Version Control System (VCS), subversion (SVN), which is
publicly available. The public can view the history of
maintenance activities that have been made on the software
system using SVN client. Each log entry in the repository log
has a revision number, date and time, and short message that
explains the maintenance activity. We considered all types of
maintenance activities: perfective, adaptive, corrective, and
preventive. We don’t differentiate between different
maintenance activities.

For this empirical study, as suggested by Al Dallal [21], we
considered two package maintenance measures: the number of
revisions (#Revisions) in which the package has been involved,
and the number of revised lines of code (RLOC) during the
studied maintenance history. The number of revised lines of

code RLOC is calculated as suggested by Li and Henry [13],
where a line added or deleted is considered one revised line,
and a line modified is considered two revised lines, one
deletion and one addition. We consider these two measures for
two reasons. First, the number of revisions refers to the
maintenance rate, while the number of RLOC is found to be
correlated with maintenance cost [27][21] and maintenance
effort measured in unit of time [28][21]. Packages with lower
maintenance rates are better than those with higher rates
because the code with more revisions becomes less organized,
less understandable, and more fault-prone [29][21]. Second,
these two measures are measurable using the freely available
software maintenance history [21].

To collect maintenance data, we used the free software tool,
TortoiseSVN [30], which is a subversion client developed to
access the subversion (SVN) repositories. For each software
system, the log of the SVN repository includes the following
revision information: revision number, revision description, all
the packages and classes affected by the revision, the previous
and the current class versions, and the number of lines added,
deleted, or modified. We had to create a list of all the packages
and the classes within the package to relate each revision’s
information to the appropriate package. Then, revisions and
revised lines of code were collected on package level. We
considered different versions for each system, and collected the
maintenance data reported during the entire maintenance
period. Table III summarizes maintenance data for each
system.

TABLE III. MAINTENANCE DATA

 #Revisions Mean #Revisions #RLOC Mean #RLOC

Camel 1614 6.11 60688 229.87

Tomcat 636 5.63 22027 194.93

JHotDraw 354 5.45 21857 336.26

JEdit 323 9.23 9981 285.17

Two computer science PhD students were dedicated to
collecting the maintenance data. The data was collected
manually from the maintenance repositories. We have
randomly checked the validity of the data collected. This
process increased our confidence about the validity of the data
collected.

For the purpose of a system’s list of classes and list of
packages, we have used the JHawk tool [31]. Then, each
revision reported in the maintenance history was specified to
the associated class along with the number of revised lines of
code RLOC. Finally, maintenance data was collected on the
package level.

C. Package cohesion data

Package cohesion data was gathered from two package
cohesion metrics. The first metric is our proposed package
cohesion metric, CH. The second metric is Martin’s cohesion
metric, H. These two metrics have been used to investigate the
correlation between package cohesion and maintainability. For
the purpose of data gathering, we have developed our Java tool
to measure the CH package cohesion metric. The tool has been
extended to calculate Martin’s package cohesion metric, H. For
each system, a list of all the packages, the number of classes in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

189 | P a g e

www.ijacsa.thesai.org

each package, and the associated cohesion values were
generated.

V. EXPLORING THE CORRELATION BETWEEN COHESION AND

MAINTENANCE EFFORT

The correlation analysis aims to determine whether each
individual package cohesion metric (CH and H) is significantly
related to the maintenance measures (#Revisions and RLOC)
of the package. For this purpose, we have performed
Spearman’s rank correlation due to the non-parametric nature
of the metrics’ data. We have used the well-known SPSS
software for the correlation analysis of the empirical study. We
have created and analyzed a correlation matrix for each
software system in the study. Each correlation matrix has all
the studied variables (cohesion and maintenance), a correlation
coefficient (r), and significance level. For each pair of
variables, r value can range between -1 and +1, where 1
represents a perfect positive correlation between the pair
variables; -1 denotes a perfect negative correlation; and 0
indicates that there is no relationship between the variables.
The magnitude of the coefficient determines the degree of the
correlation.

Besides the strength of the correlation, the relationship
between any pair of variables should be assessed for its
significance as well. The significance is assessed by the p-
value, which corresponds to the probability that the found
correlation might be due to purely random effects. The smaller
the p-level, the more significant is the relationship between
variables [32]. The significance of the correlation in this
empirical study was tested at a 95% confidence level (i.e., p-
level 0.05). While the correlation can establish the
relationship, it cannot establish a cause-effect relationship
between the pair variables [32].

A. Hypotheses

Our objective is to assess to what extent is the package
cohesion metric related to the maintenance effort of the
software packages. The hypotheses of the empirical study are:

H01: There is no significant correlation between package
cohesion, CH, and the number of Revisions, #Revisions.

H02: There is no significant correlation between package
cohesion, CH, and the number of revised lines of code, RLOC.

H03: There is no significant correlation between Martin’s
package cohesion, H, and the number of Revisions,
#Revisions.

H04: There is no significant correlation between Martin’s
package cohesion, H, and the number of revised lines of code,
RLOC.

In this experiment, rejecting the null hypothesis indicates
that there is a statistically significant relationship between the
pair of variables (significance level).

B. Statistical Analysis

The number of software revisions (#Revisions) and the
number of revised lines of code (RLOC) on the package during
the maintenance history assess software package
maintainability. A lower number of package revisions and a
smaller number of revised lines of code during the package
maintenance history indicates less effort needed to maintain the
software and thus, indicate high maintainability.

Table IV provides descriptive statistics (mean and standard
deviation) for the variables used in analyzing software
maintainability across the four systems, Camel, Tomcat,
JHotDraw, and JEdit. We included Martin’s package cohesion
metric (H) in the list of variables for the purpose of
comparison.

TABLE IV. MEANS AND STANDARD DEVIATIONS OF THE VARIABLES USED IN THE MAINTAINABILITY ANALYSIS

C. Results and Discussion

A Spearman Rho correlation is the appropriate measure of
a bivariate relationship when normality and linearity conditions
for the Pearson’s product moment correlation do not hold. For
this study, the Spearman Rho correlation provides a measure of
association between the proposed measure of package cohesion

CH, the Martin’s package cohesion metric H, package size
(#Classes), and the two measures of package maintainability,
the number of package revisions (#Revisions) and the number
of revised lines of code (RLOC), within each of the four data
sets. Table V provides the list of these correlations for the four
sets of data.

Variable

Camel Tomcat JHotDraw JEdit

N=264 N=113 N=65 N=35

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

H .636 .361 .817 .524 .705 .502 1.059 1.075

CH .530 .388 .358 .374 .288 .317 .374 .417

#Classes 13.700 29.637 16.17 23.063 16.31 18.332 35.37 47.888

#Revisions 6.114 14.91 5.575 12.238 5.45 3.192 9.23 17.066

RLOC 229.879 732.318 194.69 511.186 336.26 401.748 285.17 573.679

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

190 | P a g e

www.ijacsa.thesai.org

TABLE V. SPEARMAN'S RHO CORRELATIONS FOR MAINTAINABILITY ANALYSIS

Data Set H CH #Classes #Revisions

Camel

N=264

CH .281**

#Classes -.350** -.655**

#Revisions -.101 -.562** .720**

RLOC -.129* -.533** .702** .962**

 CH .169

Tomcat #Classes -.069 -.736**

N=113 #Revisions -.010 -.545** .686**

 RLOC -.007 -,521** .663** .792**

JHotDraw

N=65

CH .157

#Classes -.041 -.706**

#Revisions -.07 -.594** .674**

RLOC .098 -.631** .769** .792**

JEdit

N=35

CH .468**

#Classes -.205 -.709**

#Revisions -.024 -.650** .754**

RLOC -.008 -.623** .711** .983**

** Correlation is significant at the .001 level

 * Correlation is significant at the .05 level

Table V reveals that the new proposed measure of package
cohesion, CH, consistently has a negative large correlation
with the two measures of package maintainability, number of
package revisions (#Revisions) and the number of revised lines
of code (RLOC), across all the four data sets. The correlation
values between package cohesion CH and number of revisions
(#Revisions) across the four data sets range from -0.545 (for
the Tomcat system data set) to -0.650 (for the JEdit system
data set). Similarly, the correlation values between package
cohesion CH and the number of revised lines of code (RLOC)
across the four data sets ranges from -0.521 (For the Tomcat
system data set) to -0.631 (for the JHotDraw system data set).
The statistically significant correlations confirm that the
expectation of a highly cohesive software package requires less
effort to maintain. That is high values of the proposed measure
of package cohesion are associated with a lower number of its
revisions and a lower number of revised lines of code.

In this study, the correlations between Martin’s package
cohesion metric H and the two package maintainability
measures, number of package revisions (#Revisions), and the
number of revised lines of code (RLOC) are not as strong as
the ones with the newly proposed measure of package cohesion
CH. These correlations are consistently weak and statistically
insignificant across all the four data sets, except for the
correlation with the revised lines of code (RLOC) for the
Camel system’s data. The value of the correlation is -.129,
which relatively small yet statistically significant at an .05
level. The significance of the weak correlation might be
justified by the large sample size of the Camel system data set.
The correlation values between Martin’s package cohesion H
and number of revisions (#Revisions) across the four data sets
range from -0.010 (for the Tomcat system data set) to -0.101
(for the Camel system data set). Similarly, correlation values
between Martin’s package cohesion H and the number of
revised lines of code (RLOC) across the four data sets ranges

from -0.007 (for the Tomcat system data set) to -0.129 (for the
Camel system data set).

Table VI summarizes the results of the examined null
hypotheses. In this experiment, rejecting the null hypothesis
indicates that there is a statistically significant relationship
between the pair of variables (significance level).

TABLE VI. THE RESULTS OF THE NULL HYPOTHESES

Camel Tomcat JHotDraw JEdit

H01 Rejected Rejected Rejected Rejected

H02 Rejected Rejected Rejected Rejected

H03 Accepted Accepted Accepted Accepted

H04 Rejected Accepted Accepted Accepted

VI. CONCLUSION

This study investigated the relationship between the
software internal attribute, package cohesion, and the software
external attribute, package maintainability. We found that
package cohesion, using our proposed metric (CH), is highly
correlated with package maintainability, measured by number
of revisions (#Revisions) and number of revised lines of code
(RLOC). As high cohesion, the package is the easiest to be
maintained. Such relationship is explained by the Spearman’s
ranking correlations involving data sets of four Java open-
source software systems. This high correlation will lead us in
future to perform regression analyses to predict package
maintainability using package cohesion. Predicting software
maintainability during the software design phase can reduce
much of maintenance costs and efforts.

One strength of this study is the number of the studied
systems and the stability of the correlation of CH across all
experiments performed that allows us to draw optimistic
conclusions about the possibility of using it as an indicator.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

191 | P a g e

www.ijacsa.thesai.org

The experiments support the relationship between package
cohesion and software maintainability, although it may behave
differently based on a system’s domain. So the results in this
study should be viewed as indicative rather than conclusive.

The study only involved systems developed in Java, and the
results could be different with systems developed in other
object-oriented languages (such as C++).

REFERENCES
[1] IEEE, IEEE standard glossary of software engineering terminology,

IEEE Std 610.12-1990, Institute of Electrical and Electronics
Engineering, 1990.

[2] Madhwaraj, K. G., and Chitra Babu. "An Empirical Investigation of the
Influence of Object Oriented Design Quality Metrics on the Package
Maintainability of Open Source Software." (2011).

[3] Martin, Robert Cecil. Agile software development: principles, patterns,
and practices. Prentice Hall PTR, 2003.

[4] Muthanna, S.; Kontogiannis, K.; Ponnambalam, K. and Stacey, B., “A
maintainability model for industrial software systems using design level
metrics,” In Proceedings of 7th Working Conference on Reverse
Engineering, pages 248-256, 2000.

[5] Marcus, Andrian, Denys Poshyvanyk, and Rudolf Ferenc. "Using the
conceptual cohesion of classes for fault prediction in object-oriented
systems." IEEE Transactions on Software Engineering, 34.2 (2008):
287-300.

[6] [Al Dallal, Jehad. "Fault prediction and the discriminative powers of
connectivity-based object-oriented class cohesion metrics." Information
and Software Technology 54.4 (2012): 396-416.

[7] Al Dallal, Jehad, and Lionel C. Briand. "An object-oriented high-level
design-based class cohesion metric." Information and software
technology 52.12 (2010): 1346-1361.

[8] Briand, Lionel C., et al. "Predicting fault-prone classes with design
measures in object-oriented systems." The Ninth International
Symposium on Software Reliability Engineering Proceedings, 1998.
IEEE, 1998.

[9] Gyimothy, Tibor, Rudolf Ferenc, and Istvan Siket. "Empirical validation
of object-oriented metrics on open source software for fault prediction."
IEEE Transactions on Software Engineering, 31.10 (2005): 897-910.

[10] Olague, Hector M., et al. "Empirical validation of three software metrics
suites to predict fault-proneness of object-oriented classes developed
using highly iterative or agile software development processes." IEEE
Transactions on Software Engineering, 33.6 (2007): 402-419.

[11] Kabaili, Hind, Rudolf K. Keller, and Francois Lustman. "Cohesion as
changeability indicator in object-oriented systems." Fifth European
Conference on Software Maintenance and Reengineering, 2001. IEEE,
2001.

[12] Ajrnal Chaumun, M., et al. "A change impact model for changeability
assessment in object-oriented software systems." Proceedings of the
Third European Conference on Software Maintenance and
Reengineering, 1999. IEEE, 1999.

[13] Li, Wei, and Sallie Henry. "Object-oriented metrics that predict
maintainability." Journal of systems and software, 23.2 (1993): 111-122.

[14] M. Dagpinar and J. Jahnke, “Predicting Maintainability with OO Metrics
– An Empirical Comparison”, 10th Working Conference on Reverse
Engineering Proc (WCRE’03), 13-17 Nov, 2003, pp 155-164, 2003.

[15] Chidamber, Shyam R., and Chris F. Kemerer. Towards a metrics suite
for object oriented design. Vol. 26. No. 11. ACM, 1991.

[16] Briand, Lionel C., Sandro Morasca, and Victor R. Basili. "Measuring
and assessing maintainability at the end of high level design."
Conference on Software Maintenance Proceedings, 1993. CSM-93,
IEEE, 1993.

[17] Briand, Lionel, Sandro Morasca, and Victor R. Basili. "Defining and
validating high-level design metrics." (1994).

[18] Bieman, James M., and Byung-Kyoo Kang. "Cohesion and reuse in an
object-oriented system." ACM SIGSOFT Software Engineering Notes.
Vol. 20. No. SI. ACM, 1995.

[19] Basili, Victor R., Lionel C. Briand, and Walcelio L. Melo. "A validation
of object-oriented design metrics as quality indicators." IEEE
Transactions on Software Engineering, 22.10 (1996): 751-761.

[20] Koru, A. Gunes, Dongsong Zhang, and Hongfang Liu. "Modeling the
effect of size on defect proneness for open-source software."
Proceedings of the Third International Workshop on Predictor Models
in Software Engineering. IEEE Computer Society, 2007.

[21] Al Dallal, Jehad. "Object-oriented class maintainability prediction using
internal quality attributes." Information and Software Technology 55.11
(2013): 2028-2048.

[22] W. Albattah and A. Melton, “Package cohesion classification”, in: 5th
IEEE International Conference on Software Engineering and Service
Science (ICSESS), 2014, IEEE, 2014, (pp. 1–8).

[23] http://camel.apache.org (accessed March 2014)

[24] http://tomcat.apache.org (accessed March 2014)

[25] http://www.jhotdraw.org (accessed March 2014)

[26] http://www.jedit.org (accessed March 2014)

[27] Granja-Alvarez, Juan Carlos, and Manuel José Barranco-García. "A
method for estimating maintenance cost in a software project: a case
study." Journal of Software Maintenance 9.3 (1997): 161-175.

[28] Hayes, Jane Huffman, Sandip C. Patel, and Liming Zhao. "A metrics-
based software maintenance effort model." 15th European Conference
on Software Maintenance and Reengineering. IEEE Computer Society,
2004.

[29] K. Erdil, E. Finn, K. Keating, J. Meattle, S. Park, D. Yoon, Software
maintenance as part of the software life cycle, Comp180: Software
Engineering Project, Department of Computer Science, Tufits
University, 2003.

[30] http://tortoisesvn.net (Accessed March 2014)

[31] http://www.virtualmachinery.com/jhawkprod.htm (accessed Dec 2013)

[32] Gupta, Varun, and Jitender Kumar Chhabra. "Package level cohesion
measurement in object-oriented software." Journal of the Brazilian
Computer Society 18.3 (2012): 251-266.

http://camel.apache.org/
http://tomcat.apache.org/
http://www.jhotdraw.org/
http://www.jedit.org/
http://tortoisesvn.net/
http://www.virtualmachinery.com/jhawkprod.htm

