
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

207 | P a g e

www.ijacsa.thesai.org

On the Dynamic Maintenance of Data Replicas based

on Access Patterns in A Multi-Cloud Environment

Mohammad Shorfuzzaman

Department of Computer Science

College of Computers and Information Technology

Taif University, Taif, KSA

Abstract—Cloud computing provides services and

infrastructures to enable end-users to access, modify and share

massive geographically distributed data. There are increasing

interests in developing data-intensive (big data) applications in

this computing environment that need to access huge datasets.

Accessing such data in an efficient way is deterred with factors

such as dynamic changes in resource availability, provision of

diverse service quality by different cloud providers. Data

replication has already been proven to be an effective technique

to overcome these challenges. Replication offers reduced

response time in data access, higher data availability and

improved system load balancing. Once the replicas are created in

a multi-cloud environment, it is of utmost importance to

continuously support maintenance of these replicas dynamically.

This is to ensure that replicas are located in optimal data center

locations to minimize replication cost and to meet specific user

and system requirements. First, this paper proposes a novel

approach to distributed placement of static replicas in

appropriate data center locations. Secondly, motivated by the

fact that a multi-cloud environment is highly dynamic, the paper

presents a dynamic replica maintenance technique that re-

allocates replicas to new data center locations upon significant

performance degradation. The evaluation results demonstrate

the effectiveness of the presented dynamic maintenance

technique with static placement decisions in a multi-cloud

environment.

 Keywords—Multi-cloud environment; data replication;

distributed algorithm; response time; dynamic maintenance; QoS

constraint

I. INTRODUCTION

Cloud computing is appearing as an emerging technology
that provides scalable computing system and offers endless
opportunities for the computing community. It provides large-
scale computing and storage resources comprising data centers
[1], [2]. In a cloud computing scenario, computing and storage
resources can be delivered as a service irrespective of the
location and time as other necessary utilities in life [3]. In
general, there are three categories of cloud computing
architecture for the delivery of services, namely, Software as a
Service (SAAS), Platforms as a Service (PAAS) and
Infrastructure as a service (IAAS) are common [1]. In a SaaS
architecture, a cloud service provider hosts and manages
software applications intended for the end-users instead of
letting them using locally-run applications. The IaaS
architecture offers hardware and software resources for data
storage and processing as well as networks and other
necessary infrastructure for deployment of operating systems

and applications. In a PaaS architecture, users are furnished
with necessary tools and programming languages and the
service provide hosts an application delivery platform to
continuously support development and delivery of end-user
applications [4].

Due to the use of scalable data centers in cloud computing,
end users are relieved of the burden associated with
application provisioning and management. Popular cloud
services providers such as Amazon S3 [5], Google [6], App
iCloud

1
 , Microsoft Azure

2
, and DropBox

3
 are serving

thousands of millions users through a huge number of servers
distributed over many datacenters around the world. Hence,
cloud computing infrastructures are being used for effective
processing of large data sets without the huge upfront
investments required to purchase traditional data centers.
Accordingly, there are increasing interests in developing data-
intensive (big data) applications in this computing
environment that need to access huge datasets. For instance,
Facebook, Twitter, and big data analytics applications, such as
the Human Genome Project [7], are using cloud computing
infrastructures for processing and analyzing their petabyte-
scale data sets, using a computing framework such as
MapReduce and Hadoop

4
.

Data availability and accessing data efficiently is an
important demand for these data intensive applications [8].
Furthermore, cloud infrastructure has heterogeneous resources
and the resources have diverse performances. Also, there may
be demands of different service quality requirements from
different users. Besides, overall system performance is also a
critical factor. To effectively address these challenges, the
need for data replication is apparent. In data replication, data
are replicated at different replicas to provide data access to the
users in a nearby location. Replication techniques increase
data availability and reduce cost of data access and response
time [9], [3], [10]. It also distributes the workload to the
replica servers by routing user requests to different sites.
Replication techniques decrease congestion-related
performance degradation probability by distributing the load
of network to network of multiple paths. To obtain maximum
gain from replication, strategic placement of the file replicas is
critical [9], [11], [12].

1 https://www.icloud.com/
2 https://azure.microsoft.com/
3 https://www.dropbox.com/
4 http://www.slideshare.net/kevinweil/hadoop-at-twitter- hadoop-summit-201

http://en.wikipedia.org/wiki/Data
https://www.icloud.com/
https://azure.microsoft.com/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

208 | P a g e

www.ijacsa.thesai.org

Data replication technique is widely used in the cloud
computing system to provide high data availability [13], [14],
[15], [16]. While research has been done on replica placement,
little has focused on the dynamic maintenance of the replicas
over the time. Moreover, until now, replication in multi-cloud
environments is not considered in the existing research.
Therefore, determining data center locations of replicas in a
multi-cloud environment mimicking general network topology
is an open problem.

This paper first presents a new distributed algorithm that
determines static locations for placing replicas in multi-cloud
environments representing a general network topology to
improve data availability and satisfy user demands for time
critical data. The algorithm also maximizes the degree of
satisfied users while minimizing aggregated response time
upon data access. The proposed distributed replica placement
algorithm provides benefits with respect to reliability and
scalability issues. A multi-cloud environment is highly
dynamic where user requests and network latency fluctuate
persistently. Data centers that hold replicas currently may not
be the best locations to obtain replicas later. Hence, an
algorithm is proposed for the dynamic maintenance of replicas
based on the user data access patterns and the cumulative
aggregated response time. Overall, the paper makes the
following contributions:

 Unlike existing data replication strategies in cloud
computing system, the proposed replication algorithm
is targeted for multi-cloud environments.

 A novel algorithm is presented for distributed replica
placement in multi-cloud environments mimicking
general graph topology.

 A dynamic maintenance algorithm is presented to
relocate replicas in optimal locations to sustain overall
response time to a minimal.

The rest of this paper is organized as follows. Section II
presents some selected existing approaches from the literature.
Section III describes the clustering approach to static replica
placement. The proposed dynamic replica maintenance
technique is presented in Section IV. Performance evaluation
is described in Section V. Section VI concludes the paper and
suggests directions for future work.

II. RELATED WORK

There is a handful of data replication strategies found in
the cloud computing environments. One of the earliest work
proposed by Ghemawat et al. [6] where a static distributed
data replication algorithm in clouds (Google File System –
GFS) places data chunks based on a number of factors such
as: 1) to choose replica locations in the chunk servers with
below-average disk space utilization; 2) to set a maximum
count on the replicas that are created recently on each chunk
server; 3) to scatter replicas of a particular chunk across racks.
The creation of data chunk replicas is triggered when the
number of replicas drops below a specific level. The data in
DataNode is protected against failure through replication
technique. For instance, in Hadoop Distributed File System
(HDFS) [14], to safeguard against failure a data block is

replicated twice in different racks containing two DataNodes.
The authors in [17] propose a dynamic data replication
algorithm which is distributed in nature and targeted for cloud
environment. The algorithm works a cloud system based on
HDFS technology and decides to place replicas considering
the current workload on the nodes and conforming to a lower
bound on the number of total replicas that are created. Wang
et al. [18] present a prediction based centralized cloud data
replication technique that considers weighting factor for
replication decision.

The authors in [19] made a number of contributions for
cloud data replication as such: 1) came up with a model to link
system availability and the number of replicas; 2) identify data
items for replication based on popularity; 3) computed an
appropriate number of replicas and locations based on an
effective system byte rate. An adaptive technique [20] for
cloud data replication is proposed which works based on file
prediction. The technique takes availability and efficient
access into account while predicting files in data centers.
Besides replication, Gai and Daio [15] investigate replica
consistency issue in cloud computing system. The authors
adopt a lazy update scheme to split data access and update that
can improve throughput and cut down response time. In
addition, the authors in [21] work on a data management
technique focusing on reliability issues. The technique works
by checking the replicas proactively in an attempt to decrease
the replica count which will reduce the storage usage in turn.
A data storage mechanism [22] is proposed to enhance data
availability and privacy which works by combining multiple
clouds and a set of protocols such as Byzantine quorum
system protocols, cryptographic secret sharing, and erasure
coding. The evaluation results demonstrate that the proposed
system brings forth a cost effective way to improve data
availability and privacy for critical applications. In a relatively
recent effort done by X. Wu [23], a cost effective data set
replica placement strategy is proposed for cloud environments.
The technique starts with designing a cost model for data
management which includes storage cost and transfer cost.
Then a replica placement technique is presented that decides
the location of replicas using based on a location graph
problem. The technique uses access frequency and average
response time to decide which data set should be created.
Experimental results demonstrate the benefit of the technique
in term of lower management cost with fewer replicas.

Even though a quite a bit of work has been done to deal
with replication issues in cloud computing environments, less
attention was paid to address the issue of QoS requirement.
The authors in [24] present two data replication algorithms
that address the issue of QoS requirements in cloud systems.
First, replication is done based on meeting high QoS
requirement on a first come first service basis. Nevertheless,
the performance of this algorithm is not satisfactory in
reducing the replication cost and the number of unsatisfied
requests. Hence, the second algorithm converts the replication
problem into a minimum-cost maximum-flow (MCMF)
problem which can generate an optimal solution to the
problem in polynomial time. This problem has also been
studied widely in data grid systems [25], [26], [27].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

209 | P a g e

www.ijacsa.thesai.org

Even though the issue of dynamic maintenance of replicas
in cloud environments is not well studied in the literature,
some researchers addressed this issue. Liao et al. [28] propose
a dynamic replica deletion strategy for distributed storage
systems under cloud computing environments. The strategy
aims at reducing storage that is occupied by the replicas and
their maintenance cost. The authors come up with a
mathematical model to illustrate the relationship between QoS
requirement for the requested data and the number of replicas
that need to be created. Performance results suggest that the
proposed technique can save disk space and reduce
maintenance cost while satisfying the QoS requirements. The
authors in [29] present a file replication and consistency
maintenance technique in Hadoop cluster. As claimed by the
authors, Hadoop’s strategy to maintain three replicas of each
file leads to poor storage utilization and hence they propose
integrated data replication and consistency maintenance (IRM)
technique. They only create replicas for popular files and this
method has already been proven to be an effective technique
in the literature. The implementation includes the use of
MapReduce programming model and HDFS in the clusters of
commodity computers. The experimental results show that the
technique can reduce data access time and increase data
locality at the same time. A relatively earlier effort was done
by Chun et al. [30] that deal with efficient replica maintenance
in distributed storage systems. The proposed strategy works
by aggregating disk spaces of many nodes over the Internet.
The novelty of the strategy comes from the viewpoint of fault-
tolerance in case of network and disk failure.

III. CLUSTERING APPROACH TO STATIC REPLICA

PLACEMENT

This section will first describe the static replica placement
(SRP) problem in a multi-cloud scenario that minimizes the
number of replicas created and aims at meeting the user QoS
requirements. The proposed solution starts with a system
model that shows the targeted multi-cloud architecture where
each cloud provider contains different number of data centers
for storing replicas. Then, a static replica placement approach
is presented based on clustering data mining technique.

A. System Model

Figure 1 shows a high level architecture of a multi-cloud
setup comprising of a number of cloud providers
interconnected multi-cloud proxies. User communication with
the data centers in the cloud providers are facilitated through
the multi-cloud proxies. Before describing the proposed
clustering approach to static replica placement in this multi-
cloud environment, a logical structure of the multi-cloud
system model is presented as shown in Figure 2. The multi-
cloud system which is considered here consists of
{ } different data centers and
{ } distributed end-users that share both resources
and data in a multi-cloud system. This is modeled using an
undirected graph G = (DC, E). Here, DC is the set of data
centers, and E ⊆ DC x DC is the set of links among the data
centers. It is assumed that there is an upper bound bandwidth
constraint () on each link capacity. Also, each
data center is characterized by the following 4-
tuple:

Fig. 1. A multi-cloud architecture comprising a number of cloud providers

Fig. 2. A logical structure of a multi-cloud system model consisting of data

centers and users

 〈 〉

where is the data center id, S is the storage capacity of
the data center, is a workload capacity constraint, C is the
storage cost to store a replica and is a communication
cost over link (u, v) E. It is assumed that for a same data file
different data centers may have different storage costs. A data
center containing a replica can be considered as a replica
server.

The workload capacity constraint is defined as an upper
bound on the user requests' number that is processed by the
replica server during a specified time period. The replication
strategy has to ensure that the user requests are satisfied while
limiting the workload of each replica server to its capacity.
Associated with different replica servers the workload
constraint can be different. A replica server is overloaded if
the total workload of the replica server becomes greater than
the server's capacity constraint. In addition, as shown in
Figure 2, end users are connected to the data centers. Note that
each replica server (data center) provides services to multiple
users and a user is always associated with a specific
server in the multi-cloud structure. The number on
the link denotes the cost of communication. It is considered
that the logical graph is connected. Therefore, a replica server
is able to communicate with any other server in the multi-
cloud via some path.

A user sends his/her requests to its associated
server for retrieving data specifying QoS requirements. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

210 | P a g e

www.ijacsa.thesai.org

QoS is defined as an upper bound on the cost retrieval.
Note that QoS requirements may be different for different
users. The requirement specifies that all the requests by will
be handled by some servers by a communication delay .
The requirement is satisfied when a request is handled by the
closest replica server which satisfies . The requirement
is violated otherwise.

Now, the QoS-aware static replica placement problem in
hand is precisely defined. Let DC´ represent a set of data
centers that contain the replica of a requested file. Let min(di)

be the minimum communication time for the data center i to
retrieve a requested file from all the probable retrieval paths
from i to the set of replicas DC´. In case a data center holds
the target replica, the value of min(di) becomes 0. To this end,

our goal is to calculate a replica set of minimum size, DC´ ⊆
DC such that the retrieval of the requested file at each data
center in DC meets the QoS requirement, i.e., min(di) <
 for each i in DC. Here, the communication cost
between the users to the local data centers is not counted since
the cost does not change the decision of replication.

B. Data Model

A central database (Central DB), located at the origin
server (represented as DC0 in the graph) stores all the data
required by the cloud applications. To reduce the response
time, each data center maintains a local database, called
datacenter database (Datacenter DB). The goal is to replicate
the most frequently used data items from the central database.
For maintaining consistency of data, the origin server sends
updates to each replica server. It is assumed that updates
must first be performed on the authoritative copy stored at
the origin server, where they are then propagated to the
replica servers. That is, updates only come from the origin
server and the replica servers act as repositories for data
retrieval. Popularity of a file is calculated using access rate
and it is assumed that popularity persists into the near future.

In order to retrieving data a user sends his/her
requests to its associated data center specifying some QoS
requirements. The request is processed locally if the data
center contains the requested data. Otherwise, the request is
forwarded to the nearest data center that contains the replica of
the requested data. Thus, associated with every user
will be a non-negative weight representing the
traffic (data access counts which represent the data popularity)
originating from that node over a certain period of time. These
data access counts will contribute to the response time for
servicing the data requests from the users.

When data is accessed, the information about requesting
data center is stored. Additionally, the statistics showing the
number of accesses and updates are obtained for each data
item. The access rate or popularity is calculated in terms of the
number of accesses over a period of time. The popularity of a
data item varies over time in relation to the types of stored
data. Generally, a newly created data has the highest
popularity. Then, the access rate decreases over time. For
example, a newly posted YouTube video is watched by most
of the visitors. However, over the time its popularity and the
number of visitors start to decrease.

C. Clustering Approach to Replica Placement

Let each data center in the multi-cloud be i which by now
is acquainted with its directly adjacent data center. In addition,
this data center i also knows about the communication delay to
reach any neighboring data center k in the multi-cloud

structure through the i → k path. Furthermore, a data center

always maintains information about these direct adjacent data
centers that store replicas of the requested data and the in-
degree of each of them. The in-degree of a data center having
replicas determine the percentage of other data centers that are
connected to users and their requests are satisfied by this
particular data center.

Each data center, i, connected to a user knows its QoS
requirement (i.e., q (Ui)) to retrieve a data item. The data
center incessantly checks its own status and the status of its
neighboring data centers whether a replica of the requested
data item exists in its own storage or at the storage of any of
its neighboring data centers that can be communicated through

a delay ≤ q (Ui). In course of time, if data center i or any of its

neighboring data centers reachable within the stipulated delay
becomes devoid of replica, any of the following two will
occur. First, data center i will become a cluster core and it will
copy the requested replica in its own storage if all its
neighboring data centers are away with a delay > q (Ui).
Alternatively, data center I will select a core for the new
cluster from any of the neighboring data centers that can be
reached within q (Ui) delay and it has a highest in-degree. This
core data center will now store replica to be accessed by other
data centers that are connected to the users. This strategy tries
to increase the count of data centers that can read this latest
copy of replica.

IV. DYNAMIC MAINTENANCE OF STATIC REPLICA

PLACEMENT

Clustering approach to replica placement ensures that
replicas are created in near-optimal locations based on the user
requirements for the current session. However, the data
centers currently holding the replicas may not be the best
locations for replicas to be there in future due to the changes
in user requests and network conditions. Hence, dynamic
maintenance of replicas which means relocation of replicas in
optimal locations is necessary to sustain overall response
time to a minimal. At the same time, the goal is to maximize
the percentage of users whose QoS requirements are met.

A. Problem Formulation

The dynamic replica maintenance problem is now
formulated in a multi-cloud environment. Formally, the
problem of replica maintenance problem is expressed as an
optimization problem as follows:

 &
 The problem is to choose M replica locations among N

potential data centers (N > M) by minimizing the overall
response time and maximizing the rate of satisfied user QoS
requirements considering a given traffic pattern (i.e., access
frequencies' recurring pattern of users for different data items).
More specifically, the goal is to identify a set of new data
center locations with the minimal response time where

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

211 | P a g e

www.ijacsa.thesai.org

services for each user request can be provided by a data center
within its quality requirement.

Now, the replica maintenance problem in hand is
generalized. It is assumed that in cloud applications, updates
to the data are infrequent and that the consistency can be more
relaxed than in, for example, high-performance commercial
databases. Given this, the proposed approach achieves greater
scalability while making modest compromises in terms of
update propagation and replica synchronization. In particular,
the updates are delivered from the origin server (data center)
to all other data centers having replicas via application-level
multicast, in which each server (data center) receives the
updates from its parent and is responsible for further
distributing the updates to its children. Without loss of
generality, it is assumed that this origin server constitutes the
root of the tree that is going to be embedded. Given the
embedded tree over the general multi-cloud, the replica
maintenance problem can be modeled as a dynamic
programming problem and its solution can be obtained in a
distributed fashion. To solve the problem in hand using a
dynamic programming approach, it is needed to solve
different parts of the problem (also called sub-problems), then
combine the solutions of the sub-problems to attain an overall
solution. This approach tries to solve each sub-problem only
once, thus reducing the number of computations. Hence, the
new dynamic programming problem is a generalization of the
replica maintenance problem we intend to solve, and thus the
solution to this new problem also solves the original replica
maintenance problem.

Fig. 3. An embedded tree with possible sub-trees representing the sub-

problems

Let T = (V, E) be the embedded tree over the general
multi-cloud rooted at the origin server. T can be viewed as a
combination of a number of sub-trees such as Tv, Tw, and so
on where each sub-tree is connected to the origin server with a
list of edges of length d. Now, the replica maintenance
problem in T can be solved, by first solving an extended
problem in a slightly different tree built from each sub-tree
such as Tv and an additional edge list connected to it as shown
in Figure 3. The edge-list is of length d and one side of it is
connected to the root of Tv and the other side to the origin data
center. At any data center from v to the root, there is a replica
server data center containing the copy of the data file which
can be accessed by the sub-tree Tv. Now, the total response
time for sub-tree Tv can be calculated by considering the
replica server at any distance towards the root. This response
time considers the data access cost from the edge-list. Thus,
this became a generalization of the original replica

maintenance problem: when the edge-list length is zero and Tv
= T, the replica maintenance problem is reduced to the original
one.

 Now, we formally formulate our goal for finding an
updated set of replicas that has minimal response time so that
QoS requirement of each user v is satisfied by R∪{r}, i.e.,

 ∪{ }

where, d(v, s) denotes the distance between v and s.

B. Dynamic Replica Maintenance Strategy

In dynamic replica maintenance strategy (DRMS), a
shortest path tree is built at the onset. As noted previously, the
updates are forwarded from the origin server data center to all
the replica server data centers using application-level
multicast. It is assumed that this origin server constitutes the
root of the tree that is going to be embedded. To do this, the
all-pairs shortest paths are calculated and a shortest path tree is
built which has root, the origin server (see Figure 4).

Fig. 4. An embedded all pairs shortest path tree in the multi-cloud system

Given the embedded tree over the multi-cloud model each
data center node can determine the cost for generating a local
replica and the cost of data transfer from a replica server data
center anywhere towards the root. Then a parent data center
node assesses the cost of creating a local replica versus the
cost of data transfer using the results provided by its children.
This process continues until it reaches the root data center of
the embedded tree. Then, based on the assessed data, actual
replica placement starts at the root data center and finishes at
the leaves.

Let represents the replica maintenance cost
contributed by the sub-tree with the root data center when
the replica is placed at a distance of d towards the origin data
center. The value of can vary from 0 (when the replica is in
 itself) to the distance to the origin server. When rd is equal
to 0 the replica maintenance cost considers read cost of all the
descendants of data center node , the storage cost, and the
update cost for the replica at node v. On the contrary, when rd
is greater than 0 (i.e., the replica is placed to any of the
ancestors of node v except the root data center), RMC (v, rd)
denotes the cost of replica maintenance for the sub-tree rooted
at data center v that contains all its descendants' read cost.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

212 | P a g e

www.ijacsa.thesai.org

In Figure 4, it is considered that the number of updates
originated by the origin data center is 3 for a specific time
period and the storage cost for the data file in the replica
server is 10. As before, it is also assumed that accesses and
updates need one unit of bandwidth for per file transfer per
network hop. Now, if at “node 3” a replica is placed, the
replica maintenance cost for the sub-tree with the root data
center 3 is RMC (3, 0) = 40(read cost) + 24(update cost) +10
(storage cost) = 74. However, if at “node 4” a replica is
placed, then the corresponding cost will be RMC (3, 1)=
67(read cost) + 0(update cost) +0(storage cost) = 67.

Now, in order to determine the locations of new replica
based on changing popularity and replica update frequencies,
the dynamic maintenance algorithm is called at regular
intervals. If old replicas are still in a newly found replica set
they are retained. From the old set, other replicas are removed
and new replicas are generated as required. Let OR represents
the set of replicas that are created by the distributed static
replica placement strategy and NR represents the newly
calculated updated set of replicas during maintenance process.
Thus, the dynamic maintenance algorithm will create replicas
contained in the set . The selected interval
is calculated by the rate of request so that a short interval
results for high arrival rates. This produces higher overhead
but adapts more quickly in changing access patterns.

Calculation of replica maintenance costs by the terminal,
non-terminal, and root data center nodes and the determination
of new replica locations based on these calculated costs are
done in a bottom-up fashion starting from the terminal data
center nodes. Each data center, v, calculates the optimal
replica maintenance cost for its sub-tree considering the
replica location at any distance from v to the root data center.
Then data center v determines the location of the replica
whether it should be fetched from any data center located up
on the path towards the root, or it should be created in its own
storage based on the calculated replica maintenance cost. In
case v is a non-terminal data center node, it is also possible
that the replica should be created in children data center nodes
of v if placing replicas in them results in lower replica
maintenance cost. Data center v records these costs and data
center locations for potential replica creation. It is important to
note that a data center node commences the calculation of
costs once all of its children nodes have finished calculating
the same.

Now, the actual determination of new replica locations
occurs in a top-down fashion starting from the root data
center. More specifically, a data center will determine if it
needs to create a replica on its own storage or not. The root
data center starts the process by determining the minimum of
the two replica maintenance costs calculated before and its
associated replica location either in itself or in the children
data center nodes down the hierarchy. Root data center node
then forwards this location information to all of its children.
Upon receiving this location information, each of the children
data center nodes verifies it with its location value calculated
before. If they match, a replica is created in its own storage
and this information is further forwarded down the hierarchy.
Otherwise, it forwards an updated location information that
was received from the root data center to its children and this

process continues till the bottom of the embedded tree is
reached.

V. PERFORMANCE EVALUATION

This section describes the performance analysis of the

dynamic maintenance algorithm and compares it with the
clustering based static placement as factors such as data center
storage capacities, data access patterns, and user QoS
constraints are varied.

A. Simulation Method

For the assessment of the algorithms, a Java based
simulator program is used. The detailed configurations for the
simulation are given below.

a) Testbed Environment

In the experiment, a multi-cloud composed of 156 data
centers is used. Waxman model [31] is used to generate the
multi-cloud topology. The available link bandwidth is
computed using a uniform distribution with the range [0.622,
2.5] (Gbps). Data center storage capacities are also determined
using the same distribution. The number of data files used in
the system is 2500 with each data file size equal to 10 GB.
This makes the total size of all data files used in the simulation
approximately 25 TB. To measure the effectiveness of the
algorithm a wide range of data center storage resource
configurations are used in terms of the relative storage
capacity, r, of the replica data center servers. Here, r is
defined as a ratio of the total storage size of replica data center
servers to the total size of all data files in the system. If r is
100%, it can be assumed that every data file could have a
replica in the system. For the experiments r has been varied
from 75% to 13% as shown in Figure 5.

(a)

 (b)

Fig. 5. Relative storage capacity and total capacity for different data center

storage settings in (a) and (b)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

213 | P a g e

www.ijacsa.thesai.org

Each replica data center server can serve a number of data
access requests from the users. The replica servers will run
short of storage during the simulation. To place new replicas,
a replacement strategy is necessary to ensure that new data
files do not replace popular files. To this end, a modified Least
Recently Used (LRU) replacement strategy was used based on
the popularity of data to ensure that no replicas created in the
in-progress replication period are removed.

B. Data Access Patterns

A number of data files are accessed by each job during the
simulation. The simulation was conducted with 50 different
jobs that were submitted with fixed probabilities. Some jobs
were more popular than others. The data access requests from
the users follow Poisson arrivals. Each user issues one access
request on average per 2500 milliseconds and a data access
pattern determines the sequence of the access requests. Two
access patterns namely Gaussian random walk and the heavily
tailed Zipf distribution were used. The Zipf distribution is
given by: Pi = K, where Pi is the frequency of the ith ranked
item, K is the popularity of the most frequently accessed data
item and s determines the shape of the distribution. It is
assumed that data access patterns can show temporal locality
to some extent which means that recently accessed data are
expected to be accessed again. Such an access pattern
containing varying amount of temporal locality can be
generated using Zipf distribution. Thus, in a system that is
designed to react to file popularity, the Zipf distribution offers
a natural testing ground. The index used to measure the
amount of locality in the pattern is denoted by s. The observed
parameter values are in the range of 0.65 < s < 1.24. A higher
value of s indicates an increased degree of locality. In this
paper, we use s = 0.85 and 1.0 and refer to as Zipf-0.85 and
Zipf-1.0 distribution respectively. Furthermore, Gaussian
distribution is the most widely used family of distributions in
statistics and many statistical tests are based on the
assumption of normality. As such, it is a good base measure
which can be used for easy informal comparison to known
applications [27, 28].

a) Performance Metrics

Each user data center site keeps record of the time required
to receive a data item once it is requested. This elapsed time
constitutes the foundation of assessing and comparing various
replication strategies. Our dynamic replica maintenance
strategy was assessed using the performance metrics which
primarily include total response time in respect with job
execution. Response time refers to the time that elapses from
the moment when a data is requested until it is received and
the specified job completes its execution. Total response time
aggregates the response times of all the executed jobs for a
simulation period. The goal is to achieve minimum total
response time for our dynamic replica maintenance algorithm.
The performance metrics also considers user satisfaction rate.
User satisfaction rate is the proportion of users whose QoS

constraints are met. The absolute values are actually of little
interest but the relative performances demonstrate the
superiority of dynamic maintenance algorithm over the static
counterpart.

C. Results and Discussion

This section presents the experimental results of the static
replica placement strategy and the dynamic replica
maintenance strategy (DRMS) and compares them thoroughly
based on the performance metrics. For a specific user, its QoS
requirement is taken as a distance from the user to the closest
replica data center server (such as number of hops) using a
uniform distribution (i.e. the distance requests are uniformly
distributed over the range). For example, a user QoS
requirement of [1-3] implies that the closest data center with
requested replica from the user should be any value between 1
and 3 and in such case the stipulated user QoS constraint
deems to be satisfied.

We start by considering the algorithms’ performances in
terms of total response time, the major concern from the
viewpoint of the data consumer. Figure 6 shows the
approximate values of response times (y-axis) as a function of
varying data center storage capacities (x-axis) for static replica
placement and DRMS. In the experiment, a moderate
workload capacity is considered for the replica server data
centers. It is taken from a uniform distribution of [100-200] in
terms of GB. The user QoS constraint on replica server data
center distance of [1-3] is specified from a uniform
distribution to allow relatively relaxed range. Our dynamic
maintenance strategy DRMS that considers the relocation of
replicas generally performs better than the static replica
placement model in terms of response times for both Zipf and
Gaussian data access patterns. The reason is that DRMS
creates a modest number of well-placed replicas compared to
the static counterpart which substantially reduces data access
latency. Consequently, this decreases the overall response
time. In addition, low running time of DRMS contributes to
the reduction of its overall response time. With the decrease in
storage capacity of data center replica servers the response
time increases due to the creation of lower number of replicas.

(a)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

214 | P a g e

www.ijacsa.thesai.org

(b)

Fig. 6. Response times of static replica placement and DRMS considering

relaxed QoS requirement [1-3] for Zipf-0.85 and Gaussian access patterns in

(a) and (b)

(a)

(b)

Fig. 7. Response times of static replica placement and DRMS considering

more constrained QoS requirement [0-1] for Zipf-0.85 and Gaussian access

patterns in (a) and (b)

For relatively more constrained QoS requirement ([0-1])
the performance improvement of dynamic maintenance model
drops significantly for both Zipf and Gaussian access patterns
as shown in Figure 7. In general, the performance benefit of
DRMS over static placement becomes more obvious when
user QoS requirements of wider ranges are considered.

Figure 8 demonstrates approximate values of user
satisfaction rates for both the strategies using all storage
configurations of data centers. DRMS performs better in most
cases. Notably, the performance benefit of DRMS over static
replica strategy is prominent when the storage capacity of data
center servers becomes limited (for example in case of 17.5%
and 13.75% relative capacities). However, user QoS
satisfaction rates drop for both strategies in this case
irrespective of the data access patterns and user QoS
constraints used as shown in Figure 8.

(a)

(b)

Fig. 8. User satisfaction rates with relaxed QoS requirement [1-3] for Zipf-

0.85 and Gaussian patterns in (a) and (b)

VI. CONCLUSIONS AND FUTURE WORK

This paper investigates the dynamic replica maintenance

problem in a multi-cloud scenario. To this end, a novel
approach to distributed placement of static replicas in
appropriate data center locations is proposed. Motivated by
the fact that a multi-cloud environment is highly dynamic, the
paper presents a dynamic replica maintenance technique that
re-allocates replicas to new data center locations upon
significant performance degradation. Performance analysis of
the proposed techniques is done in terms of total response time
and user satisfaction rates. The simulation results showed that
the proposed dynamic maintenance technique, DRMS, can
considerably reduce response times compared to the static

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

215 | P a g e

www.ijacsa.thesai.org

counterpart. In addition, user satisfaction rates are shown to be
relatively higher due to dynamic replica maintenance. These
benefits are attained using a wide range of storage
configurations of data center servers and data access patterns
with a degree of temporal locality and randomness. 501554-3-
Distributed Systems.

In the future, we plan to implement the proposed dynamic
replica maintenance algorithm in a real multi-cloud platform.
Moreover, the algorithm will also be extended to deal with the
peak bandwidth usage due to network link constraints and
traffic patterns.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A.
Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the clouds: A berkeley view of cloud computing,”
Technical Report UCB/EECS-2009-28, Dept. of EECS, California
Univ., Berkeley, Feb. 2009.

[2] J. M.D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali,
“Cloud computing: Distributed Internet computing for IT and scientific
research,” IEEE Internet Computing, vol. 13, no. 5, pp. 10-13, Sept.
2009.

[3] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman, “Data
replication strategies in grid environments,” in Proc. of the Fifth Intl.
Conf. on Algorithms and Architectures for Parallel Processing, pp. 378–
383, 2002.

[4] I.S. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and Emerging IT Platforms: Vision, Hype, and
Reality for Delivering Computing as the fifth Utility,” Future Generation
Computer Systems, vol. 25, no. 6, pp. 599-616, June 2009.

[5] Amazon, Amazon simple storage service (Amazon S3). Available:
http://aws.amazon.com/s3

[6] S. Ghemawat, H. Gobioff, and S. T. Leung, “The Google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29-43, 2003.

[7] Human Genome Project, http://www.ornl.gov/hgmis/home.shtml.

[8] A. Chervenak, “Giggle: A framework for constructing scalable replica
location services,” IEEE Supercomputing, pp. 1–17, 2002.

[9] J. H. Abawajy and M. Deris, “Data replication approach with data
consistency guarantee for data grid,” IEEE Transactions on Computers,
vol. 63, no. 12, pp. 2975 – 2987, 2014.

[10] K. Ranganathan, A. Iamnitchi, and I. Foster, “Improving data
availability through dynamic model driven replication in large peer-to-
peer communities,” in Proc. of the 2nd IEEE/ACM Intl. Symposium on
Cluster Computing and the Grid (CCGRID’02), pp. 376–381, 2002.

[11] J. Abawajy, “Placement of file replicas in data grid environments,” in
Proc. of the Intl. Conf. on Computational Science, vol. 3038, pp. 66–73,
2004.

[12] K. Kalpakis, K. Dasgupta, and O. Wolfson, “Optimal placement of
replicas in trees with read, write, and storage costs,” IEEE Transactions
on Parallel and Distributed Systems, vol. 12, no. 1, pp. 628–637, 2001.

[13] F. Wang, J. Qiu, J. Yang, B. Dong, X. Li, and Y. Li, “Hadoop high
availability through metadata replication,” Proc. First Int’l Workshop
Cloud Data Manage, pp. 37-44, 2009.

[14] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” Proc. IEEE 26th Symp. Mass Storage Systems
and Technologies (MSST), pp. 1-10, June 2010.

[15] A. Gao and L. Diao, “Lazy update propagation for data replication in
cloud computing,” Proc. Fifth Int’l Conf. Pervasive Computing and
Applications (ICPCA), pp. 250-254, Dec. 2010.

[16] W. Li, Y. Yang, J. Chen, and D. Yuan, “A cost-effective mechanism for
cloud data reliability management based on proactive replica checking,”
Proc. IEEE/ACM 12th Int’l Symp. Cluster, Cloud and Grid Computing
(CCGrid), pp. 564-571, May 2012.

[17] Q. Wei, B. Veeravalli, G. Bozhao, Z. Lingfang, and F. Dan, “CDRM: A
cost-effective dynamic replication management scheme for cloud
storage cluster,” in 2010 IEEE International on Cluster Computing. pp.
188 – 196, 2010.

[18] S. Wang, K. Q. Yan, and S. C. Wang, “Achieving efficient agreement
within a dual-failure cloud-computing environment,” Expert Syst. Appl.,
vol. 38, no. 1, pp. 906-915, 2011.

[19] D. W. Sun, G. R. Chang, and S. Gao, “Modeling a dynamic data
replication strategy to increase system availability in cloud computing
environments,” Journal of Computer Science and Technology, vol. 27,
no.2, pp. 256-272, Mar. 2012.

[20] M. Hussein and M. Mousa, “A light-weight data replication for cloud
data centers environment,” International Journal of Innovative Research
in Computer and Communication Engineering, vol. 2, no.1, pp. 2392-
2400, Jan 2014.

[21] W. Li, Y. Yang, J. Chen, and D. Yuan, “A cost-effective mechanism for
cloud data reliability management based on proactive replica checking,”
Proc. IEEE/ACM 12th Int’l Symp. Cluster, Cloud and Grid Computing
(CCGrid), pp. 564-571, May 2012.

[22] A. Bessani, M. Correia, B. Quaresma, F. Andr'e, and P. Sousa,
“DepSky: Dependable and secure storage in a cloud-of-clouds,” in Proc.
of the 6th Conference on Computer Systems, pp. 31-46, 2011.

[23] X. Wu, “Data sets replicas placements strategy from cost-effective view
in the cloud,” Scientific Programming, vol 2016, pp. 1-16, 2016.

[24] J. Lin, C. Chen, and J. M. Chang, “QoS-aware data replication for data-
intensive applications in cloud computing systems,” IEEE Transactions
On Cloud Computing, vol. 1, no. 1, pp. 101-115, 2013.

[25] X. Fu, R. Wang, Y. Wang, and S. Deng, “A replica placement
algorithm in mobile grid environments,” Proc. Int’l Conf. on Embedded
Software and Systems (ICESS ’09), pp. 601-606, May 2009.

[26] A.M. Soosai, A. Abdullah, M. Othman, R. Latip, M.N. Sulaiman, and
H. Ibrahim, “Dynamic replica replacement strategy in data grid,” Proc.
Eighth Int’l Conf. on Computing Technology and Information
Management (ICCM), pp. 578-584, Apr. 2012.

[27] C. Cheng, J. Wu, and P. Liu, “Qos-aware, access-efficient, and
storageefficient replica placement in grid environments,” Journal of
Supercomputing, vol. 49, no. 1, pp. 42–63, 2009.

[28] B. Liao, J. Yu, H. Sun, and M. Nian, “A QoS-aware dynamic data
replica deletion strategy for distributed storage systems under cloud
computing environments,” in Int'l Conf.on Cloud and Green Computing
(CGC), pp. 219-225, 2012.

[29] A. R. Varma and A. K. Shrivastava, “File replication and consistency
maintenance in the Hadoop cluster using IRM technique,” Int'l Journal
of Advanced Research in Computer Engineering & Technology
(IJARCET), vol. 3, no. 7, pp. 2424-2428, 2014.

[30] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M.
Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica
maintenance for distributed storage systems,” in Proc. of the 3rd conf.
on Networked Systems Design & Implementation, vol. 3, 2006.

[31] H. Wang, P. Liu, and J. Wu, “A QoS-aware heuristic algorithm for
replica placement,” Journal of Grid Computing, pp. 96–103, 2006.

