
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

1 | P a g e

www.ijacsa.thesai.org

Teaching Software Testing using Data Structures

Ingrid A. Buckley

Department of Software Engineering

Florida Gulf Coast University

Fort Myers, FL, USA

Winston S. Buckley

Department of Mathematical Sciences

Bentley University

Waltham, MA, USA

Abstract—Software testing is typically a rushed and neglected

activity that is done at the final stages of software development.

In particular, most students tend to test their programs manually

and very seldom perform adequate testing. In this paper, two

basic data structures are utilized to highlight the importance of

writing effective test cases by testing their fundamental

properties. The paper also includes performance testing at the

unit level, of a classic recursive problem called the Towers of

Hanoi. This teaching approach accomplishes two important

pedagogical objectives: (1) it allows students to think about how

to find hidden bugs and defects in their programs and (2) it

encourages them to test more effectively by leveraging data

structures that are already familiar to them.

Keywords—Software Testing; Data Structures; Abstract Data

Type (ADT); Unit Testing; Performance Testing; Stacks; Binary

Search Tree; Towers of Hanoi

I. INTRODUCTION

In general, software testing is a hugely neglected area in
the software development life cycle. This is evident in
students’ approach to testing. Students often perform very
little testing to find bugs or defects in their software projects.
Even though these projects are group oriented, consisting of at
least two members, testing is rarely ever an automated,
planned or systematic activity. Inadequate testing is a major
issue in the software development field and bugs and defects
account for huge losses and rework when testing is neglected.
At the course level, it is important to motivate students to take
a responsible approach to software development by integrating
proper testing with the aim of finding and correcting bugs and
errors.

Data Structures [8] is a common course that is offered in
most Computer Science, Computer Engineering and Software
Engineering degree programs. However, software testing is
not always a required course. The idea behind testing may
seem simple to most students. However, in general, students
only manually test their programs using inputs they know will
always produce a correct output, instead of trying to break,
find bugs or flaws in the logic of their programs [1,2,3,4,].
This phenomenon is known as confirmation bias [3] in
software testing. It may be due to the fact that, finding bugs or
defects, means that they will need to spend more time to
optimize their programs, and time is something students are
typically short of.

One of the goals of this paper is to share a relatable
teaching approach that will enable students to write automated
tests by considering the fundamental properties and
constraints of a problem. It introduces a straight forward

approach to unit testing by utilizing common data structures
that are often used in programming and software development.
By using data structures, along with well-known problems that
are introduced earlier in the curriculum or in a prerequisite
course, students can seamlessly learn the principles and
application of software testing without the added burden of
learning new unfamiliar content. The rest of the paper is
organized as follows. Section 2 presents a fundamental
overview of Stacks and Binary Trees. Section 3 explains how
to test the fundamental properties and constraints of a stack,
and binary search tree. Section 4 presents the Towers of Hanoi
which is a classic recursive problem to illustrate performance
testing at the unit level. Section 5 concludes, after discussing
future work.

II. USING DATA STRUCTURES FOR SOFTWARE TESTING

As stated earlier, software testing is not always a required
course in most degree programs. However, it is a fundamental
aspect of software development and is typically introduced
briefly in the later stages of most Software Engineering
courses.

Often times, students become overwhelmed with the
software testing tools they need to learn to conduct automated
testing. They often struggle with the concept of testing to find
bugs rather than just testing to show that their software is
operating perfect on a given set of inputs. To address this
issue, a wide variety of software testing problems are given to
students, and it becomes immediately apparent that they do
not quite understand the fundamental properties or dynamics
of testing to find bugs. A natural approach is to utilize
Abstract Data Types (ADT) to teach them this type of testing
[8].

Abstract Data Types [8] are taught in Data Structures, and
most students learn about ADTs in the previous semesters to
aid and develop their programming skillset and knowledge. It,
therefore, makes perfect sense to utilize ADTs in teaching
software testing, because doing so provides continuity and
allows students to concentrate more on learning and applying
testing principles.

Stacks are a last-in-first-out (LIFO) data structure. This
fundamental property is easy for students to understand and
test. In a stack, the element which is placed (inserted or added)
last, is accessed (removed) first. Similarly, Binary Search
Trees (BST) have a fundamental property which states that all
elements in the left sub-tree must be less than the root, and all
the nodes in the right sub-tree must be greater than or equal
the root node. The Towers of Hanoi is a recursive problem
that students are introduced to in Data Structures. This

This material is based upon work supported by the National Science
Foundation under Grant number DUE-1562773

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

2 | P a g e

www.ijacsa.thesai.org

problem involves moving a given number of disks from peg A
to peg C using peg B as auxiliary, where the disks can be
moved successfully from one peg to another in a minimum
number of steps. Because of the fundamental constraints of
these two data structures, and the nature of the Towers of
Hanoi problem, in particular, they allow students to better
understand how to effectively create test cases, and to ensure
that their constraints are enforced. This exercise will be
explained further in Section 3.

III. THE SOFTWARE TESTING APPROACH

Students are first introduced to testing at the unit level [6]
using Eclipse1 and JUnit2. These tools allow them to develop
automated test methods and test classes [7, 8]. Unit testing is a
software development process in which the smallest testable
parts of a program are individually and independently
analyzed for proper operation. Unit testing focuses more on
finding bugs in objects, functions and classes. In particular,
students are taught how to test Stacks and Binary Search Trees
to ensure that their fundamental properties are not violated.
They are also introduced to performance testing at the unit
level.

A. Stacks

The dynamics of a stack are relatively simple [8]. Stack
operations may involve initializing the stack, using it, and then
de-initializing it. A stack has two basic primary operations: (a)
push() – pushing (storing) an element on the stack; and (b)
pop() − removing (accessing) an element from the stack.
Additionally, other supporting operations that must be defined
to efficiently use a stack are:

 peek() − get the top data element of the stack, without
removing it.

 isFull() − check if the stack is full.

 isEmpty() − check if the stack is empty.

Fig. 1. Example of stack dynamics

Fig. 1 shows the basic idea behind a stack. A new element
is always added at the top of the stack using the push()
operation. The element at the top of the stack is always
removed with the pop() operation.

B. The Stack Test

Students are asked to create a test that will effectively test
the properties of a stack. This is simple to test; it involves

adding a bunch of elements on a stack, and ensuring that they
are removed in the correct order.

1http://www.eclipse.org

2http://junit.org/junit4/

For example, if 1, 2, 3 and 4 are pushed unto a stack one
at a time, and if the stack is popped (the element at the top of
the stack, is removed first, one at a time) until it is empty, then
this means the stack is adhering to its fundamental LIFO
property. This process is illustrated in Fig. 2.

Fig. 2. Stack Unit Test

In this example 1 was pushed on the stack first; this means
that 1 will be the last item to be popped from the stack.
Similarly, 3 was the third element to be pushed on the stack.
Therefore, 3 must be the second element to be popped from
the stack. The last element that was added to the stack is 4.
Thus, the first pop operation should remove an element with
the value 4. In other words, the sequence and value of
elements added must adhere to the LIFO constraint. In the
example given, notice that each element holds a unique value
to better illustrate the basic dynamics of this test. If the first
pop operation removed an element with a different value, then
clearly the stack is not adhering to its fundamental LIFO
constraint.

C. Binary Search Tree (BST)

A Binary Search Tree [8] is a finite set of elements that is
either empty or partitioned into three disjoint subsets. The first
subset contains a single element called the root of the tree. The
other two subsets are themselves binary search trees, called
left and right sub-trees of the original tree. A left or right sub-
tree can be empty; each element of a binary tree is called a
node. Fig. 3 illustrates a binary search tree.

Fig. 3. Binary Search Tree

http://www.eclipse.org/
http://junit.org/junit4/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

3 | P a g e

www.ijacsa.thesai.org

The fundamental properties of a binary search tree are: (i)
all the nodes in the left sub-tree must be less than the value of
the root node; and (ii) all the node values in the right sub-tree
must be greater than or equal to the value of the root node.

Traversal [8] is a process that visits all the nodes in the
BST in a particular order. Note that any node can be a root of
the entire tree or a sub-tree. There are three (3) ways to
traverse a BST; they are:

 Preorder traversal algorithm:

– Visit the root

– Traverse the left sub-tree in preorder

– Traverse the right sub-tree in preorder

 Postorder traversal algorithm:

– Traverse the left sub-tree in postorder

– Traverse the right sub-tree in postorder

– Visit the root

 Inorder traversal algorithm:

– Traverse the left sub-tree in inorder

– Visit the root

– Traverse the right sub-tree in inorder

D. The Binary Search Tree Test

Students are asked to create a test that will effectively test
the properties of a BST. A simple way to test the BST
property (where all nodes in the left sub-tree must be less than
the root; and all nodes in the right sub-tree must be greater
than or equal to the root node) is to perform an inorder
traversal on the binary search tree.

For example, given the BST in Fig. 3, an in order traversal
would visit each node as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
Notice that all the node values (0, 1, 2, 3, 4, 5, 6,) in the left
sub-tree are all less than the value (7) in the root node.
Similarly, all the node values (8, 9, 10) in the right sub-tree
are greater than or equal to the root node value (7). Therefore,
doing an in order traversal is a simple and effective way to test
that a given tree is actually a Binary Search Tree.

The stack and binary search tree examples are just two of
many ADTs that can be used to teach the fundamentals of
testing at the unit level to uphold fundamental constraints.

IV. PERFORMANCE TESTING AT THE UNIT LEVEL

In unit testing [5], sometimes the performance of a given
method or class is tested to determine its efficiency in solving
a problem. Exhaustive testing is expensive (and time
consuming). Therefore, evaluating the efficiency of a solution
can be used as a performance test at the unit level. Recursion
[8] is a topic that is covered in Data Structures. Essentially,
recursion is used where a large problem can be broken down
into smaller repetitive ―sub-problems‖. A recursive method
calls itself to perform those sub-problems, and eventually the
method will come across a sub-problem so trivial, that it can
handle it without recalling itself. This is known as a base case,
and it is required to prevent the method from calling itself
repeatedly without ever stopping.

The Towers of Hanoi [8] is a classic problem that is solved
using recursion. The basic problem is as follows. Given three
pegs and a stack of N disks, where each disk is a little smaller
than the one beneath it, the goal is to transfer all N disks from
one of the three pegs to another, while adhering to two
important constraints:

 You can only move one disk at a time

 You can never place a larger disk on top of a smaller
one

Fig. 4 provides an example that illustrates this problem.
There are 3 disks on peg A and the goal is to move all of them
to peg B while adhering to the two important Towers of Hanoi
constraints mentioned above.

Fig. 4. Binary Search Tree

A. The Tower of Hanoi Test

Given the nature of the Towers of Hanoi problem, its
performance can be evaluated, since N disks can be moved
from one peg to another peg, using a minimum number of
moves. Given N disks, one can mathematical find the least
number of moves to achieve this goal. Students were asked to
write a test that will verify that the least number of moves are
used to move a stack of 3 disks from peg A to peg B using peg
C as auxiliary.

Additionally, in order to define a recursive solution,
students must find the base case and the recursive call [8]. The
base case specifies when the function ends to avoid an infinite
loop. The recursive call is defined to break the problem into
smaller, yet, identical steps, to solve the bigger problem.
Students would have to define the following in order to solve
the Towers of Hanoi problem recursively:

1) Base case:

 When the number of disks N, equals 1.

2) Recursive call:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

4 | P a g e

www.ijacsa.thesai.org

 Move N-1 disks from peg A to peg C, using peg B as
auxiliary

In Fig 4, two disks are moved from peg A to Peg B, as
shown in steps 2, 3, and 4.

 Move the remaining disk from peg A to peg B

In Fig 4, we move the remaining disk from peg A to peg
B, as shown in step 5.

 Move the N-1 disks from peg C to peg B, using peg A
as auxiliary.

In Fig 4, two disks are moved from peg C to Peg B, as
shown in steps 6, 7, and 8.

By means of mathematical induction, the minimum
number of moves required to solve the Towers of Hanoi
problem is 2n – 1, where n is the number of disks.

This means that students would have to figure out that the
minimum number of moves to transfer 3 disks from peg A to
peg B is 7. This test presents a practical example of testing the
performance/efficiency of a method or class by using the
Towers of Hanoi example, which is a classic problem that is
taught in most Data Structures course.

V. FUTURE WORK AND CONCLUSION

Future work entails identifying, and developing, additional
relatable examples that can be used to teach software testing at
other testing levels-including at the integration, and system
testing levels. Additionally, finding techniques and relatable
exercises that help students understand code coverage in terms
of data path, and input partition coverage, are also important.

Software testing is a very important activity that requires
more relatable teaching strategies to help students learn how
to effectively test their programs. Testing does not get enough
attention in the software development life cycle and so,
naturally, students do not spend enough time to fully
understand the problems they are solving at a fundamental
level. As a result, this negligence propagates into how they
test their code.

Using the three examples in Sections 3, it was
demonstrated that effective testing can be achieved by
utilizing some of the basic topics covered in a typical Data
Structures course. This approach focuses on understanding

constraints and the fundamental properties associated with
solving a particular problem. The aim is to encourage students
to invest the minimum time to fully understand a problem in
order to create test cases that will effectively find bugs and
defects, which are the primary goals of software testing.
Additionally, we extended the scope of unit testing to include
performance testing of a recursive method, which was applied
to Towers of Hanoi problem.

By using data structures, along with well-known problems
that were introduced to students earlier in the curriculum or in
a prerequisite course, they can seamlessly learn the principles
and application of software testing without focusing on
learning new unfamiliar content. Furthermore, students often
utilize the same data structures to implement software
programs in other upper level courses and internship projects.
Therefore, teaching automated software testing with ADTs,
provides students with a second opportunity to master their
skills and knowledge in software development and testing.

REFERENCES

[1] K. Muşlu, B. Soran, and J. Wuttke, ―Finding bugs by isolating unit
tests‖, In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering
(ESEC/FSE '11). 2011 ACM, New York, NY, USA, 496-499.
DOI=http://dx.doi.org/10.1145/2025113.2025202

[2] K. Buffardi, S. H. Edwards, ―Exploring influences on student adherence
to test-driven development‖, In Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science education
(ITiCSE '12), 2012, ACM, New York, NY, USA, 105-110.
DOI=10.1145/2325296.2325324

[3] G. Calikli, B. Arslan, A. Bener, ―Confirmation bias in software
development and testing: An analysis of the effects of company size,
experience and reasoning skills‖, In Proceedings of the 22nd annual
psychology of programming interest group workshop, 2010.

[4] G. Calikli, A. Bener, ―Empirical analyses factors affecting confirmation
bias and the effects of confirmation bias on software developer/tester
performance. In Proceedings of 5th international workshop on predictor
models in software engineering, 2010.

[5] L. Copeland, ―A Practitioner's Guide to Software Test Design‖, Artech
House Publishers, ISBN: 158053791X.

[6] A. Hunt, D. Thomas, ―The Pragmatic Programmer From Journeyman to
Master‖, Addison-Wesley, ISBN: 978-0-2016-1622-4

[7] Y. Langsam , M. Augenstein, A. M.Tenenbaum, "Data Structures using
Java", Pearson Prentice Hall, ISBN: 0-13-047721-4.

[8] J. D. McGregor, D. A. Sykes. ―A Practical Guide to Testing Object-
Oriented Software”, Addison-Wesley Longman Publishing Co., Inc.,
2001, Boston, MA, USA.

