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Abstract—Data is an important asset for any organization to
successfully run its business. When we collect data, it contains
data with low qualities such as noise, incomplete, missing values
etc. If the quality of data is low then mining results of any
data mining algorithm will also below. In this paper, we propose
a technique to deal with missing values. Genetic algorithm
(GA) is used for the estimation of missing values in datasets.
GA is introduced to generate optimal sets of missing values
and information gain (IG) is used as the fitness function to
measure the performance of an individual solution. Our goal
is to impute missing values in a dataset for better classification
results. This technique works even better when there is a higher
rate of missing values or incomplete information along with a
greater number of distinct values in attributes/features having
missing values. We compare our proposed technique with single
imputation techniques and multiple imputations (MI) statistically
based approaches on various benchmark classification techniques
on different performance measures. We show that our proposed
methods outperform when compare with another state of the art
missing data imputation techniques.

Keywords—genetic algorithm; information gain; missing data;
supervised learning

I. INTRODUCTION

Data is available in every sphere of life which is collected
and used for various purposes. Processing and analysis of the
collected data after being processed usually provides useful
insights and knowledge about the system which has produced
such data. The field of data mining basically deals with mining
useful information from raw data instead of using all the
data that also has some unimportant information. Data mining
is a collection of techniques used for extracting or mining
of previously unknown, useful and understandable patterns
from large databases. Data mining integrates techniques from
multiple disciplines such as database technology, machine
learning, statistics, pattern recognition, neural networks, and
image processing and data visualization. There is always a
requirement for efficient and scalable data mining algorithms
and it is a subject of ongoing research [1].

The process of data mining is to extract information from
data. The first step is to extract data from the database and then
perform preprocessing steps on it. Data mining techniques are
used to extract data patterns. Evaluation and presentation mean
to represent the knowledge which is understandable to users.
The result is the empowerment of users with knowledge.

There are different data mining techniques including su-
pervised classification, association rules mining or market
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basket analysis, unsupervised clustering, web data mining,
and regression. One important technique of data mining is
the classification of data. The objective of classification is
to build one or more models based on the training data,
which can correctly predict the class of test objects. There
are several problems with a large scale of domains which can
be cast as classification problems [1]. The classification has
several important applications in our lives [2-5]. Examples
include customer behavior prediction, portfolio risk manage-
ment, identifying suspects, medical applications, sports and
fraud detection etc. This research deals mainly with the data
preprocessing evaluated on the basis of classification technique
of data mining.

One of the challenging problems is to transform huge
amount of data into an accessible and actionable knowledge.
This knowledge is utilized by domain experts for decision mak-
ing. Therefore, the core focus is on the knowledge discovery
process in the databases (KDD). KDD is defined as a non-
trivial process of identification and extraction of implicitly,
previously unknown, and potentially useful information from
the data [1].

The collected data may contain several states of the art
deficiencies such as missing values, non-discredited data, in-
consistent, incomplete and noise etc. If data is not of high
quality it may hinder the discovery of useful patterns later in
the process. The main purpose of the preprocessing step is to
enhance the quality of data used in the experiment. All the
data mining techniques are applicable once the data has been
preprocessed and the objective of preprocessing is simple. Data
collected from the real world is dirty and needs to be cleaned.
The word dirty in data perspective means state of the art
deficiencies described earlier. There can be various reasons due
to which these issues arise, overcoming these problems is done
by using KDD process, and there are different techniques that
are proposed by various researchers which we will describe
later in this paper.

In this paper, we address an important area of data prepro-
cessing which is missing values imputation. Missing values
in a dataset mislead the learning model. We have proposed
a new approach based on GA and IG to impute the missing
values. The proposed technique has been evaluated on different
classification methods. The proposed technique has a higher
accuracy rate and is well suited for large dimensional search
spaces with a higher rate of missing values.

The rest of the paper is organized as follows. Section 2
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describes the background of missing values, section 3 presents
different classification algorithms, section 4 provides a detail
description of proposed technique, section 5 presents exper-
imentation results and finally section 6 concludes proposed
technique and gives some future directions.

II. BACKGROUND OF MISSING DATA IMPUTATION
A. Importance of Complete Datae

Basically, in data mining, the focus is on extracting useful
information from a large amount of data that is collected from
various sources and to take decisions using such data. Deci-
sions are made on the basis of science, business and economic
approaches on data available. As an example, sales and other
information allow business class and investors to evaluate and
make critical decisions regarding their investments with their
future outcomes, whereas advances in research are based on
the discovery of knowledge from various experiments and
measured parameters.

During fault detection and identification, it is observed that
most data is corrupt or incomplete. Predictive models that take
observed data as an input are used for many decision-making
processes, such models do not tolerate any incompleteness in
data provided for prediction and as a result, such models are
normally broken down. In many applications, simply ignoring
the incomplete record is not an option. Most decision-making
tools such as the commonly used neural networks, support
vector machines, and many other computational intelligence
techniques cannot be used for decision making if data is not
complete. This is mainly due to the fact that ignorance can
lead to biased results in statistical modeling or even damages
in machine control [6]. For this reason, it is often essential to
making the decision-based approach on available data [7].

The challenge missing data pose to the decision-making
process is more evident in on-line applications where data have
to be used almost instantly after being obtained. The biggest
challenge is that the standard computational intelligence tech-
niques are not able to process input data with missing values
and hence, cannot perform classication or regression. Some of
the reasons for missing data are sensor failures, omitted entries
in databases and on- response to questions in questionnaires.
There have been many techniques reported in the literature
to estimate the missing data for some applications [7]. There
are several reasons why data might be missing, and missing
data may follow an observable pattern. Exploring the pattern
is important and may lead to the possibility of identifying
cases and variables that eect the missing data [7, 8]. A proper
estimation method can be derived by identifying the variables
that predict the pattern.

B. Missing Data Mechanisms

Missing data randomness is divided into three classes [9]
such as missing completely at random missing at random, not
missing at random [5] and missing data handling techniques
(Ignoring data).

To discard data with missing values two core methods are
used. One is called complete case analysis. It is available in
every one of statistical packages and is the default method in
many programs. The other method is discarding instances or
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attributes called listwise deletion. In this method, the level of
missingness is determined on each instance and attribute and
deletes the instances or attributes with high extents of missing
data. Prior to deleting any attribute, it is vital to evaluate its
connotation to the investigation. The methods, complete case
analysis and discarding are executed only if missing data is
missing completely at random. The missing data that are not
missing completely at random contain non-random elements
that may prejudice the results [9]. The deletion can bring
in significant bias into the experimentation. In addition, the
reduced sample size can significantly hamper the analysis. The
thumb rule for deletion instances is, if attributes have more
than 5

1) Mean-fill approach: Most common technique in missing
data imputation is finding the estimates of the values and
then these estimates are replaced with the missing entries, the
focus of our work is related to the estimation of values and
its comparison to proposed technique. These estimates include
statistical calculation i.e., means, zero filling, min replacement
and max replacement.

These estimation techniques are used in datasets with
missing values as observed values results are observed in
the form of classifiers accuracy and other output measures
like precision, recall, f-measure and Area under ROC. The
main reason of calculating other results is just because if the
classifier does not satisfy the accuracy reported. Then these
measures can also be observed in the case of finding a better
result.

Mean-fill approach is one of the most common statistical
estimation approaches that is actively used as filling up missing
values attributes of data with missing values, which is provided
by various open source data mining toolboxes or packages.
Also in latest researchers are using comparison technique and
their majority cases research provides promising results. But
it is observed that for data with a large amount of missing
information this approach do not work very well.

Mean of the attribute values (in case, of numeric values,
for discrete values MODE is taken) set is taken and all the
missing values are replaced by the mean value in that particular
attribute, similar is the case for all attributes for any dataset.
Min fill approach, Max fill approach, Zero fill approach and K-
Nearest Neighbor approach [10] are most common approaches
being used.

K-Nearest Neighbors are determined on the bases of some
kind of distance between points. It has the biggest disadvantage
since it looks for the most similar instances, the whole dataset
should be searched. On the other hand, how to select the value
k and the measure of similar will impact the result greatly.

2) Multiple imputations (MI): Tt is one of the most attrac-
tive methods for general purpose handling of missing data in
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the multivariate analysis. Rubin [9] described MI as a three
step process, imputation, analysis, and pooling.

The most challenging step is imputation, that is, the con-
struction of the m-completed datasets. This step accounts for
the process that causes the creation of the missing data. First,
sets of plausible values for missing values are created using
an appropriate model chosen, reflects the uncertainty due to
the missing data. Each of these sets of plausible values is used
to fill-in the missing values and creates a completed dataset.
Typical problems are:

e  Missingness could be related to the value of informa-
tion (e.g., people with higher incomes tend to skip
income questions more often).

e  Missing entries can appear anywhere in the data.

e  The method used in the imputation step must foresee
the intended complete-data analysis.

The repeated ANALYSIS step on the imputed data is
actually somewhat simpler than the same analysis without
imputation because there is no need to bother with the missing
data. Each of these datasets can be analyzed using complete
data methods.

The POOLING step consists of computing the mean over
the m repeated analysis, its variance, and its confidence interval
or P value. Results are combined finally. In general, these
computations are relatively simple.

There are various ways to generate imputations. The im-
plementation program for MI of continuous multivariate data
(NORM) is available in [12]. However, it is not necessarily
true that any particular method will perform better for any
particular empirical study. It is well known that methods
for handling nonignorable data require the analyst to make
assumptions about the model of missingness [11]. Recent
overviews of NMAR modeling are given in [13, 14, 15].
Selection and Pattern mixture models are used for NMAR data
Models need more statistical formulas to impute the data. If
the chosen model is incorrect then MNAR model may perform
even less well than standard MAR methods [9]. Different
types of weighting methods are also used for non-ignorable
missing data. Even though many methods are available, they
could not be used by researchers due to lack of familiarity and
computational challenges and researchers often opt for ad-hoc
approaches that may do more harm [7].

3) Auto-associative Neural Networks: An auto-associative
referred to as autoencoder neural network is a specific neural
network, trained to recall its inputs [19]. Given a set of inputs,
the network predicts these inputs as outputs and thus has the
same number of output nodes as there are inputs. However,
the hidden layer is characterized by a bottleneck, with fewer
hidden nodes than output nodes.

The smaller hidden layer projects the inputs onto a smaller
space, extracting linear and non-linear interrelationships such
as covariance and correlation, from the input space and also
removes redundant information [19]. This means that they can
be used in applications to recall the inputs and missing data
estimation applications.
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III. CLASSIFICATION

Data mining learning models are categorized into two, the
one in which class to which training sample is known while
there is a learning stage; it is called labeled training data.
The predictive models are built on the basis of supervised
learning data, whereas unlabeled data is used to test the model.
One example is the classification method in which class labels
are known. Other is unsupervised learning method where the
class label for the training data is unknown. Here the training
data is grouped according to their similarities, clustering is the
example of unsupervised learning where data is unlabeled.

A fundamental aim of this research work in the field of
classification is to perform preprocessing on data available
and to make clean data available to the classifiers highly
accurate models from the available data that can be learned.
Other objective includes verification of correctness of proposed
technique on the basis of classification results. Decision Tree
(C4.5), PART, NB-Tree and RIPPER are the most common
classifiers used in the field of machine learning and these are
also used in this research [23, 24, 25, 26].

IV. PROPOSED TECHNIQUE

We have used GA with IG for imputation of missing values.
Following subsections will describe the proposed technique.

A. Genetic Algorithm

GAs are basically evolutionary ideas of natural selection
and genetics [16, 17]. GAs are adaptive heuristic search
algorithm. Inspired by Darwins theory of evolution survival
of the fittest, it is common in nature that in a competition
where individuals are looking for resources fittest individuals
dominate over weaker ones. Evolutionary computing today
holds GAs as one of the important parts. Among random
search methods employed to solve optimization problems, GAs
represent an intelligent structure which is easy to implement.

For any particular problem GAs works for solving it is
by mimicking processes nature use, like selection, crossover,
mutation and acceptance, to evolve a good solution for that
problem.

1) Operators of GA: GAs use genetic operators to maintain
genetic diversity. It is important that genetic diversity or
variation is maintained for the process of evolution. Inspired
by natural genetic structure, genetic operators are the same.
Following are operators used in genetic algorithms.

1)  Reproduction/ Selection: Usually, the first operator
applied on population is a reproduction, from the pop-
ulation the chromosomes are selected to be parents
for the crossover step and producing offsprings.
According to Darwins theory survival of fittest, the
best ones should survive and create new offsprings.
Reproduction operator is also called selection opera-
tor because it is basically extraction of genes subset
from existing population based on some quality cri-
teria or definition. The fitness function is the quality
measurement that can be performed to select best
genes subset, as every gene contains some meaning.

2)  Crossover/ Recombination This genetic operator is
called crossover because it mates (combines) two
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parents (chromosomes) to produce a new offspring
(chromosome).
Most commonly used methods for the selection of
parents to crossover are:

e Roulette wheel selection.

e  Rank selection.

e Boltzmann selection.

e Steady state selection.

e  Tournament selection.
The idea behind crossover is that after mating any
chromosomes (parents) that are selected based on
some function, offsprings (chromosomes) will be
fitter as they are derived as a result of best char-
acteristics of their parents. According to user-defined
crossover probability, it takes place during evolution
stage.

3)  Mutation: During the evolution stage mutation occurs
where the user defines mutation probability, this
probability is usually set to a fairly low value, like
0.01 is a good first choice. Mutation is the genetic
operator used to maintain genetic diversity from one
generation of a population of chromosomes to the
next generation.

B. Proposed Technique

This section provides detail of the proposed technique
along with fitness function used

1) General Description: GA is used for missing data
imputation, the importance of missing data imputation varies
from problem to problem, and we use this technique to clean
the dirty data for classification problem. The missing values
are imputed in the datasets using GA and GA is run for each
attribute which is treated as a chromosome. We divided these
chromosomes into frames for further accurate measures; these
frames are explained by the example in the following section.
Frames are dependent upon the no of classes in the dataset.
i.e., there is n number of class labels in a dataset.

The flow chart describes the working of proposed technique
as shown in figure 2. Using attribute instances first we create an
initial solution of population size defined in parameter section.
Evaluate the fitness of each solution. Check termination criteria
for a maximum number of generations. For generation number
1 initial size of the new population is 0. Select individuals
randomly from the population according to tournament size for
selection using tournament selection. Select genetic operator to
be applied to the selected individuals probabilistically. Perform
crossover or mutation on the selected individual’s bases on the
probability of selection for crossover or mutation. The resultant
of the genetic operator is inserted in the new population. Check
for population size on every iteration, if population size is
equal to maximum population size then start a new generation
and check for termination criteria else continue to select new
individuals from the current population. When the population
size is reached maximum new generation become started, if
the current population has the fitness of individual then how
previous populations best fitted then we keep that individual
from the previous population in current population (Elitism=
keep best).

To illustrate how GA works in improving data quality by
imputing missing values based on estimation, the following is
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Fig. 3. Sample Datasets

a simple example that describes the technique. This sample
dataset is given in figure 3 is a part of dataset named Memo-
graphicmasses. Remember -1 represents missing values.

A chromosome split into n number of frames (sub-
chromosome). N is the number of classes in the dataset.
Each frame initialized independently to another frame, within
restricted range that it must contain values obtained by the
attribute to a specific class, in the first generation. Merging all
frames into one makes the valid structure of a chromosome in
population.

Each frame is treated as full fledged independent chromo-
some at the time of applying genetic operators on it. One point
crossover used on each frame so n number of cross points
are used for every chromosome. Mutation operator mutates
randomly n number of genes depending on the probability of
mutation criteria. Each gene belongs to a specific frame so,
during mutation of a gene, gene value is replaced by a specific
set of domain values of class from the dataset.

1)  Structure of Chromosome: The data illustrated above
belongs to two class problem so N = 2. The number of
the frame will be two in each chromosome as shown
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Fig. 4. Chromosome Structure

in figure 4 (a-Chromosome Structure). The size of the
frame depends on missing values related to specific
class as explained in the previous section.
According to figure 3 let us take the case of attribute
# 5, the range of selecting values for framel will be
min gene max. According to dataset values of the
gene are assigned between 3 gene 6. Similarly for
frame 2 the values between 0 gene 9. As shown in
figure 4 (b- Values of genes assigned).

2) Operate on genetic operators:

1)  Crossover: One point crossover is performed. Fig-
ure 4 (c- Crossover Performed) shows the crossover
points on the chromosome. As a result of crossover,
offspring is created that is shown in figure 7. The
chromosome in figure 4 (d- Result of crossover)
shows the result of crossover operation performed on
it in the previous step.

2)  Mutation: In mutation gene values mutate according
to the domain of each frame defined according to
the range of distinct values that are available in
the particular data attribute, here figure 8 illustrates
the outcome of the mutation operation performed
on chromosome shown in figure 4 (e- Mutation
performed). After mutation is performed the fitness of
the resultant chromosome is calculated if it is greater
than the previous data fitness the values are saved
and next iteration takes its place, until the termination
criteria are met that can be the end of condition or
some value which achieved terminates GA.

C. Fitness function

In the proposed GA for missing data imputation, we are
using IG as Fitness function that is based on the entropy of
each attribute regarding its class label in the given dataset.
Remember that when we calculate the fitness of an attribute
then the whole attribute is used for the calculation of fitness
after imputing missing values.

Following is the brief description of Fitness function used
in the proposed work.
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IG is a correlation-based measure. It is based on an
information theoretical concept of entropy i.e. a measure of
the uncertainty of a random variable. Following is the equation
of entropy of X eq(1).

The entropy of X when the value of another random
variable Y is known, following is the conditional entropy eq(2).

In the above equation (2), P(x_i ) is the prior probability
for all the values of X. P(x_i—y_j ) is the posterior probability
of X after the values of Y are known. The amount of which the
entropy of X decreases, it depicts the decrease in uncertainty
level. This is achieved through the additional information re-
garding X provided by Y. This measure is called IG. Following
is the formula for information gain eq(3).

V. EXPERIMENTATION AND ANALYSIS
A. Experimentation Framework

The population size is defined as 500, for 100 generations
and tournament size is kept 6. These parameters setting have
been chosen after performing several experiments. All the
other parameters used are defined in the following table 1.
Experimentation has been performed with different combina-
tions of these parameters and best values are kept same for all
the experimentation as shown in table 1.

In the experimentation, worth of a missing data imputation
through GA is evaluated on 5 key measures, i.e. predictive
accuracy, along with precision, recall, f-measure, and ROC.

Following table 2 elaborates about the datasets used in the
experimentation. All the datasets used are publicly available
and taken from UCI repository [31]. We have used standard
implementation of MI which is available as NORM [12], and
classifiers like NB tree, PART, JRIP, j48, NAVE bases and
K-Nearest Implementation of these algorithms is provided by
data mining software Weka [30]. All the algorithms are used
with their default values and no tweaking is done over the
methods. Since these algorithms are implemented by their
authors, therefore, it is assumed that parameter setting is
already incorporated.

Following table 2 describes datasets used for experimen-
tation along with total number of features, the number of
instances and percentage of missing values in these datasets.

The techniques that are used for comparison with the
proposed method are Multiple Imputation, Mean filling, Min
filling, Max fills and Zero fill. Table 3 shows a comparison
of classification accuracies and their standard deviations af-
ter being imputed by various techniques including proposed
technique of GA fill.
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TABLE 1. PARAMETERS USED IN GA TABLE IIL COMPARISON OF GA WITH DIFFERENT TECHNIQUES
iz 7 Val BASED ON CLASSIFIERS ACCURACIES ALONG WITH STANDARD
arameters alues D
- - EVIATIONS
Population Size 500
Generation 100 NB-Tree
Chromosome size Missing values in attributes Datases
Fitness Function G With GAfilled | Mifilled | Meanfilled | Minfilled | Maxfilled | Zero filled
- missing
Selection Tournament value
Tour Size 6 Labor 80.80+1566 | 95.43+8.80 | 875341338 85.47+1399 8107+16.70 | 80.73+14 86 | 90.07+13.20
CquQOVCr OHC pOint crossover Echocardiogram 87.29+7.70 | 90.90+7.89 89.17+7.01 86.10+8.00 88.62+785 86.58+8.33 88.10+7.63
Probabilit Of CIOSSOVer 0 8 Cylinderbands 67.4126.90 | 68.7816.14 66.2416.26 68.63£6.23 69.57:6.14 68.3916.10 68.3715.76
— Yy _ - . Memographicmasses 81.8513.04 | 83.08:3.19 82.744£3.39 81.98£3.30 82.2413.28 82841334 82.35£3.29
PrUbﬂbll]ty Of mutation 02 Horsecolic 83534651 83.85+564 83.02+697 83.74+6.45 83.98+5.56 8396+6.17 83.36+6.28
Probability of gene mutate 0.5 PART
Elitism Keep-best
Labor 76.77:16.28 | 93.30:9.58 | 87.7015.29 8557£15.37 | 815321501 | 79.13£12.00 | 834321272
RunS 20 Echocardiogram B8.00£7.54 | B9.59:8.38 88.09+7.85 86.92+8.71 85.557.86 85824797 86.3528.47
Cylinderbands 69.565.67 69.93+6.57 68.81+6.11 72.39+6.76 72524566 70.89+6.34 73.0945.25
TABLE ll DATASETS USED FOR EXPERIMENTATION Memographicmasses B153+3.36 | 82.23:3.31 82434353 80.56+3.83 81461366 81.15£3.32 81461334
Horsecolic B84.7716.40 | B5.3425.70 79.76+6.58 78.8326.16 79.3617.24 78.33£6.93 78561643
Dataset Total Attributes | No of Instances | %age g e
Labor 17 57 3382 Labor 88.40+15.86 | 86597+111 8559890 8160+1595 80.33+16.73 | 8400+14.21 | 79.03+14 86
Echocardiogram 12 132 5.16 Echocardiogram 83864567 | B6.2628.46 | 83582350 | 84.23£8.25 | 53472021 | 63672883 | 8403847
Cylinderbands 34 540 526 Cylinderbands 67.0246.29 68.37+5.99 67.59+6.51 69.67+590 6991+6.34 6998+6.11 70.63%6.00
Memographicmasses 6 961 4 i 2.3843.22 | B3.8123.37 82.9915.64 81.69:341 82.60:£3.36 82.55£343 82.7913.31
Horsecolic B83.2846.55 | B5.15%5.28 | 847331398 82.01+6.47 84.18+598 81.79+599 83.066.18
Colic-Horse 22 368 23.90

B. Comparison with other techniques

For comparison, four single imputation techniques have
been adopted; filling missing values using mean, min, max
and zero by replacing all missing data by 0, Multiple Im-
putation (MI) of missing data is also used for comparison.
The results are compared for NB-Tree, JRIP, PART, NAVE
Bayes, IBK (Lazy) and j48 (C4.5) classifiers. For performing
experimentation with these classifiers we used Weka machine
learning tool [30]. We used supervised discretization filter of
Weka-3.4 machine learning tool [30] to discretize continuous
attributes as a preprocessing step. The GA has seven user-
defined parameters. The values of these parameters are given in
table 1. The predictive accuracies of the compared algorithms
are shown in tables 3 and 4. Ten-fold cross validation is used
to obtain the results. The Bold value represents the highest
accuracy achieved.

From tables 3 and 4, it is observed that missing data
imputation using GA clearly out marks by 70% of the datasets
than other estimation and predictive model techniques. These
predictive accuracies show worth of the proposed approach. A
genetic algorithm is an evolutionary algorithm and has much
diversity when imputing missing values.

Our method performs better in three datasets for NAVE
Bayes algorithm, similarly, for K-Nearest neighbors classifier,
it achieves better accuracies on three datasets and better in four
datasets for the j-48 classifier.

Table 5 shows results of precision results of proposed
algorithm and single, and MI technique is presented. Different
classifiers are used for classification with 10-fold cross valida-
tion. The Bold value represents the highest accuracy achieved.

In the above-mentioned table, our method performs com-
parable and/or better in 70% of the datasets. It can be observed
that our proposed method achieves better/ comparable classi-
fication precisions as compared to single and MI techniques n
most of the cases. It is observed that missing data imputation
using GA clearly out marks/ comparable with other estimation
and predictive model techniques.

In table 6, recall measures of proposed algorithm and single
and MI technique is shown.

TABLE IV. COMPARISON OF GA WITH DIFFERENT TECHNIQUES
BASED ON CLASSIFIERS ACCURACIES ALONG WITH STANDARD
DEVIATIONS

NAIVE Bayes

Datasets With GA filled

MIfilled | Mean filled | Min filled | Max filled | Zero filled
missing
value
Labor 89.67+13.38 | 98.20x5.45 | 919341183 | 92.07+11.72 | 90.53+1043 | 7.97£13.56 | 65.60:18.24
h i 89.5017.03 92.1816.64 89.05£7.24 85.1018.62 88.0217.85 86.5618.01 74.64£0.77
Cylinderbands 65.6746.35 66244591 65.44+5.00 63.72+6.93 67.0945.75 68.7424.54 67.63+4.50

Memographicmasses 82.40%3.18 79.0913.49 79.16:4.17 77.2614.19 81124324 81.2943.32 80.84£3.39

Horsecolic 79.7336.71 85.8314.67 82.60£5.76 80.73£7.04 77.6916.57 79.4136.53 76.67£6.92
K-Nearest
Labor 82.33£16.57 | 90.10£10.74 | 98.93:4.88 | 92.57110.30 | B5.67£13.38 | B2.83£16.68 | 75.63£17.15

84.03+7.83 | 86.14%7.92 | 86.04+793 | B5.20:848 | 85873770 | B2.3445.00 | 84.37:B.25
£8.2245.57 | 70044584 | 6835+507 | 70.85:575 [ 75094584 | 75.074#5.29 | 77.48+5.82

Echocardiogra
Cylinderbands

Memogr i 74.6913.78 76.57£3.74 74.64£3.69 75.10£3.76 75.3424.07 73.0123.80 75.3914.02

Horsecolic 77.25%5.98 | B1.64%5.90 | 79.64+644 | 77774556 | 77583614 | 76.3437.64 | 73.4635.77
148

Labor 71.67£15.38 | 89.20:11.50 | 84.60413.59 | 83.33213.83 | 86.83£14.58 | 81.40:14.10 | B87.80i146

Echocardiogra 85.77+7.17 | 89.31#7.09 | 8681766 | B540:B.28 | 8653837 | 83.707.74 | BA.14%8.14
Cylinderbands 68.5246.10 70.135.83 68.37+6.34 71.96%5.85 71.7616.10 72.33£5.95 | 73.43:6.07
Memogr i 1.3843.14 83.00£3.03 82361342 81.10£3.24 81.853.31 81.1343.33 | 82.0813.40
85.1545.78 | 86.3625.30 | 8454+622 | 83.84:6.17 | 82.8046.22 | 83.85%575 | B2.74%5.86

Horsecolic

In the below-mentioned table, our method performs com-
parable or better in most of the datasets.

In table 7, F-Measure of proposed algorithm and single,
and MI technique is presented. The proposed approach also
has better F-measure values in most of the datasets.

In table 8, AREA under ROC of proposed algorithm, single
and MI techniques are presented. The AREA under ROC
approach is high on most of the datasets.

These experimentation results of different data sets are
evaluated on different benchmarks evaluation methods. This
has shown the worth of proposed approach when compared
with well-known missing data imputation algorithms. These
results indicated that GA is a suitable method for the imputa-
tion of missing values.
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TABLE V. COMPARISON OF GA WITH DIFFERENT TECHNIQUES

BASED ON CLASSIFIERS PRECISION RESULTS

NB-Tree
Datasets With missing Ga MI | Mesn | M Max | Zero
value filled filled filled filled filled filled
Labor 0.58 058 | 0.54 0.50 0.56 0.E7 0.53
Echocardiogram 0.62 0.81 | 0.73 0.63 0.68 0.61 0.65
Cylinderbands 0.60 066 | 0.60 0.68 0.68 0.68 0.74
\graphicmasse: 0.EL 08D | 0.B2 | 0.BD 0.EL 0.54 0.EL
Horsecolic 0.54 0.88 | 0.57 0.55 0.56 085 | 0.55 |
PART
Labor 0.56 055 | 0.84 0.58 0.58 0.E7 0.58
Echocardiogram 0.68 074 | 064 0.67 061 0.60 0.63
Cylinderbands 0.66 0.66 | 064 0.68 0.68 0.67 0.70
\graphicmasse: 0.EL 0.EL 0.53 0.EL 0.8z | 082 | 0.8z |
Horsecolic 0.56 0.87 | 0.85 0.53 0.54 083 | 0.53 |
JRIP
Labor 051 083 | 0.82 051 0.54 051 0.56
Echocardiogram 0.55 0.63 0.4 0.58 0.58 0.58 0.55
Cylinderbands 0.62 0.64 0.63 0.67 0.67 0.67 L.E6E
graphicmasse: 0.52 078 | 0.84 0.5L 0.53 0.53 0.53
Horsecolic 057 &7 | 0.8 0.55 0.56 0.55 0.55
NATVE Bayes
Labor 0.53 058 | 0.54 051 055 | 032 | 08 |
Echocardiogram 0.68 0.76_| 0.57 0.60 0.68 0.62 0.14
Cylinderbands 0.63 085 | 0.8 0.58 0.67 0.73 0.57
graphicmasse: 0.78 073 | 075 0.72 0.78 0.77 0.78
Horsecolic 0.54 0.89 | 0.85 0.54 0.55 0.52 0.54
K-Nearest
Labor 0.55 0.6 | 0.89 053 | 088 | 088 | 0.58 |
Echocardiogram 0.56 062 | 0.8 0.57 0.54 0.51 0.58
Cylinderbands 0.66 088 | 0.4 0.68 074 074 0.76
graphicmasse: 072 073 | 0.2 0.73 0.73 0.70 0.73
Horsecolic 0.78 0.85 | 0.65 0.53 0.52 0.5L 0.50
-43
Labor 079 0.EE 0.51 0BE | O0.88 | DEBE | 0OB% |
Echocardiogram 0.63 070 | 065 0.61 0.65 0.57 0.61
Cylinderbands 0.66 068 | 0.65 0.70 0.70 071 0.72
\graphicmasse: 0.EL 0.EL 082 | 0.8z | DB | DEZ 0.54
Horsecolic 0.55 0.87 | 0.8 0.E7 0.85 057 0.56
TABLE VI COMPARISON OF GA WITH DIFFERENT TECHNIQUES
BASED ON CLASSIFIERS RECALL MEASURES
B Tree
Datasets TWith missing GA I Mean Min Max Zero
value filled | filled | filled | filled | filled | filled
Labor 0.54 0.56 | 0.57 050 | 085 | 0.85 0.5
Echocardiogram 0.79 0.92 0.51 0.75 0.87 0.72 .BS
oylinderbands 0.66 055 | 0.2 0.53 0.56 0.5 0.45
Memographicmasses 0.80 0.85 0.82 0.52 0.81 079 0.82
Horsecolic 0.51 085 | 088 | 0.80 0.50 0.51 0.50
PART
Labor 0.5L 088 | 088 | 0.3 0.56 0.54 0.58
Echocardiogram 0.68 0.73 .64 0.64 0.60 0.61 0.63
oylinderbands 0.58 0.60 | 061 0.64 0.64 0.63 0.64
icmasses 0.50 0EL | 078 0.78 0.82 077 0.78
Horsecolic 0.52 0.8 | 0.85 0.5+ 0.54 08 | 0.83 |
TRIF
Labor 0.50 082 | 0.85 0.57 0.58 0.55 0.55
Echocardiczram 0.EL 0.80 | 0.80 | 0.82 | 0.85 0.8L 0.83
oylinderbands 0.58 057 | 0.8 0.57 0.58 0.5 0.60
\graphicmasse: 0.E0 0.54 0.B0 | 0.B0 | C.B3 0.79 0.50
Horsecolic 0.8 080 | 058 | 088 | 088 0.57 058
NANVE Bayes
Labor 0.92 10D | 085 | D88 | DE5 0.5 0.58
Echocardiogram 0.7 [ETY 0.E7 0.78 0.e0 078 0.15
oylinderbands 0.48 042 | 033 0.51 0.45 0.33 0.30
graphicmasse: 0.86 075 | 0.8 0.53 0.78 0.55 0.53
Horsecolic 0.B5 0.89 0.6 0.56 .78 0.57 .78
K-Nearest
Labor 0.75 050 | 0,58 | 088 | 052 | 0.8 0.74
Echocardiogram 0.57 072 | 0.58 0.58 0.62 0.64 0.57
cylinderbands 0.52 0.54 0.58 0.58 0.4 0.65 o070
Zraphicmasse: 0.74 076 | 0.75 0.75 0.73 0.73 0.75
Horsecolic 0.59 0.57 0.8F | O0.82 | 0.3 | 0.3 0.78
T3
Labor 0.51 L0D | 0.88 | 0.59 0.54 0.55 0.55
Echocardiogram 0.73 0.83 | 0.5 0.68 0.68 0.62 0.66
cylinderbands 0.55 0.57 0.55 0.58 0.58 0.58 0.62
gl iCmasse! 0.72 083 0.78 0.77 0.83 0.77 0.77
Horsecolic 0.53 052 | 088 | 0.88 0.57 085 | 0.88 |

VI. CONCLUSION AND FUTURE WORK

Data mining is an active area of research and in this area
data is the most vital and valuable asset. Without applying
automatic data mining techniques and preprocessing methods
it is difficult to effectively analyze large amounts of data.
Researchers are interested in finding efficient and accurate
technique/method that cleans dirty and noisy data so that

Vol. 8, No. 3, 2017

TABLE VIL COMPARISON OF GA WITH DIFFERENT TECHNIQUES
BASED ON CLASSIFIERS F-MEASURES
NB-Tree
Datasets With | GAflled | MI Mean Min Max Zero
missing filled filled filled filled filled
value
Labor 0.5 0.56 058 058 0,85 0.5 052
Echocardiogram 0.67 %) [ 0.64 073 0.63 [
Cylinderbands 0.62 0.50 0.50 058 0.50 0.57 0.53
graphicmasse: 0,50 0.52 051 051 051 0.EL 051
Horsecolic 0.87 0.87 0.87 0.87 0.E8 0.88 0.87
PART
Labor 051 0.55 0.50 058 0,85 0.53 0.57
Echocardiogram 0.65 0.70 0.53 0.62 0.57 0.58 0.50
Cylinderbands 0.62 0.53 0.62 0.66 0.56 0.64 0.56
graphicmasse: 0.50 0,51 051 0.78 0,50 0.79 0,50
Horsecolic 3 3 0.5 0.3 0.5 0.53 0.3
JRIF
Labor 0.50 0.50 0.8 085 085 0.57 0.3
Echocardiogram 0.53 0.71 0.56 0.6 0.56 0.64 0.6
Cylinderbands 058 0.50 0.50 051 0.62 0.62 0.63
graphicmasse: 051 0.52 0.52 0,50 051 0.EL 051
Horsecolic 0.57 0.88 0.57 0.56 058 056 0.57
NATVE Bayes
Labor 052 0.55 0.5 0.5 0.53 [EN 0.65
Echocardiogram 0.75 OLEL 074 0.65 0.75 067 013
Cylinderbands 0.54 0.51 044 0.5 0.53 0.45 0.43
graphicmasse: 0.82 0.77 0.78 0.77 0.50 0.5L 0,50
Horsecolic 0.5 0,55 0.56 0,85 0.52 0.5L 051
K-Nearest
Labor 0.3 052 0.55 055 058 055 0.78
Echocardiogram 0.53 0.64 0.57 0.56 0.50 0.54 0.5
Cylinderbands 058 0.50 0.50 0.62 068 0.68 0.72
graphicmasse: 0.73 0.74 0.73 0.73 0.74 071 0.74
Horsecolic 0.3 0.56 0.5 0.52 0.52 051 0.78
B
Labor 0.78 0.53 0.8 0.57 0.50 0.55 0.78
Echocardiogram 0.53 0.72 0.50 051 0.53 0.56 058
Cylinderbands 058 051 058 0.6 0.6 0.64 0.66
graphicmasse: 0.50 0.52 051 0.78 0,50 0.79 0,50
Horsecolic 058 0.50 058 0.57 0.56 0.57 0.56
TABLE VIIL. COMPARISON OF GA WITH DIFFERENT TECHNIQUES
BASED ON AREA UNDER ROC
NB-Tree
Datasets With GAfilled | MI Mean Min Max Zero
missing filled filled filled filled filled
value
Labor 0.58 L00 | 085 | 088 0.54 0.56 0.52
Echocardiogram 052 0.54 052 058 0.53 058 052
Cylinderbands [%) [%7) [%) 073 073 [%7) 073
graphicmasse: 058 050 | 0.5% | 058 058 058 0,85
Horsecolic 0.5 0,55 0.5 0.5 0,85 0.5 0.3
FART
Labor 0.78 0.51 058 0.57 0.78 051 051
Echocardiogram 0.53 0.50 0.50 058 058 058 058
Cylinderbands 0.75 072 073 [%3 0.75 0.75 0.76
graphicmasse: 058 0,55 058 0.57 058 0.57 058
Horsecolic 0.87 0.B5 0.79 0.78 0.79 0.78 0.77
JRIF
Labor 3 0.56 0,85 051 0.76 0,85 0.76
Echocardiogram 0.3 3 0.3 0.3 0,85 0.3 0.5
Cylinderbands 0.66 0.8 0.67 0.70 0.7 0.7 072
graphicmasse: 0.5 0.56 0,85 0.5 0.5 0.5 0.5
Horsecolic 0.52 0.5 051 0,50 0.52 051 051
ATVE Bayes
Labor 058 1.00 0.6 0.5 058 0.50 0,50
Echocardiogram 0.6 0.57 0.6 051 0.6 0.53 0.71
Cylinderbands [%) [%) [ 0.62 [ [%7) 073
graphicmasse: 0,55 0.56 0.56 0,85 058 058 058
Horsecolic 0,85 0.53 0.56 0.5 0.5 0.3 051
K-Nearest
Labor 058 051 051 0.75
Echocardiogram 0.83 087 0.82 072
Cylinderbands 0.65 0,65 0,65 0.75
graphicmasse: 0.78 0.78 7 0.80
Horsecolic 0.73 0.80 0.71
Labor 0.71 055 | 0.88 | 0.52 0,85
Echocardiogram 0.93 0.93 | 0.BE | 0.EE 0.57
Cylinderbands [%) 072 0.62 072 074
graphicmasse: 0.57 0.57 0.56 0,85 0.57
Horsecolic 0.5 0.5 0.3 051 0.78

achieve higher accuracy rate, are comprehensible and can be
learned in reasonable time, even for large databases.

In this paper, we addressed the problem of missing data
imputation. First, we have elaborated on the importance of
clean data (complete) in KDD. We have proposed an evo-
lutionary technique for filling missing data on the basis of
good estimation using GAs. Our main objective was to embed
population-based search mechanisms to explore more search
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space along with exploitation. The datasets used are standard
datasets having by default missing values. We have also
demonstrated that proposed technique works well for datasets
with a greater percentage of missing values also for datasets
where attributes are having a large range of distinct values, as
GA gets into real play where there is space for more and more
combination of different values. In future, we like to extend
our algorithm to the domain of Noise reduction/removal.
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