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Abstract—Cloud computing provides services and 

infrastructures to enable end-users to access, modify and share 

massive geographically distributed data. There are increasing 

interests in developing data-intensive (big data) applications in 

this computing environment that need to access huge datasets. 

Accessing such data in an efficient way is deterred with factors 

such as dynamic changes in resource availability, provision of 

diverse service quality by different cloud providers. Data 

replication has already been proven to be an effective technique 

to overcome these challenges. Replication offers reduced 

response time in data access, higher data availability and 

improved system load balancing. Once the replicas are created in 

a multi-cloud environment, it is of utmost importance to 

continuously support maintenance of these replicas dynamically. 

This is to ensure that replicas are located in optimal data center 

locations to minimize replication cost and to meet specific user 

and system requirements. First, this paper proposes a novel 

approach to distributed placement of static replicas in 

appropriate data center locations. Secondly, motivated by the 

fact that a multi-cloud environment is highly dynamic, the paper 

presents a dynamic replica maintenance technique that re-

allocates replicas to new data center locations upon significant 

performance degradation. The evaluation results demonstrate 

the effectiveness of the presented dynamic maintenance 

technique with static placement decisions in a multi-cloud 

environment. 

 Keywords—Multi-cloud environment; data replication; 

distributed algorithm; response time; dynamic maintenance; QoS 

constraint 

I. INTRODUCTION 

Cloud computing is appearing as an emerging technology 
that provides scalable computing system and offers endless 
opportunities for the computing community. It provides large-
scale computing and storage resources comprising data centers 
[1], [2]. In a cloud computing scenario, computing and storage 
resources can be delivered as a service irrespective of the 
location and time as other necessary utilities in life [3]. In 
general, there are three categories of  cloud computing 
architecture for the delivery of services, namely, Software as a 
Service (SAAS), Platforms as a Service (PAAS) and 
Infrastructure as a service (IAAS) are common [1]. In a SaaS 
architecture, a cloud service provider hosts and manages 
software applications intended for the end-users instead of 
letting them using locally-run applications. The IaaS 
architecture offers hardware and software resources for data 
storage and processing as well as networks and other 
necessary infrastructure for deployment of operating systems 

and applications. In a PaaS architecture, users are furnished 
with necessary tools and programming languages and the 
service provide hosts an application delivery platform to 
continuously support development and delivery of end-user 
applications [4]. 

Due to the use of scalable data centers in cloud computing, 
end users are relieved of the burden associated with 
application provisioning and management. Popular cloud 
services providers such as Amazon S3 [5], Google [6], App 
iCloud

1
 , Microsoft Azure

2
, and DropBox

3
 are serving 

thousands of millions users through a huge number of servers 
distributed over many datacenters around the world. Hence, 
cloud computing infrastructures are being used for effective 
processing of large data sets without the huge upfront 
investments required to purchase traditional data centers. 
Accordingly, there are increasing interests in developing data-
intensive (big data) applications in this computing 
environment that need to access huge datasets. For instance, 
Facebook, Twitter, and big data analytics applications, such as 
the Human Genome Project [7], are using cloud computing 
infrastructures for processing and analyzing their petabyte-
scale data sets, using a computing framework such as 
MapReduce and Hadoop

4
. 

Data availability and accessing data efficiently is an 
important demand for these data intensive applications [8]. 
Furthermore, cloud infrastructure has heterogeneous resources 
and the resources have diverse performances. Also, there may 
be demands of different service quality requirements from 
different users. Besides, overall system performance is also a 
critical factor. To effectively address these challenges, the 
need for data replication is apparent. In data replication, data 
are replicated at different replicas to provide data access to the 
users in a nearby location. Replication techniques increase 
data availability and reduce cost of data access and response 
time [9], [3], [10]. It also distributes the workload to the 
replica servers by routing user requests to different sites. 
Replication techniques decrease congestion-related 
performance degradation probability by distributing the load 
of network to network of multiple paths. To obtain maximum 
gain from replication, strategic placement of the file replicas is 
critical [9], [11], [12]. 

                                                           
1 https://www.icloud.com/ 
2 https://azure.microsoft.com/ 
3 https://www.dropbox.com/ 
4 http://www.slideshare.net/kevinweil/hadoop-at-twitter- hadoop-summit-201 

http://en.wikipedia.org/wiki/Data
https://www.icloud.com/
https://azure.microsoft.com/
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Data replication technique is widely used in the cloud 
computing system to provide high data availability [13], [14], 
[15], [16]. While research has been done on replica placement, 
little has focused on the dynamic maintenance of the replicas 
over the time. Moreover, until now, replication in multi-cloud 
environments is not considered in the existing research. 
Therefore, determining data center locations of replicas in a 
multi-cloud environment mimicking general network topology 
is an open problem. 

This paper first presents a new distributed algorithm that 
determines static locations for placing replicas in multi-cloud 
environments representing a general network topology to 
improve data availability and satisfy user demands for time 
critical data. The algorithm also maximizes the degree of 
satisfied users while minimizing aggregated response time 
upon data access. The proposed distributed replica placement 
algorithm provides benefits with respect to reliability and 
scalability issues. A multi-cloud environment is highly 
dynamic where user requests and network latency fluctuate 
persistently. Data centers that hold replicas currently may not 
be the best locations to obtain replicas later. Hence, an 
algorithm is proposed for the dynamic maintenance of replicas 
based on the user data access patterns and the cumulative 
aggregated response time.  Overall, the paper makes the 
following contributions: 

 Unlike existing data replication strategies in cloud 
computing system, the proposed replication algorithm 
is targeted for multi-cloud environments. 

 A novel algorithm is presented for distributed replica 
placement in multi-cloud environments mimicking 
general graph topology. 

 A dynamic maintenance algorithm is presented to 
relocate replicas in optimal locations to sustain overall 
response time to a minimal. 

The rest of this paper is organized as follows. Section II 
presents some selected existing approaches from the literature. 
Section III describes the clustering approach to static replica 
placement. The proposed dynamic replica maintenance 
technique is presented in Section IV. Performance evaluation 
is described in Section V. Section VI concludes the paper and 
suggests directions for future work. 

II. RELATED WORK 

There is a handful of data replication strategies found in 
the cloud computing environments. One of the earliest work 
proposed by Ghemawat et al. [6] where a static distributed 
data replication algorithm in clouds (Google File System –
GFS) places data chunks based on a number of factors such 
as: 1) to choose replica locations in the chunk servers with 
below-average disk space utilization; 2) to set a maximum 
count on the replicas that are created recently on each chunk 
server; 3) to scatter replicas of a particular chunk across racks. 
The creation of data chunk replicas is triggered when the 
number of replicas drops below a specific level. The data in 
DataNode is protected against failure through replication 
technique. For instance, in Hadoop Distributed File System 
(HDFS) [14], to safeguard against failure a data block is 

replicated twice in different racks containing two DataNodes. 
The authors in [17] propose a dynamic data replication 
algorithm which is distributed in nature and targeted for cloud 
environment. The algorithm works a cloud system based on 
HDFS technology and decides to place replicas considering 
the current workload on the nodes and conforming to a lower 
bound on the number of total replicas that are created. Wang 
et al. [18] present a prediction based centralized cloud data 
replication technique that considers weighting factor for 
replication decision. 

The authors in [19] made a number of contributions for 
cloud data replication as such: 1) came up with a model to link 
system availability and the number of replicas; 2) identify data 
items for replication based on popularity; 3) computed an 
appropriate number of replicas and locations based on an 
effective system byte rate. An adaptive technique [20] for 
cloud data replication is proposed which works based on file 
prediction. The technique takes availability and efficient 
access into account while predicting files in data centers.  
Besides replication, Gai and Daio [15] investigate replica 
consistency issue in cloud computing system. The authors 
adopt a lazy update scheme to split data access and update that 
can improve throughput and cut down response time. In 
addition, the authors in [21] work on a data   management 
technique focusing on reliability issues. The technique works 
by checking the replicas proactively in an attempt to decrease 
the replica count which will reduce the storage usage in turn. 
A data storage mechanism [22] is proposed to enhance data 
availability and privacy which works by combining multiple 
clouds and a set of protocols such as Byzantine quorum 
system protocols, cryptographic secret sharing, and erasure 
coding. The evaluation results demonstrate that the proposed 
system brings forth a cost effective way to improve data 
availability and privacy for critical applications. In a relatively 
recent effort done by X. Wu [23], a cost effective data set 
replica placement strategy is proposed for cloud environments. 
The technique starts with designing a cost model for data 
management which includes storage cost and transfer cost. 
Then a replica placement technique is presented that decides 
the location of replicas using based on a location graph 
problem. The technique uses access frequency and average 
response time to decide which data set should be created. 
Experimental results demonstrate the benefit of the technique 
in term of lower management cost with fewer replicas. 

Even though a quite a bit of work has been done to deal 
with replication issues in cloud computing environments, less 
attention was paid to address the issue of QoS requirement. 
The authors in [24] present two data replication algorithms 
that address the issue of QoS requirements in cloud systems. 
First, replication is done based on meeting high QoS 
requirement on a first come first service basis. Nevertheless, 
the performance of this algorithm is not satisfactory in 
reducing the replication cost and the number of unsatisfied 
requests. Hence, the second algorithm converts the replication 
problem into a minimum-cost maximum-flow (MCMF) 
problem which can generate an optimal solution to the 
problem in polynomial time. This problem has also been 
studied widely in data grid systems [25], [26], [27]. 
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Even though the issue of dynamic maintenance of replicas 
in cloud environments is not well studied in the literature, 
some researchers addressed this issue. Liao et al. [28] propose 
a dynamic replica deletion strategy for distributed storage 
systems under cloud computing environments. The strategy 
aims at reducing storage that is occupied by the replicas and 
their maintenance cost.  The authors come up with a 
mathematical model to illustrate the relationship between QoS 
requirement for the requested data and the number of replicas 
that need to be created. Performance results suggest that the 
proposed technique can save disk space and reduce 
maintenance cost while satisfying the QoS requirements. The 
authors in [29] present a file replication and consistency 
maintenance technique in Hadoop cluster. As claimed by the 
authors, Hadoop’s strategy to maintain three replicas of each 
file leads to poor storage utilization and hence they propose 
integrated data replication and consistency maintenance (IRM) 
technique. They only create replicas for popular files and this 
method has already been proven to be an effective technique 
in the literature. The implementation includes the use of 
MapReduce programming model and HDFS in the clusters of 
commodity computers. The experimental results show that the 
technique can reduce data access time and increase data 
locality at the same time.  A relatively earlier effort was done 
by Chun et al. [30] that deal with efficient replica maintenance 
in distributed storage systems. The proposed strategy works 
by aggregating disk spaces of many nodes over the Internet. 
The novelty of the strategy comes from the viewpoint of fault-
tolerance in case of network and disk failure. 

III. CLUSTERING APPROACH TO STATIC REPLICA 

PLACEMENT 

This section will first describe the static replica placement 
(SRP) problem in a multi-cloud scenario that minimizes the 
number of replicas created and aims at meeting the user QoS 
requirements. The proposed solution starts with a system 
model that shows the targeted multi-cloud architecture where 
each cloud provider contains different number of data centers 
for storing replicas. Then, a static replica placement approach 
is presented based on clustering data mining technique. 

A. System Model 

Figure 1 shows a high level architecture of a multi-cloud 
setup comprising of a number of cloud providers 
interconnected multi-cloud proxies. User communication with 
the data centers in the cloud providers are facilitated through 
the multi-cloud proxies. Before describing the proposed 
clustering approach to static replica placement in this multi-
cloud environment, a logical structure of the multi-cloud 
system model is presented as shown in Figure 2. The multi-
cloud system which is considered here consists of    
{             } different data centers and   
{          } distributed end-users that share both resources 
and data in a multi-cloud system. This is modeled using an 
undirected graph G = (DC, E).  Here, DC is the set of data 
centers, and E ⊆ DC x DC is the set of links among the data 
centers. It is assumed that there is an upper bound bandwidth 
constraint (      ) on each link      capacity. Also, each 
data center         is characterized by the following 4-
tuple: 

 
Fig. 1. A multi-cloud architecture comprising a number of cloud providers 

 
Fig. 2. A logical structure of a multi-cloud system model consisting of data 

centers and users 

    〈               〉                                              

where    is the data center id, S is the storage capacity of 
the data center,   is a workload capacity constraint, C is the 
storage cost to store a replica and        is a communication 
cost over link (u, v)   E. It is assumed that for a same data file 
different data centers may have different storage costs. A data 
center containing a replica can be considered as a replica 
server. 

The workload capacity constraint is defined as an upper 
bound on the user requests' number that is processed by the 
replica server during a specified time period. The replication 
strategy has to ensure that the user requests are satisfied while 
limiting the workload of each replica server to its capacity. 
Associated with different replica servers the workload 
constraint can be different. A replica server is overloaded if 
the total workload of the replica server becomes greater than 
the server's capacity constraint. In addition, as shown in 
Figure 2, end users are connected to the data centers. Note that 
each replica server (data center) provides services to multiple 
users and a user       is always associated with a specific 
server         in the multi-cloud structure. The number on 
the link denotes the cost of communication. It is considered 
that the logical graph is connected. Therefore, a replica server 
is able to communicate with any other server in the multi-
cloud via some path. 

A user       sends his/her requests to its associated 
server for retrieving data specifying QoS requirements. The 
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QoS is defined as an upper bound        on the cost retrieval. 
Note that QoS requirements may be different for different 
users. The requirement specifies that all the requests by    will 
be handled by some servers by a communication delay       . 
The requirement is satisfied when a request is handled by the 
closest replica server which satisfies       . The requirement 
is violated otherwise. 

Now, the QoS-aware static replica placement problem in 
hand is precisely defined. Let DC´ represent a set of data 
centers that contain the replica of a requested file. Let min(di) 

be the minimum communication time for the data center i to 
retrieve a requested file from all the probable retrieval paths 
from i to the set of replicas DC´. In case a data center holds 
the target replica, the value of min(di) becomes 0. To this end, 

our goal is to calculate a replica set of minimum size, DC´ ⊆ 
DC such that the retrieval of the requested file at each data 
center in DC meets the QoS requirement, i.e., min(di)  < 
        for each i in DC. Here, the communication cost 
between the users to the local data centers is not counted since 
the cost does not change the decision of replication. 

B. Data Model 

A central database (Central DB), located at the origin 
server (represented as DC0 in the graph) stores all the data 
required by the cloud applications. To reduce the response 
time, each data center maintains a local database, called 
datacenter database (Datacenter DB). The goal is to replicate 
the most frequently used data items from the central database. 
For maintaining consistency of data, the origin server sends 
updates to each replica server. It is assumed that updates 
must first be performed on the authoritative copy stored at 
the origin server, where they are then propagated to the 
replica servers. That is, updates only come from the origin 
server and the replica servers act as repositories for data 
retrieval. Popularity of a file is calculated using access rate 
and it is assumed that popularity persists into the near future. 

In order to retrieving data a user       sends his/her 
requests to its associated data center specifying some QoS 
requirements. The request is processed locally if the data 
center contains the requested data. Otherwise, the request is 
forwarded to the nearest data center that contains the replica of 
the requested data. Thus, associated with every user       
will be a non-negative weight           representing the 
traffic (data access counts which represent the data popularity) 
originating from that node over a certain period of time. These 
data access counts will contribute to the response time for 
servicing the data requests from the users. 

When data is accessed, the information about requesting 
data center is stored. Additionally, the statistics showing the 
number of accesses and updates are obtained for each data 
item. The access rate or popularity is calculated in terms of the 
number of accesses over a period of time. The popularity of a 
data item varies over time in relation to the types of stored 
data. Generally, a newly created data has the highest 
popularity. Then, the access rate decreases over time. For 
example, a newly posted YouTube video is watched by most 
of the visitors. However, over the time its popularity and the 
number of visitors start to decrease. 

C. Clustering Approach to Replica Placement 

Let each data center in the multi-cloud be i which by now 
is acquainted with its directly adjacent data center. In addition, 
this data center i also knows about the communication delay to 
reach any neighboring data center k in the multi-cloud 

structure through the i → k path. Furthermore, a data center 

always maintains information about these direct adjacent data 
centers that store replicas of the requested data and the in-
degree of each of them. The in-degree of a data center having 
replicas determine the percentage of other data centers that are 
connected to users and their requests are satisfied by this 
particular data center. 

Each data center, i, connected to a user knows its QoS 
requirement (i.e., q (Ui)) to retrieve a data item. The data 
center incessantly checks its own status and the status of its 
neighboring data centers whether a replica of the requested 
data item exists in its own storage or at the storage of any of 
its neighboring data centers that can be communicated through 

a delay ≤ q (Ui). In course of time, if data center i or any of its 

neighboring data centers reachable within the stipulated delay 
becomes devoid of replica, any of the following two will 
occur. First, data center i will become a cluster core and it will 
copy the requested replica in its own storage if all its 
neighboring data centers are away with a delay > q (Ui). 
Alternatively, data center I will select a core for the new 
cluster from any of the neighboring data centers that can be 
reached within q (Ui) delay and it has a highest in-degree. This 
core data center will now store replica to be accessed by other 
data centers that are connected to the users.  This strategy tries 
to increase the count of data centers that can read this latest 
copy of replica. 

IV. DYNAMIC MAINTENANCE OF STATIC REPLICA 

PLACEMENT 

Clustering approach to replica placement ensures that 
replicas are created in near-optimal locations based on the user 
requirements for the current session. However, the data 
centers currently holding the replicas may not be the best 
locations for replicas to be there in future due to the changes 
in user requests and network conditions. Hence, dynamic 
maintenance of replicas which means relocation of replicas in 
optimal locations is necessary to sustain overall response 
time to a minimal. At the same time, the goal is to maximize 
the percentage of users whose QoS requirements are met. 

A. Problem Formulation 

The dynamic replica maintenance problem is now 
formulated in a multi-cloud environment. Formally, the 
problem of replica maintenance problem is expressed as an 
optimization problem as follows: 

                       &                   
   The problem is to choose M replica locations among N 

potential data centers (N > M) by minimizing the overall 
response time and maximizing the rate of satisfied user QoS 
requirements considering a given traffic pattern (i.e., access 
frequencies' recurring pattern of users for different data items). 
More specifically, the goal is to identify a set of new data 
center locations with the minimal response time where 
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services for each user request can be provided by a data center 
within its quality requirement. 

Now, the replica maintenance problem in hand is 
generalized. It is assumed that in cloud applications, updates 
to the data are infrequent and that the consistency can be more 
relaxed than in, for example,  high-performance commercial 
databases. Given this, the proposed approach achieves greater 
scalability while making modest compromises in terms of 
update propagation and replica synchronization. In particular, 
the updates are delivered from the origin server (data center) 
to all other data centers having replicas via application-level 
multicast, in which each server (data center) receives the 
updates from its parent and is responsible for further 
distributing the updates to its children. Without loss of 
generality, it is assumed that this origin server constitutes the 
root of the tree that is going to be embedded. Given the 
embedded tree over the general multi-cloud, the replica 
maintenance problem can be modeled as a dynamic 
programming problem and its solution can be obtained in a 
distributed fashion. To solve the problem in hand using a 
dynamic programming approach, it is needed to solve 
different parts of the problem (also called sub-problems), then 
combine the solutions of the sub-problems to attain an overall 
solution. This approach tries to solve each sub-problem only 
once, thus reducing the number of computations. Hence, the 
new dynamic programming problem is a generalization of the 
replica maintenance problem we intend to solve, and thus the 
solution to this new problem also solves the original replica 
maintenance problem. 

 
Fig. 3. An embedded tree with possible sub-trees representing the sub-

problems 

Let T = (V, E) be the embedded tree over the general 
multi-cloud rooted at the origin server. T can be viewed as a 
combination of a number of sub-trees such as Tv, Tw, and so 
on where each sub-tree is connected to the origin server with a 
list of edges of length d. Now, the replica maintenance 
problem in T can be solved, by first solving an extended 
problem in a slightly different tree built from each sub-tree 
such as Tv and an additional edge list connected to it as shown 
in Figure 3. The edge-list is of length d and one side of it is 
connected to the root of Tv and the other side to the origin data 
center. At any data center from v to the root, there is a replica 
server data center containing the copy of the data file which 
can be accessed by the sub-tree Tv. Now, the total response 
time for sub-tree Tv can be calculated by considering the 
replica server at any distance towards the root. This response 
time considers the data access cost from the edge-list. Thus, 
this became a generalization of the original replica 

maintenance problem: when the edge-list length is zero and Tv 
= T, the replica maintenance problem is reduced to the original 
one. 

 Now, we formally formulate our goal for finding an 
updated set of replicas that has minimal response time so that 
QoS requirement of each user v is satisfied by R∪{r}, i.e., 

      ∪{ }              

where, d(v, s) denotes the distance between v and s. 

B. Dynamic Replica Maintenance Strategy 

In dynamic replica maintenance strategy (DRMS), a 
shortest path tree is built at the onset. As noted previously, the 
updates are forwarded from the origin server data center to all 
the replica server data centers using application-level 
multicast. It is assumed that this origin server constitutes the 
root of the tree that is going to be embedded. To do this, the 
all-pairs shortest paths are calculated and a shortest path tree is 
built which has root, the origin server (see Figure 4). 

 
Fig. 4. An embedded all pairs shortest path tree in the multi-cloud system 

Given the embedded tree over the multi-cloud model each 
data center node can determine the cost for generating a local 
replica and the cost of data transfer from a replica server data 
center anywhere towards the root. Then a parent data center 
node assesses the cost of creating a local replica versus the 
cost of data transfer using the results provided by its children. 
This process continues until it reaches the root data center of 
the embedded tree. Then, based on the assessed data, actual 
replica placement starts at the root data center and finishes at 
the leaves. 

Let            represents the replica maintenance cost 
contributed by the sub-tree with the root data center   when 
the replica is placed at a distance of  d towards the origin data 
center. The value of    can vary from 0 (when the replica is in 
  itself) to the distance to the origin server. When rd is equal 
to 0 the replica maintenance cost considers read cost of all the 
descendants of data center node  , the storage cost, and the 
update cost for the replica at node v. On the contrary, when rd 
is greater than 0 (i.e., the replica is placed to any of the 
ancestors of node v except the root data center), RMC (v, rd) 
denotes the cost of replica maintenance for the sub-tree rooted 
at data center v that contains all its descendants' read cost. 
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In Figure 4, it is considered that the number of updates 
originated by the origin data center is 3 for a specific time 
period and the storage cost for the data file in the replica 
server is 10. As before, it is also assumed that accesses and 
updates need one unit of bandwidth for per file transfer per 
network hop. Now, if at “node 3” a replica is placed, the 
replica maintenance cost for the sub-tree with the root data 
center 3 is RMC (3, 0) = 40(read cost) + 24(update cost) +10 
(storage cost) = 74. However, if at “node 4” a replica is 
placed, then the corresponding cost will be RMC (3, 1)= 
67(read cost) + 0(update cost) +0(storage cost) = 67. 

Now, in order to determine the locations of new replica 
based on changing popularity and replica update frequencies, 
the dynamic maintenance algorithm is called at regular 
intervals. If old replicas are still in a newly found replica set 
they are retained. From the old set, other replicas are removed 
and new replicas are generated as required. Let OR represents 
the set of replicas that are created by the distributed static 
replica placement strategy and NR represents the newly 
calculated updated set of replicas during maintenance process. 
Thus, the dynamic maintenance algorithm will create replicas 
contained in the set             . The selected interval 
is calculated by the rate of request so that a short interval 
results for high arrival rates. This produces higher overhead 
but adapts more quickly in changing access patterns. 

Calculation of replica maintenance costs by the terminal, 
non-terminal, and root data center nodes and the determination 
of new replica locations based on these calculated costs are 
done in a bottom-up fashion starting from the terminal data 
center nodes. Each data center, v, calculates the optimal 
replica maintenance cost for its sub-tree considering the 
replica location at any distance from v to the root data center. 
Then data center v determines the location of the replica 
whether it should be fetched from any data center located up 
on the path towards the root, or it should be created in its own 
storage based on the calculated replica maintenance cost. In 
case v is a non-terminal data center node, it is also possible 
that the replica should be created in children data center nodes 
of v if placing replicas in them results in lower replica 
maintenance cost. Data center v records these costs and data 
center locations for potential replica creation. It is important to 
note that a data center node commences the calculation of 
costs once all of its children nodes have finished calculating 
the same. 

Now, the actual determination of new replica locations 
occurs in a top-down fashion starting from the root data 
center. More specifically, a data center will determine if it 
needs to create a replica on its own storage or not. The root 
data center starts the process by determining the minimum of 
the two replica maintenance costs calculated before and its 
associated replica location either in itself or in the children 
data center nodes down the hierarchy. Root data center node 
then forwards this location information to all of its children. 
Upon receiving this location information, each of the children 
data center nodes verifies it with its location value calculated 
before. If they match, a replica is created in its own storage 
and this information is further forwarded down the hierarchy. 
Otherwise, it forwards an updated location information that 
was received from the root data center to its children and this 

process continues till the bottom of the embedded tree is 
reached. 

V. PERFORMANCE EVALUATION 

This section describes the performance analysis of the 

dynamic maintenance algorithm and compares it with the 
clustering based static placement as factors such as data center 
storage capacities, data access patterns, and user QoS 
constraints are varied. 

A. Simulation Method 

For the assessment of the algorithms, a Java based 
simulator program is used. The detailed configurations for the 
simulation are given below. 

a) Testbed Environment 

In the experiment, a multi-cloud composed of 156 data 
centers is used. Waxman model [31] is used to generate the 
multi-cloud topology. The available link bandwidth is 
computed using a uniform distribution with the range [0.622, 
2.5] (Gbps). Data center storage capacities are also determined 
using the same distribution. The number of data files used in 
the system is 2500 with each data file size equal to 10 GB. 
This makes the total size of all data files used in the simulation 
approximately 25 TB. To measure the effectiveness of the 
algorithm a wide range of data center storage resource 
configurations are used in terms of the relative storage 
capacity, r, of the replica data center servers.  Here, r is 
defined as a ratio of the total storage size of replica data center 
servers to the total size of all data files in the system.  If r is 
100%, it can be assumed that every data file could have a 
replica in the system. For the experiments r has been varied 
from 75% to 13% as shown in Figure 5. 

 
(a) 

 
         (b) 

Fig. 5. Relative storage capacity and total capacity for different data center 

storage settings in (a) and (b) 
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Each replica data center server can serve a number of data 
access requests from the users. The replica servers will run 
short of storage during the simulation. To place new replicas, 
a replacement strategy is necessary to ensure that new data 
files do not replace popular files. To this end, a modified Least 
Recently Used (LRU) replacement strategy was used based on 
the popularity of data to ensure that no replicas created in the 
in-progress replication period are removed. 

B. Data Access Patterns 

A number of data files are accessed by each job during the 
simulation. The simulation was conducted with 50 different 
jobs that were submitted with fixed probabilities. Some jobs 
were more popular than others. The data access requests from 
the users follow Poisson arrivals. Each user issues one access 
request on average per 2500 milliseconds and a data access 
pattern determines the sequence of the access requests. Two 
access patterns namely Gaussian random walk and the heavily 
tailed Zipf distribution were used. The Zipf distribution is 
given by: Pi = K, where Pi is the frequency of the ith ranked 
item, K is the popularity of the most frequently accessed data 
item and s determines the shape of the distribution. It is 
assumed that data access patterns can show temporal locality 
to some extent which means that recently accessed data are 
expected to be accessed again. Such an access pattern 
containing varying amount of temporal locality can be 
generated using Zipf distribution. Thus, in a system that is 
designed to react to file popularity, the Zipf distribution offers 
a natural testing ground. The index used to measure the 
amount of locality in the pattern is denoted by s. The observed 
parameter values are in the range of 0.65 < s < 1.24. A higher 
value of s indicates an increased degree of locality. In this 
paper, we use s = 0.85 and 1.0 and refer to as Zipf-0.85 and 
Zipf-1.0 distribution respectively. Furthermore, Gaussian 
distribution is the most widely used family of distributions in 
statistics and many statistical tests are based on the 
assumption of normality. As such, it is a good base measure 
which can be used for easy informal comparison to known 
applications [27, 28]. 

a) Performance Metrics 

Each user data center site keeps record of the time required 
to receive a data item once it is requested. This elapsed time 
constitutes the foundation of assessing and comparing various 
replication strategies. Our dynamic replica maintenance 
strategy was assessed using the performance metrics which 
primarily include total response time in respect with job 
execution. Response time refers to the time that elapses from 
the moment when a data is requested until it is received and 
the specified job completes its execution. Total response time 
aggregates the response times of all the executed jobs for a 
simulation period. The goal is to achieve minimum total 
response time for our dynamic replica maintenance algorithm. 
The performance metrics also considers user satisfaction rate. 
User satisfaction rate is the proportion of users whose QoS 

constraints are met. The absolute values are actually of little 
interest but the relative performances demonstrate the 
superiority of dynamic maintenance algorithm over the static 
counterpart. 

C. Results and Discussion 

This section presents the experimental results of the static 
replica placement strategy and the dynamic replica 
maintenance strategy (DRMS) and compares them thoroughly 
based on the performance metrics. For a specific user, its QoS 
requirement is taken as a distance from the user to the closest 
replica data center server (such as number of hops) using a 
uniform distribution (i.e. the distance requests are uniformly 
distributed over the range). For example, a user QoS 
requirement of [1-3] implies that the closest data center with 
requested replica from the user should be any value between 1 
and 3 and in such case the stipulated user QoS constraint 
deems to be satisfied. 

We start by considering the algorithms’ performances in 
terms of total response time, the major concern from the 
viewpoint of the data consumer. Figure 6 shows the 
approximate values of response times (y-axis) as a function of 
varying data center storage capacities (x-axis) for static replica 
placement and DRMS. In the experiment, a moderate 
workload capacity is considered for the replica server data 
centers. It is taken from a uniform distribution of [100-200] in 
terms of GB.  The user QoS constraint on replica server data 
center distance of [1-3] is specified from a uniform 
distribution to allow relatively relaxed range. Our dynamic 
maintenance strategy DRMS that considers the relocation of 
replicas generally performs better than the static replica 
placement model in terms of response times for both Zipf and 
Gaussian data access patterns. The reason is that DRMS 
creates a modest number of well-placed replicas compared to 
the static counterpart which substantially reduces data access 
latency. Consequently, this decreases the overall response 
time. In addition, low running time of DRMS contributes to 
the reduction of its overall response time. With the decrease in 
storage capacity of data center replica servers the response 
time increases due to the creation of lower number of replicas. 

 
(a) 
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(b) 

Fig. 6. Response times of static replica placement and DRMS considering 

relaxed QoS requirement [1-3] for Zipf-0.85 and Gaussian access patterns in 

(a) and (b) 

 
(a) 

 
(b) 

Fig. 7. Response times of static replica placement and DRMS considering 

more constrained QoS requirement [0-1] for Zipf-0.85 and Gaussian access 

patterns in (a) and (b) 

For relatively more constrained QoS requirement ([0-1]) 
the performance improvement of dynamic maintenance model 
drops significantly for both Zipf and Gaussian access patterns 
as shown in Figure 7. In general, the performance benefit of 
DRMS over static placement becomes more obvious when 
user QoS requirements of wider ranges are considered. 

Figure 8 demonstrates approximate values of user 
satisfaction rates for both the strategies using all storage 
configurations of data centers. DRMS performs better in most 
cases. Notably, the performance benefit of DRMS over static 
replica strategy is prominent when the storage capacity of data 
center servers becomes limited (for example in case of 17.5% 
and 13.75% relative capacities). However, user QoS 
satisfaction rates drop for both strategies in this case 
irrespective of the data access patterns and user QoS 
constraints used as shown in Figure 8. 

 
(a) 

 
(b) 

Fig. 8. User satisfaction rates with relaxed QoS requirement [1-3] for Zipf-

0.85 and Gaussian patterns in (a) and (b) 

VI. CONCLUSIONS AND FUTURE WORK 

This paper investigates the dynamic replica maintenance 

problem in a multi-cloud scenario. To this end, a novel 
approach to distributed placement of static replicas in 
appropriate data center locations is proposed. Motivated by 
the fact that a multi-cloud environment is highly dynamic, the 
paper presents a dynamic replica maintenance technique that 
re-allocates replicas to new data center locations upon 
significant performance degradation. Performance analysis of 
the proposed techniques is done in terms of total response time 
and user satisfaction rates. The simulation results showed that 
the proposed dynamic maintenance technique, DRMS, can 
considerably reduce response times compared to the static 
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counterpart. In addition, user satisfaction rates are shown to be 
relatively higher due to dynamic replica maintenance. These 
benefits are attained using a wide range of storage 
configurations of data center servers and data access patterns 
with a degree of temporal locality and randomness. 501554-3- 
Distributed Systems. 

In the future, we plan to implement the proposed dynamic 
replica maintenance algorithm in a real multi-cloud platform. 
Moreover, the algorithm will also be extended to deal with the 
peak bandwidth usage due to network link constraints and 
traffic patterns. 
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