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Abstract—Ameliorating the performances of speech recog-
nition system is a challenging problem interesting recent re-
searchers. In this paper, we compare two extraction methods of
Mel Frequency Cepstral Coefficients used to represent stressed
speech utterances in order to obtain best performances. The
first method known as traditional is based on single window
(taper) generally the Hamming window and the second one
is a novel technique developed with multitapers instead of a
single taper. The extracted features are then classified using the
multiclass Support Vector Machines. Experimental results on the
SUSAS database have shown that the multitaper MFCC features
outperform the conventional MFCCs.
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I. INTRODUCTION

Automatic stress speech recognition have been used in sev-
eral applications such as human to machines communications,
craft voice communications, medicine and psychology. Stress
refers to human response to different factors such as workload
task, environmental condition and health. Stress has an impact
in the performance of a person in his daily life. It affects the
brain, the muscles, the eyes, the cardiovascular system and
especially the speech production system.

Stress recognition systems are composed of two important
steps which are feature extraction and feature classification.
In literature, different classifiers have been used including
Hidden Markov Model(HMM) [1] , Artificial Neural Network
systems(ANN) [2], Gaussian Mixture Model(GMM) [3] and
Support Vector Machines (SVM) [4].

In last years, extracting the most suitable features set for
stressed speech recognition has been an important subject in
many researches. Feature extraction aims to obtain a compact
representation of speech signals. Studies have proposed dif-
ferent acoustic features to represent the speech under stress
signals. These features are essentially Pitch, energy, [5], Linear
Predictive Cepstral Coefficients(LPCC) [6] and Mel Frequency
Cepstral Coefficients (MFCC). Different features have been
extracted in [7] including pitch, energy, formants and MFCC
from the stressed speech.

The MFCC features are the most common used features in
speech processing because they are based on human auditory
system. Usually, MFCCs are computed using a windowed
periodogram via the Discrete Fourier Transform (DFT) [8]. It

has been demonstrated that the spectrum estimate obtained has
a high variance despite it low bias. A solution was proposed to
reduce the spectral variance using multitaper spectrum estimate
instead of the single windowed periodogram [9], [10]. In
order to have a low variance spectrum estimate, the multitaper
method applied a set of orthogonal tapers to the speech signal
and an average sum of the sub-spectra are then calculated.

The multitaper approach have been used in several domains
including geophysical applications [11], speaker verification
[12], [13] and emotion recognition [14], [15] and it has been
shown to improve the performance and robustness of different
systems. However, this method has not been used in stress
speech recognition applications. So, the aim of this work is to
investigate multitaper MFCC features (MMFCC) in order to
improve the performances of the stressed speech recognition
system. We are also interested to compare different meth-
ods of multitapering including Thomson method, Multipeak
method and SWCE (Sinusoidal Weighted Cepstrum Estimator)
method.

This paper is structured as follows: Section II present the
stressed speech recognition system proposed in this work. Sec-
tion III presents the process of multitaper MFCC extraction and
Section IV describes the multitaper spectrum estimate method.
Section V deals with multiclass Support Vector Machines
approaches. Results and experiments are given in Section VI.
Finally, conclusion is presented in Section VII.

II. SYSTEM FRAMEWORK

The system proposed for stress speech recognition is il-
lustrated in figure 1. First, we extract MFCCs and MMFCCs
from the stressed speech signals of the SUSAS database. These
features are then divided into training and test sets. Second,
the classification is realized based on multiclass SVM methods
which are One-Versus-Rest(1vR), One-Versus-One(1v1) and
Directed Acyclic Graph (DAG). The performance of the sys-
tem is evaluated with accuracy rate using the test set.

III. MULTITAPER MFCCS EXTRACTION

In this section, we describe the extraction procedure of
the multitaper MFCC features in order to compare it to the
traditional extraction technique of MFCC features [8].
The traditional MFCC coefficients can be obtained following
the same steps described for MMFCCs and using a special case
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Fig. 1: System framework

of multitaper spectrum estimate which leads to a Hamming
windowed spectrum.

Fig. 2: Extraction procedure of multitaper MFCC

IV. MULTITAPER SPECTRUM ESTIMATE

The most used method for spectrum estimation in speech
processing is the windowed periodogram known also as Ham-
ming windowed DFT spectrum [17]. This spectrum estimate
can be formulated as:

Ŝ(f) = |
N−1∑
j=0

w(j)s(j)e
−2iπf
N |2 (1)

where f ∈ {0, 1, ....., N − 1} is the frequency bin index,
[s(0), s(1), ....., s(N−1)] is a speech frame with length N and

w(j) denotes a window function. Equation 1 is also called a
single-taper periodogram.

The use of a single taper for spectrum estimate reduces
the bias (the difference between the estimate spectrum and
the real spectrum) but causes a problem of discarding a
significant part of the signal. Indeed, the spectral estimate
will have high variance. This variance can be reduced by
using multitaper method for spectrum estimate. The multitaper
spectrum estimate is calculated by:

ŜMT (f) =

M∑
p=1

λ(p)|
N−1∑
j=0

wp(j)s(j)e
− 2iπif

N |2 (2)

where wp is the pth data taper (p = 1, 2, ......,M ), λ(p) is
the weight of the pth taper and N is the frame length.
The tapers wp are chosen to be orthonormal such as:∑

j

wp(j)wq(j) = δpq =

{
1 if p = q
0 otherwise. (3)

So, the multitaper spectrum is the weighted sum of sub-
spectra. The single taper power spectrum estimate can be
obtained when we set p = M = 1 and λ(p) = 1. The
windows functions (tapers) of the multitaper approaches are
taken so that the sub-spectra have uncorrelated estimation
errors. Indeed, a low variance estimate is obtained when we
average these uncorrelated sub-spectra. In literature, different
multitaper methods have been proposed: Thomson multita-
per [18], Multipeak multitaper [19] and SWCE (Sinusoidal
Weighted Cepstrum Estimator) multitaper [20]. The choice
of tapers affect significantly the calculated spectrum estimate.
These tapers should be resistant to spectral leakage.

V. CLASSIFICATION

Different techniques have been used in the literature to
classify stressed states in speech such as Artificial Neural
Networks [2], Gaussian Mixture Models [3], Hidden Markov
Model [1], and Support Vector Machines [4].

Support vector machines (SVM) are widely used as learn-
ing machine classifiers in the past decade due to their best
performances compared to traditional mythologies used in
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solving signal processing problems. The SVM have showed
to perform other well-known classifiers in stress and emotion
recognition and was used in many studies [21], [22].

In this work, we are interested to SVM to classify mul-
titaper MFCCs into appropriate stress classes. The principle
of SVM is to find an optimal hyperplane that separates two
classes using the maximized margin criteria. The SVM were
originally implemented to solve problems of binary classifi-
cation. But, real applications oblige the researchers to extend
SVMs to multiclass approaches [23]. Different methods have
been proposed including one-versus-rest (1vR), one-versus-one
(1v1) and directed acyclic graph (DAG).

The 1vR approach is the simplest and the oldest one [24].
It builds k SVM (one per class). The 1vR SVM is based on
training the jth SVM with all the examples of this jth class
considered as positive ones and all other examples as negative
ones. It can also be used to discover the reject of example
which does not belong to any of the k classes. However, this
approach is almost criticized because of its asymmetry due
to the fact that each hyperplane is training with a number of
negative examples more important than the number of positive
ones. This problem can be resolved by the use of the 1v1
method which constructs k(k − 1)/2 binary classifiers (k the
number of classes) [25]. Despite that the 1v1 uses a bigger
number of hyperplane in the training phase than the 1vR, this
method is often faster. The DAG SVM is trained in the same
way of training the 1v1 method [26]. However, a rooted binary
directed acyclic graph is used during the test phase. This graph
has k(k−1)/2 nodes where each node is a binary SVM. This
method has been developed in order to resolve the problem of
areas of indecision caused by the OAO approach. Moreover, it
has been demonstrated that the DAG SVM is faster than the
1v1 and the 1vR methods.

The SVM approaches are based on kernels. In literature,
there are some kernels which are widely used and are consid-
ered as standard kernels. These kernels are linear, polynomial
and gaussian. In this work, we used a polynomial and a
Gaussian kernel which are defined as follows:

KGaussian(x, xi) = exp(−‖x− xi‖
2

2σ2
) (4)

KPoly(x, xi) = (a∗ < x, xi > +b)d (5)

VI. EXPERIMENTS

A. Stress Corpus

The stressed database SUSAS (Speech under Simulated
and Acted Stress) [27] consists of stressed speech samples
recorded under simulated environment and acted environment.
In this study, we used only the speech utterances recorded
under simulated stress conditions. This domain consists of
speech uttered by 9 speakers having 3 different dialects and
contains 10 different stressed styles. SUSAS comprises a set
of 35 aircraft communication words. Each speaker is reading
these words twice. The sampling frequency is 8 Khz.

Four states of speech under stress: Neutral(N), Angry(A),
Loud(Ld) and Lombard(Lb) are considered. In our experi-
ments, speech utterances of 8 speakers are considered that to

say that 2240 isolated words are used in the training and the
test phases. The two thirds of data are used as training set and
the third of this data is used for test.

B. Experimental setup

The performance of multitaper MFCCs for speech under
stress recognition is evaluated using the SUSAS (Speech
Under Simulated and Actual Stress) database. The MFCCs
and MMFCCs features are extracted from the data collected
from the isolated words which represent the four stress states
examined.

For a comparative study, we implement the multitaper
approach with different types of tapers (described in Table I)
in order to extract multitaper MFCC features. These methods
are Thomson, Multipeak and SWCE. The classical MFCC
features are computed using the Hamming window. The mul-
titaper methods were used by varying the number of tapers
(2 ≤ p ≤ 8). In the experiments, the speech signals were
segmented into frames of 10ms lengths. After that, each frame
was weighted by a single taper or multitaper method. The
different multitaper methods Thomson, Multipeak and SWCE
were generated as described in [13].

For evaluation, we have used multiclass SVM approaches
including 1vR, 1v1 and DAG. The multiclass SVMs ap-
proaches were implemented using the LIBSVM toolbox for
Matlab. The different methods are evaluated with two kernels:
polynomial and gaussian. The RBF kernel parameters (c, σ)
are calculated using the cross-validation procedure [28] where:

c = [2−15, 2−14, ..., 214, 215] (6)

and
σ = [2−15, 2−14, ..., 214, 215] (7)

C. Results

In this study, a recognition system for stressed speech is im-
plemented using MFCCs and MMFCCs features. Stress states
are recognized with three multiclass SVM classifiers including
1vR, 1v1 and DAG approaches applied with polynomial and
gaussian kernels.

The results of the first classification approach are pre-
sented in table II. Comparing the classification rates obtained
with traditional MFCCs to those obtained with the multitaper
MFCC features computed with the three multitaper methods,
we can notice that when we use the polynomial kernel, the
classification accuracies are improved ranging from 80.05%
to 93.44%. These results depend on the multitaper method
used and the number of tapers. However, the use of the
RBF kernel with MMFCC ameliorate the performance of the
stressed speech recognition system in same cases. The best
classification rate of 99.44% is obtained with the application
of Thomson multitaper method with a number of tapers p = 3.

The same experiments were conducted with the two other
multiclass SVM approaches: 1v1 and DAG. Results of the
second and the third SVM approaches are illustrated in table
III and table IV. Indeed, for the 1v1 SVM method, the
classification accuracies obtained with the polynomial kernel
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TABLE I: Stress Speech Recognition Systems based on Single Taper and Multitaper MFCCs

Appraoch Description

Hamming single taper MFCCs using Hamming window

Thomson Multitaper MFCCs using dpss tapering

Multipeak Multitaper MFCCs using multipeak tapering

SWCE MFCC are computed from sinusoidal weighted (i.e., sine tapered) spectrum estimate

TABLE II: Classification Accuracy using 1vR/SVM

Feature Number of tapers Polynomial Gaussian

MFCC 1 76.94 99.06

MMFCC-Thomson 2 93.30 98.92

3 92.40 99.44

4 88.62 97.72

5 89.42 99.19

6 89.95 98.52

7 90.46 98.61

8 87.95 99.19

MMFCC-Multipeak 2 92.10 99.33

3 84.47 97.32

4 92.36 99.33

5 80.05 98.12

6 91.70 98.52

7 81.84 98.96

8 86.63 98.26

MMFCC-SWCE 2 93.44 98.79

3 92.77 99.19

4 91.29 98.79

5 91.16 77.64

6 88.89 99.19

7 91.03 98.25

8 87.81 98.39

are in [74.44%, 95.04%] and with the RBF kernel in [97.99%,
99.30%].

We can remark that both kernels gives important results
but the improvement is very remarkable with the polynomial
kernel. The accuracy has passed from 50.88% for classical
MFCC to 95.05% with the Multipeak multitaper method used
with a number of tapers p = 2. This amelioration is also
obtained when we applied the DAG SVM method. The best
results are obtained when we use the gaussian kernel associated
to MMFCC computed with Multipeak approach (p = 7).

From the three tables representing the results, we can
conclude that the use of multitaper methods to extract MFCC
features improve the performances of the stressed speech
recognition system. An important improvement exceeding 45%
is achieved with the polynomial kernel but the best accuracies
are often obtained by the application of the gaussian kernel
with the three multiclass SVM approaches.

VII. CONCLUSION

In this paper, we have used the multitaper method in order
to extract MFCC features for stressed speech recognition. The
windowed DFT used in the traditional extraction process is
replaced by multitaper spectrum estimation. The evaluation of
the stressed speech recognition system is realized on SUSAS
database using multiclass SVM approaches. The results show
that there is an improvement in the performances of the im-
plemented stressed speech recognition systems with multitaper
MFCCs.

For future work, multitaper approach can be useful in
extraction of other features from the stressed speech such
as multitaper gammatone frequency cepstral coefficients and
multitaper PLP in order to improve the recognition accuracy.
Also, we can test the multitaper MFCC with other classifica-
tion approaches.
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TABLE III: Classification Accuracy using 1v1/SVM

Feature Numbre of tapers Polynomial Gaussian

MFCC 1 50.80 98.79

MMFCC-Thomson 2 92.50 98.66

3 91.29 99.30

4 91.96 99.19

5 90.62 98.39

6 89.02 98.79

7 88.53 99.03

8 86.74 98.39

MMFCC-Multipeak 2 95.04 98.52

3 75.36 97.99

4 92.77 99.19

5 75.10 98.92

6 92.10 98.92

7 74.44 99.48

8 89.17 98.93

MMFCC-SWCE 2 92.77 99.19

3 92.77 98.92

4 93.03 98.92

5 91.56 98.52

6 89.29 99.06

7 88.62 98.66

8 90.36 98.92

TABLE IV: Classification Accuracy using DAG/SVM

Feature Number of tapers Polynomial Gaussian

MFCC 1 49.73 99.19

MMFCC-Thomson 2 93.97 98.92

3 93.78 99.30

4 91.29 98.66

5 90.36 98.39

6 89.15 98.79

7 87.70 99.30

8 86.61 98.52

MMFCC-Multipeak 2 95.04 98.25

3 78.44 99.19

4 92.36 98.52

5 74.96 97.99

6 91.03 98.79

7 75.87 99.61

8 90.77 98.26

MMFCC-SWCE 2 93.03 98.92

3 91.83 99.19

4 92.23 98.52

5 90.89 99.19

6 91.03 99.46

7 90.62 99.19

8 90.49 99.06
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